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Abstract – Water plays a pivotal role in many physical 

processes, and most importantly in sustaining human life, 

animal life and plant life. Water supply entities therefore 

have the responsibility to supply clean and safe water at the 

rate required by the consumer. It is therefore necessary to 

implement mechanisms and systems that can be employed to 

predict both short-term and long-term water demands. The 

increasingly growing field of computational intelligence 

techniques has been proposed as an efficient tool in the 

modelling of dynamic phenomena. The primary objective of 

this paper is to compare the efficiency of two computational 

intelligence techniques in water demand forecasting. The 

techniques under comparison are the Artificial Neural 

Networks (ANNs) and the Support Vector Machines (SVMs). 

In this study it was observed that the ANNs perform better 

than the SVMs. This performance is measured against the 

generalisation ability of the two. 
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I. INTRODUCTION 

he modeling of water resource variables is a very 

broad field that includes modeling of water quality, 

water demand, water reticulation networks, to mention 

but a few. This paper is focused on the modeling of only 

one water resource variable which is water demand and 

the study is restricted to South Africa’s Gauteng Province. 

The Republic of South Africa has now of late been 

experiencing a situation whereby the demand of water is 

much higher than the rate at which the water is being 

supplied [1]. This is attributable to a number of factors 

such as the average annual rainfall of 497mm which is 

way below the world’s average of 860mm [2]. However, 

most of the factors that contribute towards the water 

demand exceeding the water supply are due to human 

interventions. These include population growth and the 

economic expansion of the South African citizens, 

especially in the Gauteng Province. The more affluent 

people become; the more water they will use [3], and the 

more the population grows, there will be an increased 

demand for water. The province of Gauteng is of particular 

interest because of its status as the industrial powerhouse 

of South Africa and it houses and provides employment to 

almost a quarter of the South African population, some 9 

million people [4]. 

The Gauteng Province consumes about 86% of the total 

water supply provided by a bulk supplier called Rand 

Water. With the current population growth rate of 3.13% 

per annum [4], the water demand in this province is 

definitely set to increase. Another factor that has a major 

influence on the demand of water is the issue of 

HIV/AIDS. An increase in the HIV/AIDS related deaths 

can have a negative effect on the population growth rate. 

This therefore implies that the population growth rate will 

not always be positive, but can at times be negative. An 

approach that can be employed to offset the effects of this 

population dynamics is to develop two models, one with 

the effects of HIV/AIDS neglected and another one with 

these effects taken into account. This will result in a 

reliable model because the actual water demand will be 

inside the envelope formed by these two extremes. 

 

II. LITERATURE INSPECTION 

The modelling of water resource variables is a very 

active field of study and definitely there still is a lot of 

work to be done. In the initial stages, modelling of water 

resource variables was done using the traditional statistical 

models. In recent years, modern techniques have been 

proposed as efficient modelling tools. There is a large pool 

of these techniques, and hence there is always a need to 

investigate which technique is the most efficient for a 

particular application. 

Gamal El-Din et al [5] used artificial neural networks to 

model wastewater treatment processes. This was a 

comparative study between conventional deterministic 

models and artificial neural networks. They observed that, 

in addition to the information contained in the 

conventional models, neural networks contained a great 

deal of additional information with regard to the system 

being modelled. Jain et al [6] used artificial neural 

networks to model the short-term water demand at the 

Indian Institute of Technology (IIT) in Kanpur, India. Six 

neural network models, five regression models and two 

time series models were developed and compared. All the 

neural network models generally displayed better 

performance when measured against the other models. 

Maier et al [7] conducted a study reviewing 43 research 

papers that employed neural networks in the prediction 

and forecasting of water resources variables. They 

observed that neural network models always work well 

and their use in the study of water is on the increase due to 

their ability to handle large amounts of non-linear, non-

parametric data. 

