
Important Extrema of Time Series

Eugene Fink
Computer Science, Carnegie Mellon University

Pittsburgh, Pennsylvania 15213
e.fink@cs.cmu.edu, www.cs.cmu.edu/∼eugene

Harith Suman Gandhi
11336 Cypress Reserve Drive

Tampa, Florida 33626
suman.reddy@nielsen.com

Abstract – We describe a technique for fast lossy
compression of a time series based on the assignment
of importance levels to its minima and maxima.

Keywords: Time series, lossy compression, major min-
ima and maxima.

1 Introduction
A time series is a sequence of values measured at

equal time intervals, such as stock prices and electro-
cardiograms; for example, the series in Figure 1 includes
values 1, 3, 3, 5, and so on. We present algorithms for
compressing a time series by extracting its major ex-
trema, that is, minima and maxima. First, we define
four types of extrema and describe an algorithm that
finds all extrema (Section 2). Then, we introduce the
notion of important extrema and give a procedure for
identifying them (Section 3). We also define the impor-
tance levels of extrema and present a technique for com-
puting them (Section 4). Finally, we give an algorithm
that compresses a series at a given rate (Section 5).

2 Extrema
We begin with a simple compression based on the

extraction of all extrema (Figure 2). We distinguish
four types of extrema, called strict, left, right, and flat
(Figure 3). We give the definition of strict, left, right,
and flat minima; the definition for maxima is similar.

Definition 1 (Minima) Suppose that a1, ..., an is a
time series, and ai is its point such that 1 < i < n.
• ai is a strict minimum if ai < ai−1 and ai < ai+1.
• ai is a left minimum if ai < ai−1 and there is an

index right > i such that ai = ai+1 = ... = aright <
aright+1.

• ai is a right minimum if ai < ai+1 and there is
an index left < i such that aleft−1 > aleft = ... =
ai−1 = ai.

• ai is a flat minimum if there are indices left < i and
right > i such that aleft−1 > aleft = ... = ai = ... =
aright < aright+1.

index

va
lu

e

 2 4 6 8 10 12 14 16 18 20

4

2

0

1
1

4 4

3 3
1

4

3

Figure 1: Example of a time series and its extrema. We
show the importance of each extremum and mark the ex-
trema with importances greater than 1.

index

va
lu

e

 2 4 6 8 10 12 14 16 18 20
0

2

4

Figure 2: Compression by extracting all extrema. We show
strict extrema by circles, left and right extrema by half-
circles, and end-points by squares.

index
(a) Strict minimum.

index
(b) Left and right minima.

index
(c) Flat minimum.

va
lu

e
va

lu
e

va
lu

e

Figure 3: Four types of minima.

all-extrema — Finding all extrema

Input: Series a1, ..., an

Output: Values, indices, and types of all extrema

i = 2

while i < n and ai = a1 do i = i + 1

if i < n and ai < a1 then i = find-min(i)

while i < n do

i = find-max(i); i = find-min(i)

find-min(i) — Find the first minimum after the ith point

left = i

while i < n and ai ≥ ai+1 do

i = i + 1; if aleft > ai then left = i

if i < n then output-ext(left, i, “min”);

return i + 1

find-max(i) — Find the first maximum after the ith point

left = i

while i < n and ai ≤ ai+1 do

i = i + 1; if aleft < ai then left = i

if i < n then output-ext(left, i, “max”)

return i + 1

output-ext(left, right, type) — Output extrema

if left = right

then output(aright, right, type, “strict”)

else output(aleft, left, type, “left”)

for flat = left + 1 to right − 1 do

output(aflat, flat, type, “flat”)

output(aright, right, type, “right”)

Figure 4: Identifying all extrema. We process a series
a1, ..., an and use a global variable n to represent its size.

In Figure 4, we give a procedure that identifies all ex-
trema and determines their types, which is an extended
version of the compression algorithm developed by Pratt
and Fink [8]; it takes linear time and constant memory.
Note that it can process new points as they arrive, one
by one, without storing the series in memory; for ex-
ample, it can process a live electrocardiogram without
waiting until the end of the data collection.

We can compress a series by extracting its strict,
left, and right extrema, along with the two end-points,
and discarding the flat extrema and nonextremal points
(Figure 2). We now state an important property of this
compression, called monotonicity.

