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Multi-agent Q-Learning of Channel Selection in
Multi-user Cognitive Radio Systems:

A Two by Two Case
Husheng Li

Abstract— Resource allocation is an important issue in cogni-
tive radio systems. It can be done by carrying out negotiation
among secondary users. However, significant overhead may be
incurred by the negotiation since the negotiation needs to be done
frequently due to the rapid change of primary users’ activity.
In this paper, a channel selection scheme without negotiation
is considered for multi-user and multi-channel cognitive radio
systems. To avoid collision incurred by non-coordination,each
user secondary learns how to select channels according to its
experience. Multi-agent reinforcement leaning (MARL) is applied
in the framework of Q-learning by considering the opponent
secondary users as a part of the environment. The dynamics
of the Q-learning are illustrated using Metrick-Polak plot . A
rigorous proof of the convergence of Q-learning is providedvia
the similarity between the Q-learning and Robinson-Monro algo-
rithm, as well as the analysis of convergence of the corresponding
ordinary differential equation (via Lyapunov function). E xamples
are illustrated and the performance of learning is evaluated by
numerical simulations.

I. I NTRODUCTION

In recent years, cognitive radio has attracted extensive
studies in the community of wireless communications. It
allows users without license (called secondary users) to access
licensed frequency bands when the licensed users (called
primary users) are not present. Therefore, the cognitive radio
technique can substantially alleviate the problem of under-
utilization of frequency spectrum [11] [10].

The following two problems are key to the cognitive radio
systems:

• Resource mining, i.e. how to detect the available resource
(the frequency bands that are not being used by primary
users); usually it is done by carrying out spectrum sens-
ing.

• Resource allocation, i.e. how to allocate the detected
available resource to different secondary users.

Substantial work has been done for the resource mining.
Many signal processing techniques have been applied to sense
the frequency spectrum [17], e.g. cyclostationary feature[5],
quickest change detection [8], collaborative spectrum sensing
[3]. Meanwhile, plenty of researches have been conducted for
the resource allocation in cognitive radio systems [12] [6].
Typically, it is assumed that the secondary users exchange
information about detected available spectrum resources and
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Fig. 1: Illustration of competition and conflict in multi-user
and multi-channel cognitive radio systems.

then negotiate the resource allocation according to their own
requirements of traffic (since the same resource cannot be
shared by different secondary users if orthogonal transmis-
sion is assumed). These studies typically apply theories in
economics, e.g. game theory, bargaining theory or microeco-
nomics.

However, in many applications of cognitive radio, such a
negotiation based resource allocation may incur significant
overhead. In traditional wireless communication systems,the
available resource is almost fixed (even if we consider the
fluctuation of channel quality, the change of available resource
is still very slow and thus can be considered stationary). There-
fore, the negotiation need not be carried out frequently and
the negotiation result can be applied for a long period of data
communication, thus incurring tolerable overhead. However,
in many cognitive radio systems, the resource may change
very rapidly since the activity of primary users may be highly
dynamic. Therefore, the available resource needs to be updated
very frequently and the data communication period should be
fairly short since minimum violation to primary users should
be guaranteed. In such a situation, the negotiation of resource
allocation may be highly inefficient since a substantial portion
of time needs to be used for the negotiation. To alleviate such
an inefficiency, high speed transceivers need to be used to
minimize the time consumed on negotiation. Particularly, the
turn-around time, i.e. the time needed to switch from receiving
(transmitting) to transmitting (receiving) should be verysmall,
which is a substantial challenge to hardware design.

Motivated by the previous discussion and observation, in
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this paper, we study the problem of spectrum access without
negotiation in multi-user and multi-channel cognitive radio
systems. In such a scheme, each secondary user senses chan-
nels and then choose an idle frequency channel to transmit
data, as if no other secondary user exists. If two secondary
users choose the same channel for data transmission, they
will collide with each other and the data packets cannot be
decoded by the receiver(s). Such a procedure is illustratedin
Fig. 1, where three secondary users access an access point via
four channels. Since there is no mutual communication among
these secondary users, conflict is unavoidable. However, the
secondary users can try to learn how to avoid each other,
as well as channel qualities (we assume that the secondary
users have noa priori information about the channel qualities),
according to its experience. In such a context, the cognition
procedure includes not only the frequency spectrum but also
the behavior of other secondary users.

To accomplish the task of learning channel selection, multi-
agent reinforcement learning (MARL) [1] is a powerful tool.
One challenge of MARL in our context is that the secondary
users do not know the payoffs (thus the strategy) of each
other in each stage; thus the environment of each secondary
user, including its opponents, is dynamic and may not assure
convergence of learning. In such a situation, fictitious play
[2] [14], which estimates other users’ strategy and plays the
best response, can assure convergence to a Nash equilibrium
point within certain assumptions. As an alternative way, we
adopt the principle of Q-learning, i.e. evaluating the values
of different actions in an incremental way. For simplicity,
we consider only the case of two secondary users and two
channels. By applying the theory of stochastic approximation
[7], we will prove the main result of this paper, i.e. the
learning converges to a stationary point regardless of the
initial strategies (Propositions 1 and 2 ). Note that our study
is one extreme of the resource allocation problem since no
negotiation is considered while the other extreme is full
negotiation to achieve optimal performance. It is interesting
to study the intermediate case, i.e. limited negotiation for
resource allocation. However, it is beyond the scope of this
paper.