Khan and Coulibaly [8] conducted a comparative study 

between support vector machines, artificial neural 

networks and the traditional seasonal autoregressive model 

(SAR) in the forecasting of lake water levels. They 

observed that the support vector machine is generally 

compatible with the other two models, but when it comes 

to long-term forecasting, the support vector machine 

displays better performance. Mukherjee et al [9] 

conducted a study to predict chaotic time series using 

support vector machines. The performance of support 

vector machines stood out when compared to other 

approximation methods such as polynomial and rational 

approximation, local polynomial techniques and artificial 

neural networks. Other forecasting applications that 

employed support vector machines include the work of 

Mohandes et al in the prediction of wind speed [10]. They 

observed that the performance of the support vector 

machines is comparable to that of artificial neural 

networks. 

All of these studies confirm that there is a need to 

compare the performance of various approximation 

T 



techniques. The study that lead to this paper carries some 

element of novelty since it is the first one to carry out 

water demand forecasting using computational intelligence 

techniques in the Republic of South Africa. 

 

III. THEORETICAL FOUNDATION 

A. Water Scarcity 

The scarcity of water in the Republic of South Africa is 

also soaring to new heights, especially in the Gauteng 

Province. In order to offset the effects of this scarcity, 

Rand Water has introduced the idea of supplementary 

water schemes. Since 1974, the water in the Vaal River 

has been supplemented through the inter-basin transfer of 

water from the Tugela River in the Kwa-Zulu Natal 

Province. This is what became to be known as the Tugela-

Vaal Transfer Scheme [11]. Another transfer scheme takes 

water from the Orange River in Lesotho to supplement the 

Vaal dam. This is what came to be known as the Lesotho 

Highlands Water Project [12]. 

The development of supplementary water schemes is 

indicative of the fact that the issue of water scarcity in the 

Republic of South Africa is a serious one.  This therefore 

implies that there is an urgent need for the development of 

tools that will assist in the effective management of water 

resources, and artificial neural networks have a significant 

role to play to that effect. 

 

B. Regression Approximation 

Unlike using conventional software development 

techniques to make programs, learning methodology uses 

examples to synthesize these programs. The particular case 

where the examples are input-output pairs is called 

supervised learning. There are different types of learning 

problems and these are binary classification, multi-class 

classification and regression [13]. Binary classification is a 

problem with binary (1 or 0; true or false; LOW or HIGH) 

outputs. Multi-class classification is a problem with a 

finite number of outputs, and regression is a problem with 

real-valued outputs. Water demand forecasting can be 

regarded as a regression problem because the water time 

series has non-linear nature and hence the output of the 

predicting model has to be a real value depicting the 

amount of water that will be needed on a specified date. 

 

C. The Theory of Artificial Neural Networks in Regression 

Artificial Neural Networks (ANNs) are mathematical 

models that can be employed in the modeling of complex 

systems.  They can be used both for classification and 

regression problems. ANNs consist of three layers, 

namely, the input layer, the hidden layer and the output 

layer. The input layer represents the model inputs and the 

output layer represents the model outputs. The hidden 

layer consists of nodes that, during optimization, attempt 

to functionally map the model inputs to the model outputs. 

There are numerous ANN architectures but this study 

focuses on only two architectures. These are the multi-

layer perceptron and the radial basis function. 

 

1) The multi-layer perceptron (MLP) 

Networks that have more than one layer of adaptive 

weights are known as multi-layer perceptrons. A multi-

layer perceptron has three layers of units taking values in 

the range (0 to 1). Each layer is nourished with the 

previous layers, and hence it is also called a Jump 

Connection Network (JCN) [14]. MLPs can have any 

number of weighted connections, but networks with only 

two weighted connections are very much capable of 

approximating just about any functional mapping [15].  
The MLP is mathematically represented by: 
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where
ky represents the k-th output,

outerf represents the 

output layer transfer function, innerf represents the input 

layer transfer function, w represents the weights and 

biases, 
(i)

 represent the i-th layer. 

 

2) The radial basis function (RBF) 

In this class of neural networks, the activation of the 

hidden unit is determined by the distance between the 

input vector and the prototype vector [15]. The internal 

representation of the hidden units of the RBF network 

leads to a two stage training procedure. The first stage is 

concerned with the determination of the centre of the 

network using unsupervised methods. The second stage is 

concerned with the determination of the final-layer 

weights. The RBF networks provide a basis function (an 

interpolation function) which passes through each and 

every data point. A simple representation of the RBF 

network is depicted in figure 2. The RBF is 

mathematically represented by: 
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where ky represents the k-th output, w represents the 

weights and biases, andφ represents the activation 

functions of the output layer. 