Definition 2 (Monotonic compression) Suppose
that a1, ..., an is a time series, and ai1 , ..., ais is its
compressed version. The compression is monotonic if,
for every consecutive indices ic and ic+1 in the com-
pressed series and every index i in the original series,
if ic < i < ic+1, then either aic ≤ ai ≤ aic+1 or
aic+1 ≤ ai ≤ aic .

If we compress a series by selecting all strict, left,
and right extrema, along with the two end-points, the
resulting compression is monotonic.

3 Important extrema
We can achieve a higher compression rate by select-

ing only certain important extrema. We first introduce
the notion of distance, and then use it to define these
important extrema.

Definition 3 (Distance) A distance between real val-
ues is a two-argument function, denoted dist(a, b), that
satisfies the following conditions:
• For every value a, dist(a, a) = 0.
• For every two values a and b, dist(a, b) = dist(b, a).
• For every three values a, b, and c, if a ≤ b ≤ c,

then dist(a, b) ≤ dist(a, c) and dist(b, c) ≤ dist(a, c).

For example, the functions |a − b|, |a−b|
|a|+|b| , and

|a−b|
max(|a|,|b|) are three different distance functions. We do
not assume that distances satisfy the triangle inequality;
thus, dist(a, c) may be greater than dist(a, b)+dist(b, c).

We next describe a method for combining distance
functions into a more complex distance function.

Lemma 1 (Distance composition) Suppose that
f(d1, ..., dq) is a real-valued function on nonnegative real
arguments such that f(0, ..., 0) = 0 and f is monotoni-
cally increasing on each of its arguments, and suppose
further that dist1, ..., distq are distance functions; then,
f(dist1(a, b), ..., distq(a, b)) is also a distance function.

We control the compression procedure by selecting a
distance function, along with a positive parameter R
that determines the compression rate; an increase of R
leads to the selection of fewer important extrema. We
now give a definition of important minima, illustrated in
Figure 5; the definition of important maxima is similar.

Definition 4 (Important minimum) For a given
distance function dist and positive value R, a point ai

of a series a1, ..., an is an important minimum if there
are indices il and ir, where il < i < ir, such that
• ai is a minimum among ail, ..., air, and
• dist(ai, ail) ≥ R and dist(ai, air) ≥ R.

Intuitively, ai is an important minimum if it is the
minimal value of some segment ail, ..., air, and the end-
point values of this segment are much larger than ai. We
next define strict, left, right, and flat important minima.

Definition 5 (Strict important minimum) A point
ai of a series a1, ..., an is a strict important minimum if
there are indices il and ir, where il < i < ir, such that
• ai is strictly smaller than ail, ..., ai−1 and

ai+1, ..., air, and
• dist(ai, ail) ≥ R and dist(ai, air) ≥ R.

We give an example of a strict important minimum
in Figure 5(a); intuitively, a point is a strict important
minimum if it is a strict minimum of some segment, and
the end-point values of this segment are much larger.

Definition 6 (Left important minimum) A point
ai of a series a1, ..., an is a left important minimum if it
is not a strict important minimum, and there are indices
il and ir, where il < i < ir, such that
• ai is strictly smaller than ail, ..., ai−1,
• ai is no larger than ai+1, ..., air, and
• dist(ai, ail) ≥ R and dist(ai, air) ≥ R.

The definition of a right important minimum is simi-
lar; we show examples in Figure 5(b).

Definition 7 (Flat important minimum) A point
is a flat important minimum if it is an important mini-
mum, but not strict, left, or right important minimum.

We illustrate this definition in Figure 5(c); intuitively,
a flat important minimum is one of several equally im-
portant minima in some segment ail, ..., air.

In Figure 6, we give a procedure that identifies the
important extrema and determines their types.

We can compress a series by selecting its strict, left,
and right important extrema, along with the two end-
points, and discarding the other points. In Figure 7,
we show the selected extrema for the distance |a − b|
with R = 3. Note that the resulting compression may
not be monotonic; for example, the points a7 and a11

in Figure 7 are consecutive important extrema, but the
value of a9 is not between the values of a7 and a11.

We can achieve a higher compression rate by selecting
only strict and left extrema, or only strict and right
extrema. The resulting compression is monotonic, but
it may not preserve information about flat and near-flat
regions, such as the segment a7, ..., a11 in Figure 7.

Lemma 2 (Monotonicity) If we compress a series by
selecting all strict important extrema, all left (or right)
important extrema, and the end-points, then the result-
ing compression is monotonic.