 

D. The Theory of Support Vector Machines in Regression 

Like ANNs, support vector machines (SVMs) can be 

used both for classification and regression problems. A 

support vector machine (SVM) is a classifier derived from 

statistical learning theory and was first introduced by 

Vapnik et al [16] in COLT-92. In regression problems, a 

non-linear function is learned by a linear learning machine 

in a kernel induced feature space, while the capacity of the 

system is controlled by a parameter that does not depend 

on the dimensionality of the space [13]. The process of 

employing SVMs in regression problems is referred to 

Support Vector Regression (SVR). 

In SVR, the basic idea is to map the input space x to the 

high dimensional feature space ( )xΦ in a non-linear 

manner. This relationship is depicted in (3) where b is the 

threshold. 

( ) ( )( ) bxwxf +Φ⋅=    (3) 

Both b and the constant w are estimated by minimizing 

the sum of the empirical risk and a complexity term. In (4) 

below, the first term denotes the empirical risk, and the 

second term denotes the complexity term. 
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Where Z denotes the size of the sample, ( )⋅C  is a cost 

function and λ  is the regularization constant. 

 

IV. STRUCTURED METHODOLOGY 

This part of the paper describes the very structured 

methodology employed in order to get to the most 

optimum results of the study. The roadmap of this 

methodology is as depicted in fig. 1 below. 

 

 
Fig. 1. The structured methodology adopted in this 

comparative study 

 

The first stage of the methodology is to manipulate the 

data used in the study followed by the initialization of the 

model parameters. This stage is followed by two 

experiments that run in parallel, one for support vector 

regression and one for the artificial neural networks. A 

performance analysis is executed on both sides, and that is 

followed by the determination of the Support Vector 

Genius (SVG) and the Artificial Neural Genius (ANG). 

The SVG is the SVM model that outperforms all the other 

SVM models in the SVR experiment. The ANG is that 

ANN architecture that outperforms all the other models in 

the ANN experiment. The SVG and the ANG are 

thereafter compared in order to establish the overall 

Genius in the study. 

 

V. EXPERIMENTAL SETUP 

 

A) Data Manipulation 

The data used in this study consists of the previous daily 

water demands and the annual estimated population size of 

the Gauteng Province. This data is manipulated in two 

forms, namely, normalization and division. The population 

figures depicted an increasing trend, as shown on table I, 

but the water demand figures are of arbitrary complexity 

as depicted in table II. 

 

 

 

TABLE I 

A SNAPSHOT OF THE ANNUAL POPULATION 

ESTIMATES 

Year Mid-year Population Estimate 

1994  7 830 904 

1995  7 992 219 

1996  8 156 857 

1997  8 324 886 

1998  8 496 376 

 

TABLE II 

A SNAPSHOT OF THE DAILY WATER DEMAND 

FIGURES 

Date  Demand (Mega Liters) 

04-Jan-1997  1 849.95 

05-Jan-1997  2 137.14 

06-Jan-1997  1 982.94 

07-Jan-1997  2 188.65 

08-Jan-1997  2 254.14 

 

1) Data Normalization 

In order to simplify the task of the network, the data 

was scaled or normalized by making use of (5). 
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Where x~ is the scaled data point, x is the original data 

point, MINx  and MAXx are the minimum and maximum 

values in the data set, respectively. This is done in order to 

ensure that the minimum value in the data set is scaled to 

zero, and that the maximum value is scaled to one. 

 

2) Data Division 

The water figures obtained from Rand Water’s database 

where comprised of 3 474 data points from the 4
th

 of 

January 1997 to the 09
th

 of July 2006. There was only one 

data point missing and this was on the 25
th

 of March 1999.  

The effects of this missing data point were removed by 

discarding it from the database. Consequently the data 

bank remained with a sum of 3 473 data points. In order to 

employ the cross-validation technique, the data bank was 

divided into three interdependent data sets. These are the 

training set, the validation set and the testing set. The 

distribution and sum of these data sets is depicted in table 

III below. 