We can recompress an already compressed series with
a larger R using the same distance function, which pro-
duces the same result as the compression of the original
series with the larger R. We use the procedure in Fig-
ure 6 with minor modifications for this recompression.
Specifically, we input the compressed series just like the
original series. For each selected important extremum,
the modified procedure outputs its index in the original
series instead of its index in the input compressed series.

4 Importance levels
We next define numeric importances of extrema and

give an algorithm for computing them.

Definition 8 (Importance) If a point is a strict (left,
right, flat) extremum for some value of R, then its strict
(left, right, flat) importance is the maximal value of R
for which it is a strict (left, right, flat) extremum.

In other words, the strict (left, right, flat) importance
of an extremum is I if it is a strict (left, right, flat)

0

2

4

index

R

(a) Strict minimum.

va
lu

e

0

2

4

index

R

(b) Left and right minima.

va
lu

e

0

2

4

index

R

(c) Flat minimum.

va
lu

e

Figure 5: Four types of important minima.

extremum for R = I, but not for any R > I. Note
that this importance value depends on a specific dis-
tance function.

If a point is not a strict (left, right, flat) important
extremum for any value of R, we say that it has no strict
(left, right, flat) importance. For example, the point a7

in Figure 8 has no right or flat importance, whereas its
strict importance is 1, and its left importance is 3.

If we use the strict, left, and right extrema in com-
pression, then we define the overall importance of an
extremum as the maximum of its strict, left, and right
importances. If we use only the strict and left extrema,
then the overall importance is the maximum of the strict
and left importances. For convenience, we define the im-
portance of the end-points as infinity, which means that
we always include them into a compressed series.

We now give basic properties of importances.

Lemma 3

• An extremum has a strict importance if and only if
it is a strict extremum.

• A left (right) extremum has a left (right) impor-
tance; furthermore, if an extremum has a left (right)
importance, then it is either a left (right) or strict
extremum.

• A flat extremum has a flat importance; furthermore,
it has no strict, left, or right importance.

We give a simple procedure for determining the strict
importance of a minimum, stated as a lemma, which
is illustrated in Figure 9; determining the strict impor-
tance of a maximum is similar.

important-extrema — Finding the important extrema

Input: Series a1, ..., an, distance function dist, and R value

Output: Values, indices, and types of the important extrema

i = find-first

if i < n and ai < a1 then i = find-min(i)

while i < n do

i = find-max(i); i = find-min(i)

find-first — Find the first important extremum

i = 1; leftMin = 1; rightMin = 1; leftMax = 1; rightMax = 1

while i < n and dist(ai+1, aleftMax) < R

and dist(ai+1, aleftMin) < R do

i = i + 1

if aleftMin > ai then leftMin = i

if arightMin ≥ ai then rightMin = i

if aleftMax < ai then leftMax = i

if arightMax ≤ ai then rightMax = i

i = i + 1

if i < n and ai > a1

then output-ext(leftMin, rightMin, “min”)

if i < n and ai < a1

then output-ext(leftMax, rightMax, “max”)

return i

find-min(i) — Find the first important min after ith point

left = i; right = i

while i < n and (ai+1 < aleft or dist(ai+1, aleft) < R) do

i = i + 1

if aleft > ai then left = i

if aright ≥ ai then right = i

output-ext(left, right, “min”)

return i + 1

find-max(i) — Find the first important max after ith point

left = i; right = i

while i < n and (ai+1 > aleft or dist(ai+1, aleft) < R) do

i = i + 1

if aleft < ai then left = i

if aright ≤ ai then right = i

output-ext(left, right, “max”)

return i + 1

output-ext(left, right, type) — Output extrema
if left = right

then output(aright, right, type, “strict”)
else output(aleft, left, type, “left”)

for flat = left + 1 to right − 1 do
if aflat = aleft

then output(aflat, flat, type, “flat”)
output(aright, right, type, “right”)

Figure 6: Selecting the important extrema.

index

va
lu

e

 2 4 6 8 10 12 14 16 18 20
0

2

4

Figure 7: Important extrema for the distance |a − b| with
R = 3. We show the strict extrema by circles, left and right
extrema by half-circles, and end-points by squares.

3

va
lu

e

 2 4 6 8 10 12

4

2

0

index

11

1

(a) Strict importances.

va
lu

e
 2 4 6 8 10 12

4

2

0

index

34 4

33

(b) Left and right importances.

va
lu

e

 2 4 6 8 10 12

4

2

0

index

4

(c) Flat importances.
Figure 8: Importances of extrema for the distance |a − b|.
We show the strict, left, right, and flat importances.