TABLE III 

THE DISTRIBUTION AND THE SUM OF DATA 

POINTS IN EACH DATA SET 

Data Set  Distribution Total 

Training Set  5294 ×  1 470  

Validation Set  5201 ×  1 005 

Testing Set  5199 ×  995 

 

B) Model Initialization 

This section deals with the issues of the number of 

model inputs. A short investigation had to be carried out 

and this was done from the ANN perspective. Initially the 

model is given a total of two inputs, followed by three, 

four, five and six inputs. A five input network reflects the 

least amount of training error and hence is adopted. The 



first four inputs are the previous water demand figures 

representing four consecutive days, and the fifth input is 

the annual population figure. A sample of the results from 

the model input development procedure is reflected in 

table IV below. This sample shows the results obtained 

from MLP architecture making use of the linear scaled 

conjugate gradient optimization algorithm. 

 

TABLE IV 

A SAMPLE OF THE RESULTS USED TO DECIDE ON 

THE NUMBER OF MODEL INPUTS 

Inputs  Training Error 

Two  1.585493 

Three  1.552321 

Four  1.525390 

Five  1.538540 

Six  1.539795 

 

In order to facilitate fair comparison between ANNs and 

SVMs, the same number of model inputs was adopted for 

the SVR experiment. 

 

VI. EXPERIMENTAL RESULTS AND ANALYSIS 

A) Object of the Performance Analysis 

The SVR experiment is carried out in parallel with the 

ANN experiment, and the performance of all the models is 

analyzed. The object of the analysis is to determine the 

genius model from each experiment. The genius model 

from the SVR experiment is referred to as Support Vector 

Genius (SVG) and the genius from the ANN experiment is 

referred to as the Artificial Neural Genius (ANG). The 

SVG and the ANG are then compared in order to 

determine the Overall Genius (OG). These two parallel 

experiments are simulated on a Pentium 4 computer with a 

frequency of 2.40GHz. 

 

B) Determination of the SVG 

In order to fine-tune the heuristics of the SVR models 

different kernel functions are tried and tested. Some of 

these kernels have additional arguments such as the 

degree, scale, offset, sigma (width) and maximum order of 

terms. The kernels that are available for use are the Anova, 

BSpline, exponential radial basis function (ERBF), Linear, 

Polynomial (Poly), radial basis function (RBF) and Spline. 

To determine the SVG, the different models are trained in 

a supervised manner and thereafter given the validation set 

to estimate the target of the validation set. The SVG is that 

model that has the least error and the most accuracy when 

estimating the target value of the validation set. This 

therefore implies that the two key performance parameters 

are the validation error and the accuracy. The other 

performance parameter taken into deliberation is the 

execution time, but does not carry much weight. 

The validation error is computed using the traditional 

method of computing the percentage error. The accuracy 

of model can be evaluated in many ways. In this paper the 

accuracy is evaluated based on the practicality of the water 

demand figures. This is done by introducing a tolerance 

figure,τ , with which the predicted value can be 

acceptable. This implies that the predicted value is 

regarded as accurate if it is equal to the actual value, plus 

or minus the tolerance figure. The sum of the accurate 

values is thereafter divided by the total number of points in 

the test set and multiplied by hundred to give the 

percentage of the accurate values in the validation set. This 

relationship is depicted in (6) below. 
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Where Acc represents the accuracy, Cnt denotes the count 

operation and τ is the acceptable tolerance. 

According to the South African Department of Water 

Affairs and Forestry, the water services sector represents 

an overall demand of the order of 19% of the total water 

use [16]. This implies that 19% of the water used is 

consumed by the water supplier. This figure is therefore 

introduced as the tolerance value in the accuracy check. 

Nineteen percent of the average annual water demand 

(2700 Mega litres) is 500 Mega litres.  

The results obtained from the SVR experiment are 

tabulated in table V below. The code 999 stands for ‘NOT 

APPLICABLE’.

TABLE V 

 SUMMARY OF THE RESULTS OBTAINED FROM THE SVR EXPERIMENT 

Kernel Degree Scale Offset Sigma Max Order Error (%) Accuracy (%) Time (s) 

Anova 999 999 999 999 0  4.044  100  1294.1 

Anova 999 999 999 999 1  4.044  100  1289.1 

Anova 999 999 999 999 2  4.044  100  1269.3 

Anova 999 999 999 999 3  4.044  100  1330.4 

BSpline 0 999 999 999 999  4.95541  100  320.2 

BSpline 1 999 999 999 999  11.9352  79  255.8 

ERBF 999 999 999 1 999  4.28951  100  451.5 

ERBF 999 999 999 2 999  4.29828  100  429.1 

ERBF 999 999 999 3 999  4.29901  100  433.2 

Linear 999 999 999 999 999  3.94003  100  3911.8 

Poly 1 999 999 999 999  3.94016  100  2194.7 

Poly 2 999 999 999 999  4.09741  100  11868.6 

Poly 3 999 999 999 999  4.82196  100  18130.7 

RBF 999 999 999 5 999  5.4237  98  1823.7 

RBF 999 999 999 6 999  5.3654  99  507.3 

RBF 999 999 999 7 999  5.22129  100  359.1 

Spline 999 999 999 999 999  10.9939  83  467.7 



It is evident from table V above that the model with the 

most optimum approximation is the one with a linear 

kernel function. This is due to the fact that it has 100% 

accuracy, and 3.94% validation error. It is therefore 

regarded as the Support Vector Genius (SVG). 

 

C) Determination of the ANG 

The ANN experiment has two architectures to 

investigate, and in turn, these architectures have many 

different activation functions. For the sake of simplicity, 

the experiments of the two architectures are separated and 

the results are compared. 

1) The MLP experiment and results 

The MLP network is trained using three different output 

unit activation functions and three different training 

algorithms. The activation functions are ‘linear’, ‘logistic’ 

and ‘softmax’. The three different training algorithms are 

the scaled conjugate gradient (SCG), conjugate gradient 

(Conjgrad) and quasinewton (Quasinew) [17]. The 

softmax activation function gives a straight line 

approximation and hence its results are redundant. The 

experiment is therefore conducted with the other two 

activation functions and the three different optimization 

algorithms. The MLP ANN configurations are labelled as 

depicted in table VI. After the optimization of each of the 

network nomenclatures listed in table VI, the validation 

error analysis and accuracy check is executed using (6) 

and the results are shown in table VII.  

 

TABLE VI 

LABELING OF THE MLP ANNs ACCORDING TO 

THE ACTIVATION FUNCTION AND THE NUMBER 

OF HIDDEN UNITS 

ANN Label Function Units Algorithm 

AZ1  Linear  9 SCG 

AZ2  Linear  10 SCG 

AZ3  Linear  9 Conjgrad 

AZ4  Linear  10 Conjgrad 

AZ5  Linear  9 Quasinew 

AZ6  Linear  10 Quasinew 

AZ7  Logistic  9 SCG 

AZ8  Logistic  10 SCG 

AZ9  Logistic  9 Conjgrad 

AZ10  Logistic  10 Conjgrad 

AZ11  Logistic  9 Quasinew 

AZ12  Logistic  10 Quasinew 

 

Both AZ2 and AZ11 have an accuracy of 99%. 

However AZ2 has a validation error that is less than that 

of AZ11. This therefore implies that the MLP ANN with 

the most suitable functional mapping is AZ2. AZ2 is a 

network with a linear output activation function, ten 

hidden units and the scaled conjugate gradient 

optimization algorithm. 