Lemma 4 (Strict importance) Suppose that ai is
a strict minimum, and let ail, ..., ai−1 and ai+1, ..., air

be the maximal segments to the left and to the right
of ai whose values are strictly greater than ai. Let
alm be the maximal value among ail, ..., ai−1, and let
arm be the maximal value among ai+1, ..., air ; then, the
strict importance of ai is the minimum of the distances
dist(ai, alm) and dist(ai, arm).

We can use similar procedures for determining the
left, right, and flat importances of the minima and max-
ima. We state the results for the left and flat impor-
tances of minima; the other procedures are similar.

Lemma 5 (Left importance) Suppose that ai is a
strict or left minimum, and let ail, ..., ai−1 be the max-
imal segment to the left of ai whose values are strictly
greater than ai, and ai+1, ..., air be the maximal seg-

index

va
lu

e

 2 4 6 8 10 12 14 16 18 20
0

2

4 ail
lma rma

a

dist (,)ia alm ia dist (,)armia

ir

Figure 9: Computation of the strict importance of a min-
imum. To determine the importance of ai, we identify the
maximal segments ail, ..., ai−1 and ai+1, ..., air whose values
are strictly greater than ai, find the maximal values alm and
arm in these segments, and compute the importance of ai as
the smaller of dist(ai, alm) and dist(ai, arm).

ment to the right of ai whose values are no smaller
than ai. If all values among ai+1, ..., air are strictly
greater than ai, then ai has no left importance.

Otherwise, let art be the first point among ai+1, ..., air

with value equal to ai. Furthermore, let alm be the max-
imal value among ail, ..., ai−1, and let arm be the max-
imal value among art+1, ..., air. If some value among
ai+1, ..., art−1 is no smaller than min(alm, arm), then ai

has no left importance; else, its left importance is the
minimum of the distances dist(ai, alm) and dist(ai, arm).

Lemma 6 (Flat importance) Suppose that ai is a
strict, left, right, or flat minimum, and let ail, ..., ai−1

and ai+1, ..., air be the maximal segments to the left
and to the right of ai whose values are no smaller
than ai. If all values among ail, ..., ai−1 are strictly
greater than ai, or all values among ai+1, ..., air are
strictly greater than ai, then ai has no flat importance.

Otherwise, let alt be the last point among ail, ..., ai−1

with value equal to ai, and let art be the first point
among ai+1, ..., air with value equal to ai. Furthermore,
let alm be the maximal value among ail, ..., alt−1, and
let arm be the maximal value among art+1, ..., air. If
some value among alt+1, ..., ai−1 or among ai+1, ..., art−1

is no smaller than min(alm, arm), then ai has no flat
importance; else, its flat importance is the minimum of
the distances dist(ai, alm) and dist(ai, arm).

The following properties of importances readily follow
from Lemmas 5 and 6.

Lemma 7
• If a point has strict (left, right, flat) importance for

some distance function, then it has strict (left, right,
flat) importance for any other distance function.

• If a point has right importance, then it has no left
importance; similarly, if a point has left importance,
then it has no right importance.

• If a point has strict and left (right) importances,
then its strict importance is strictly smaller than
its left (right) importance.

• If a point has strict and flat importances, then its
strict importance is strictly smaller than its flat im-
portance.

• If a point has left (right) and flat importances, then
its left (right) importance is strictly smaller than its
flat importance.

If we define a new distance function through a com-
position of distances, then we can calculate the impor-
tances of extrema for this new distance based on the
importances for the original distances.

Lemma 8 Suppose that f(d1, ..., dq) is a real-valued
function on nonnegative real arguments such that
f(0, ..., 0) = 0 and f is monotonically increasing on each
of its arguments. Suppose further that dist1, ..., distq
are distance functions, and that the strict (left, right,
flat) importance of a given extremum for dist1 is I1,
its strict (left, right, flat) importance for dist2 is I2,
and so on. Then, the strict (left, right, flat) im-
portance of this extremum for the distance function
f(dist1(a, b), ..., distq(a, b)) is f(I1, ..., Iq).

In Figure 10, we give a fast procedure for calculating
the strict, left, right, and flat importances of all minima
in a series; the procedure for maxima is similar. It runs
in linear time, and it uses the memory in proportion
to the number of extrema; that is, if the original series
includes n points, and m of them are extrema, then the
procedure runs in O(n) time and uses O(m) memory.