 

TABLE VII 

THE RESULTS OBTAINED FROM THE DIFFERENT 

MLP CONFIGURATIONS 

ANN Error      Accuracy Elapsed time 

AZ1 23%    38%  76.954s 

AZ2 6%       99%  81.360s 

AZ3 32% 5%  184.109s 
AZ4 10% 87%  156.828s 

AZ5 63% 0%  73.594s 

AZ6 35% 7%  20.875s 

AZ7 15% 73%  96.703s 

AZ8 6% 97%  20.281s 

AZ9 9% 93%  90.781s 

AZ10 18% 59%  154.984s 

AZ11 7% 99%  76.515s 

AZ12 9% 96%  146.968s 

 

2) The RBF Experiment and Results 

The RBF network is trained in a manner that assesses 

the effects of three different activation functions. First, a 

network with Gaussian activations (Gaussian) is created 

and a two-stage training approach is used. It uses a small 

number of iterations of the Expectation-Maximization 

(EM) algorithm [17] to position the centres of the network 

and then the pseudo-inverse of the design matrix to find 

the second layer weights. The second layer has thin plate 

spline (TPS) activation functions and it makes use of the 

centres from the previous network to calculate the second 

layer weights. The third layer has rr log4  (R4logr) 

activation functions. The combination of these activation 

functions and the number of the hidden units in the RBF 

network is labelled as in table VIII. Similarly, after the 

optimization of each of the RFB network the error analysis 

(validation error) and accuracy check is executed using (4) 

and (5) respectively. 

 

TABLE VIII 

LABELLING OF THE RBF ANNS ACCORDING TO 

THE ACTIVATION FUNCTIONS AND THE NUMBER 

OF HIDDEN UNITS 

ANN Label Function  Units 

AX1  Gaussian  9 

AX2  Gaussian  10 

AX3  TPS   9 

AX4  TPS   10 

AX5  R4logr   9 

AX6  R4logr   10 

 

Table IX shows ANN configurations with 100% 

accuracy. These are AX3, AX4, AX5 and AX6. In order to 

select the most optimum one, the validation error is 

observed to select the smallest. Both AX4 and AX6 have 

the same smallest validation error. In order to select the 

most optimum one, the error obtained during training is 

observed. 

AX4 Training Error = 2.4651% 

AX6 Training Error = 2.4272% 

 

TABLE IX 

THE RESULTS OBTAINED FROM THE RBF 

VALIDATION FOR THE DIFFERENT ACTIVATION 

FUNCTIONS 

ANN Error Accuracy Elapsed Time 

AX1 28% 37%  12.969s 

AX2 15% 71%  9.671s 

AX3 3.7% 100%  12.969s 

AX4 3.6% 100%  9.671s 



AX5 4.2% 100%  12.969s 

AX6 3.6% 100%  9.671s 

 

This is a small difference but AX6 has the smallest 

training error and hence the most optimum functional 

mapping. This therefore implies that the best RBF is AX6. 

When comparing AZ2 and AX6 it is apparent that AX6 

provides the most optimum approximation of the target 

values of the validation set. This is due to the fact that it 

has 100% accuracy and a validation error of 3.6%. As a 

result, it is regarded as the Artificial Neural Genius 

(ANG). 

 

VII. DISCUSSION OF RESULTS 

The object of this section is to compare the SVG and 

ANG in order to determine the OG. This is done by 

employing the third data set which is the testing set. This 

is done in order to determine the generalisation ability of 

these two geniuses. 

SVG Error  5.46519%  

SVG Accuracy 100% 

ANG Error  2.95995% 

ANG Accuracy 100% 

It is apparent from this analysis that the ANG has better 

generalization ability than the SVG. This therefore implies 

that artificial neural networks are better approximation 

tools for this particular study. The functional mapping of 

the ANG is plotted in the fig 2 below. 
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Fig. 2. The functional mapping of the ANG 

 

A further development would be to even further 

scrutinize the generalisation ability of this ANG. This can 

be done by determining the common trends in the water 

demand data. A model will be developed for each trend, 

and the theory of Hidden Markov Models [18] will be 

employed to determine whether the predicted value 

belongs to that particular date or season by looking at the 

model of that particular season. 

 

VIII CONCLUSIONS 

Two machine learning techniques have been 

investigated in this study. These are the artificial neural 

networks (ANNs) and the support vector machines 

(SVMs). An approach adopted was to conduct two parallel 

experiments, one for the ANNs and one for the SVMs. The 

ANN experiment encapsulated two architectures, the 

multi-layer perceptron (MLP) and the radial basis function 

(RBF). The results from the two architectures were 

compared to come up with the Artificial Neural Genius 

(ANG). The SVM experiment was comprised of many 

models with different kernel functions and some of these 

kernel functions had additional arguments such as the 

degree and the scale. These models were compared against 

each other in order to determine the Support Vector 

Genius (SVG). The performance criteria used to determine 

the geniuses from each experiment were the validation 

error and the accuracy in their approximation of the target 

values of the validation data set. The two geniuses were 

then compared against each other in order to determine the 

overall genius (OG). The performance parameter used to 

determine the OG is the generalisation ability of each 

genius. The ANG has proved to outperform the SVG. 