The procedure computes the importances of all min-
ima in one pass through the series. When it identifies
a minimum ai, it puts i onto stack S1 and into list L,
and then it puts three local maxima surrounding ai (Fig-
ure 11) onto stacks S2, S3, and S4. When it later reaches
the end of the interval ai, ..., air (Figure 11), it removes i
from the stack and calculates the importances of ai. We
denote the strict importance of ai by strict-impi, left im-
portance by left-impi, right importance by right-impi,
and flat importance by flat-impi.

5 Compression rate
We next consider the problem of selecting important

extrema according to a given compression rate, which is
the percentage of points removed during the compres-
sion. For example, if a series includes hundred points
and a given compression rate is 90%, then we select the
ten most important extrema. As another example, the
compression rate in Figure 1 is 60% since we have se-
lected eight out of twenty points.

We assume that the given compression rate is no
smaller than the percentage of nonextremal points in
a series; for example, if a hundred-point series includes
eighty nonextremal points, the compression rate must
be at least 80%. If the series includes n points, the
number of selected extrema must be s = �n · (1− rate)�.

We give two algorithms that compress a series at a
given rate. The first is a linear-time algorithm that
performs three passes through the series. The second
algorithm is slower, but it can process new points as
they arrive, without storing the entire series in memory.

all-importances — Finding the importances of all minima

Input: Series a1, ..., an and distance function dist

Output: Values, indices, and importances of all minima

initialize an empty linked list L of indices

initialize an empty stack S1 of indices

initialize empty stacks S2, S3, and S4 of values

i = 1; left = 1; max-value = a1

while i < n do

while i < n and ai ≥ ai+1 do

i = i + 1; if aleft > ai then left = i

if left > 1 then push-min(left,max-value)

for flat = left + 1 to i − 1 do push-min(flat, aleft)

if i > left and i < n then push-min(i, aleft)

i = i + 1

while i < n and ai ≤ ai+1 do i = i + 1

max-value = ai; i = i + 1; left = i

if S1 is not empty then top(S3) = max-value

while S1 is not empty do max-value = pop-min(max-value)

for every i in the list L do

output(ai, i, strict-impi, left-impi, right-impi,flat-impi)

push-min(i, max-value) — Push ith point onto the stack

while S1 is not empty and ai < atop(S1) do

max-value = pop-min(max-value)

push(S1, i); push(S2,max-value); push(S3, ai)

if S4 is not empty

then push(S4, max(top(S4),max-value))

else push(S4,max-value)

add i to the end of the list L

pop-min(max-value) — Pop a point and set its importances

i = pop(S1); left-max = pop(S2);

right-max = pop(S3); other-max = pop(S4)

if ai < left-max and ai < right-max

then strict-impi=min(dist(ai, left-max), dist(ai, right-max))

if ai < left-max and right-max < max-value

then left-impi=min(dist(ai, left-max), dist(ai,max-value))

if ai < right-max and left-max < other-max

then right-impi=min(dist(ai, other-max), dist(ai, right-max))

if left-max < other-max and right-max < max-value

then flat-impi=min(dist(ai, other-max), dist(ai,max-value))

if max-value < left-max then max-value = left-max

if S1 is not empty and atop(S1) < ai

then top(S3) = max-value

return max-value

Figure 10: Importance calculation. The procedure outputs
all minima in order; for each minimum, the output includes
its value and index, as well as its strict, left, right, and flat
importances.

ila

air

index

va
lu

e

 2 4 6 8 10 12 14 16 18 20
0

2

4
lma

sla

lxa
arm

a

ia
sr

Figure 11: Illustration of the local maxima surrounding a
minimum ai, which are used in computing the importances
of ai; the notation is the same as in Figure 9. The point alx is
the maximum of the segment asl, ..., ai−1, whose values are
strictly greater than ai; the algorithm in Figure 10 stores
this maximum in stack S2. Similarly, arm is the maximum
of the segment ai+1, ..., asr, whose values are strictly greater
than ai; the algorithm stores it in stack S3. Finally, alm is
the maximum of the segment ail, ..., ai−1, whose values are
no smaller than ai; the algorithm stores it in stack S4.

three-pass-compression — Compression at a given rate

Input: Series a1, ..., an, function dist, and compression rate

Output: Compressed series

s = �n · (1 − rate)�
Calculate the importances of all extrema (Figure 10)

Find the sth greatest importance

Output the extrema whose importances are no smaller

than the sth greatest importance

Figure 12: Three-pass compression at a given rate, which
requires storing an entire series in memory.