 

ACKNOWLEDGEMENT 

The authors hereby thank Rand Water’s Thomas Phetla 

for taking his time to make the data available. The 

financial support of the South African National Research 

Foundation is hereby acknowledged. 

 

REFERENCES 
[1] Media release by the South African Department of Water Affairs and 

Forestry, “Water Shortage a reality for South Africa”, 18 Jan 2005. 

[2] R. Turner, K. van den Bergh, T. Soderqvist, A. Barendregt, J. van der 

Straaten, E. Maltby and E. van Ierland, “Ecological – Economic 

analysis of wetlands: scientific integration for management and 

policy,” Ecological Economics, pp. 7– 3, Jan 2000. 

[3] Water Issues Study Group, School of Oriental and African Studies 

(SOAS), “Water Demand Management (WMD): A Case Study from 

South Africa,” Technical Report, 18 Jan 1999. 

[4] Water Services: National Information System. National Profile: 

Population and Growth. South African Department of Water and 

Forestry, April 2006. 

[5] A Gamal El-Din, D. W. Smith and M. Gamal El-Din, “Application of 

artificial neural networks in wastewater treatment,” J. Environ. Eng. 

Sci., pp. 81-95, Jan 2004. 

[6] A. Jain, A. K. Varshney, U. C. Joshi. “Short-Term Water Demand 

Forecast Modelling at IIT Kanpur Using Artificial Neural Networks,” 

IEE Transactions on Water Resources Management, vol. 15, no. 1, pp 

299–321, Aug 2001. 

[7] H. R. Maier, G. C. Dandy, “Neural networks for the prediction and 

forecasting of water resources variables: a review of modelling issues 

and applications,”          Environmental Modelling & Software, pp 

101–124, Jan 2000. 

[8] M.S. Khan, and P. Coulibaly, “Application of Support Vector Machine 

in Lake Water Level Prediction,” J. Hydrologic. Engrg, vol. 11, no. 3, 

pp. 199-205, Jun 2006. 

[9] S. Mukherjee, E. Osuna and F. Girosi, “Nonlinear Prediction of 

Chaotic Time Series Using Support Vector Machines”, IEEE 

NNSP’97, pp 24–26 

[10] M.A. Mohandes, T.O. Halawani, S. Rehman and A.A. Hussain, 

“Support vector machines for wind speed prediction”, Renewable 

Energy, vol. 29, no. 6, pp 939–947 

[11] Rand Water, “100 Years of Excellence,” Jan. 2006. 

[12] Lesotho Highlands Water Project, “Analysis of the Minimum 

Degradation, Treaty, Design Limitation and Fourth Scenarios for 

Phase 1 Development,” Contract LHDA 678, June 2002. 

[13] N. Cristianini and J. Shawe-Taylor, An introduction to Support Vector 

Machines and other kernel-based learning methods, first edition, 

2000. 

[14] M. Bosque, Understanding 99% of Artificial Neural Networks. Writers 

Club Press, first edition, 2002. 

[15] C. M. Bishop, Neural Networks for Pattern Recognition, Oxford 

University Press, first edition, 1995. 

[16] B.E. Boser, I.M. Guyon and V.N. Vapnik, “A training algorithm for 

optimal margin classifiers”, Annual Workshop on Computational 

Learning Theory, 144–152, Jan. 1992. 

[17] I. T. Nabney. Algorithms for Pattern Recognition. Springer, second 

edition, 2003. 

[18] L.R. Rabiner, “A Tutorial in Hidden Markov Models and Selected 

Applications in Speech Recognition”, Proceedings of the IEEE, vol. 

77, no. 2, pp 1–30, Oct. 1988. 

 