Three-pass algorithm: The linear-time algorithm in-
cludes three main steps (Figure 12). First, it calls the
procedure in Figure 10, which calculates the impor-
tances of all extrema. Second, it finds the sth order
statistic among the importance values, that is, the sth
greatest value. Third, it selects all extrema with impor-
tances no smaller than the sth greatest value. For an
n-point series with m extrema, it runs in O(n) time and
takes O(m) memory.

Note that the resulting compression rate may not be
exactly equal to the given rate value. If the series has
multiple extrema with the importance equal to the sth
largest value, then the procedure selects all these ex-
trema, which means that the actual compression rate
may be lower than the given rate. For example, sup-
pose that we compress the series in Figure 1 and the
given rate is 70%. Then, s = �20 ·(1−0.7)� = 6, the sth
order statistic of importances is 3, and the algorithm
selects all points with importances no smaller than 3.
The series includes eight such points, which means that
the compression rate is 60%.

One-pass algorithm: The one-pass algorithm is a
modified version of the procedure in Figure 10, which
includes two main changes. First, we extend it to calcu-
late the importances of both minima and maxima in one
pass through the series. Second, we replace the linked
list L with a red-black tree, which contains only the s
most important extrema, indexed on their importances.

When the procedure determines the importance of an
extremum ai, it makes the respective update to the tree.
If the tree includes fewer than s extrema, the procedure
adds ai to the tree. If the tree includes s extrema and
they all are more important than ai, then the procedure
does not change the tree. Finally, if the tree includes s
extrema and some of them are less important than ai,
then the procedure adds ai and removes the least im-
portant extremum from the tree.

After processing the series, the procedure sorts the
s selected extrema by their indices, and outputs their
values, indices, and importances. For an n-point series
with m extrema, the running time is O(m · lg s+n), and
the required memory is O(m).

6 Concluding remarks
We have formalized the concept of major minima and

maxima in a time series, and developed a fast algorithm
for computing the importance levels of minima and max-
ima, which allows fast lossy compression of a series. We
can also apply the same concept of importance levels
to index a database of time series by their minima and
maxima, which allows fast retrieval of series similar to
a given pattern. We have described this indexing tech-
nique in Gandhi’s masters thesis [2], which is a contin-
uation of the work by Pratt and Fink on the indexing
of time series [1, 8].

References
[1] Eugene Fink and Kevin B. Pratt. Indexing of com-

pressed time series. In Mark Last, Abraham Kandel,
and Horst Bunke, editors, Data Mining in Time Se-
ries Databases, pages 51–78. World Scientific, Singa-
pore, 2003.

[2] Harith Suman Gandhi. Important extrema of time se-
ries: Theory and applications. Master’s thesis, Depart-
ment of Computer Science and Engineering, University
of South Florida, 2004.

[3] Eamonn J. Keogh, Selina Chu, David Hart, and
Michael J. Pazzani. An online algorithm for segment-
ing time series. In Proceedings of the ieee International
Conference on Data Mining, pages 289–296, 2001.

[4] Eamonn J. Keogh and Michael J. Pazzani. An enhanced
representation of time series which allows fast and ac-
curate classification, clustering and relevance feedback.
In Proceedings of the Fourth acm International Confer-
ence on Knowledge Discovery and Data Mining, pages
239–243, 1998.

[5] Mark Last, Yaron Klein, and Abraham Kandel. Knowl-
edge discovery in time series databases. ieee Transac-
tions on Systems, Man, and Cybernetics, Part B, 31(1),
pages 160–169, 2001.

[6] Sanghyun Park, Sang-Wook Kim, and Wesley W. Chu.
Segment-based approach for subsequence searches in
sequence databases. In Proceedings of the Sixteenth
acm Symposium on Applied Computing, pages 248–252,
2001.

[7] Chang-Shing Perng, Haixun Wang, Sylvia R. Zhang,
and D. Scott Parker. Landmarks: A new model
for similarity-based pattern querying in time series
databases. In Proceedings of the Sixteenth International
Conference on Data Engineering, pages 33–42, 2000.

[8] Kevin B. Pratt and Eugene Fink. Search for patterns in

compressed time series. International Journal of Image

and Graphics, 2(1):89–106, 2002.