The remainder of this paper is organized as follows. In
Section II, the system model is introduced. The proposed
Q-learning for channel selection is explained in Section III.
Intuitive explanation and rigorous proof for convergence are
explained in Sections IV and V, respectively. The numerical
results are provided in Section VI while the conclusions are
drawn in Section VII.

II. SYSTEM MODEL

For simplicity, we consider only two secondary users,
denoted byA and B, and two channels, denoted by 1 and
2. The reward to secondary useri, i = A,B, of channelj,
j = 1, 2, is Rij if secondary user transmits data over channel
j and channelj is not interrupted by primary user or the other
secondary user; otherwise the reward is 0 since the secondary
user cannot convey any information over this channel. For
simplicity, we denote byj− the other user (channel) different
from user (channel)j.
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Fig. 2: Payoff matrices in the game of channel selection.

The following assumptions are placed throughout this paper.
• The rewards{Rij} are unknown to both secondary users.

They are fixed throughout the game.
• Both secondary users can sense both channels simul-

taneously, but can choose only one channel for data
transmission. It is more interesting and challenging to
study the case that the secondary users can sense only
one channel, thus forming a partially observable game.
However, it is beyond the scope of this paper.

• We consider only the case that both channels are available
since the actions that the secondary users can take are
obvious (transmit over the only available channel or not
transmit if no channel is available). Thus, we ignore the
task of sensing the frequency spectrum, which has been
well studied by many researchers, and focus on only the
cognition of the other secondary user’s behavior.

• There is no communication between the two secondary
users.

III. G AME AND Q-LEARNING

In this section, we introduce the corresponding game and
the application of Q-learning to the channel selection problem.

A. Game of Channel Selection

The channel selection problem is a2 × 2 game, in which
the payoff matrices are given in Fig. 2. Note that the actions,
denoted byai(t) for user i at time t, in the game are the
selections of channels. Obviously, the diagonal elements in the
payoff matrices are all zero since conflict incurs zero reward.

It is easy to verify that there are two Nash equilibrium
points in the game, i.e. the strategies such that unilaterally
changing strategy incurs its own performance degradation.
Both equilibrium points are pure, i.e.aA = 1, aB = 2 and
aA = 2, aB = 1 (orthogonal transmission).

B. Q-function

Since we assume that both channels are available, then there
is only one state in the system. Therefore, theQ-function
is simply the expected reward of each action (note that, in
traditional learning in stochastic environment, theQ-function
is defined over the pair of state and action), i.e.

Q(a) = E[R(a)], (1)

wherea is the action,R is the reward dependent on the action
and the expectation is over the randomness of the other user’s
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action. Since the action is the selection of channel, we denote
by Qij the value of selecting channelj by secondary useri.

C. Exploration

In contrast to fictitious play [2], which is deterministic, the
action in Q-learning is stochastic to assure that all actions
will be tested. We consider Boltzmann distribution for random
exploration, i.e.

P (useri choose channelj) =
eQij/γ

eQij/γ + eQij−/γ
, (2)

whereγ is called temperature, which controls the frequency
of exploration.

Obviously, when secondary useri selects channelj, the
expected reward is given by

E [Ri(j)] =
Rije

Qi−j−/γ

eQi−j/γ + eQi−j−/γ
, (3)

since secondary useri− chooses channelj with proba-

bility e
Q

i−j
/γ

e
Q

i−j
/γ

+e
Q

i−j−
/γ (collision happens and secondary

user i receives no reward) and channelj− with probability
e
Q

i−j−
/γ

e
Q

i−j
/γ

+e
Q

i−j−
/γ (the transmissions are orthogonal and sec-

ondary useri receives rewardRij).

D. Updating Q-Functions

In the procedure ofQ-learning, theQ-functions are updated
after each spectrum access via the following rule:

Qij(t+ 1) = (1− αij)Qij(t) + αij(t)ri(t)I(ai(t) = j), (4)

whereαij(t) is a step factor (when channelj is not selected by
useri, αij(t) = 0) andri(t) is the reward of secondary useri

andI is characteristic function for the event that channelj is
selected at thet-th spectrum access. Our study is focused on
the dynamics of (4). To assure convergence, we assume that

∞
∑

t=1

αij(t) = ∞, ∀i = A,B, j = 1, 2. (5)

IV. I NTUITION ON CONVERGENCE

As will be shown in Propositions 1 and 2, the updating rule
of Q functions in (4) will converge to a stationary equilibrium
point close to Nash equilibrium if the step factor satisfies
certain conditions. Before the rigorous proof, we provide an
intuitive explanation for the convergence using the geometric
argument proposed in [9].

The intuitive explanation is provided in Fig. 3 (we call
it Metrick-Polak plot since it was originally proposed by A.
Metrick and B. Polak in [9]), where the axises areµA = QA1

QA2

and µB = QB1

QB2

, respectively. As labeled in the figure, the
plane is divided into four regions by two linesµA = 1 and
µB = 1, in which the dynamics ofQ-learning are different.
We discuss these four regions separately:

• Region I: in this region,QA1 > QA2; therefore, sec-
ondary userA prefers visiting channel 1; meanwhile,
secondary userB prefers accessing channel 2 since

1
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Q_A1/Q_A2


Q_B1/Q_B2
0


I
 II


III
IV


Fig. 3: Illustration of the dynamics in the Q-learning.

QB1 > QB2; then, with large probability, the strategies
will converge to the Nash equilibrium point in which
secondary usersA and B access channels 1 and 2,
respectively.

• Region II: in this region, both secondary users prefer
accessing channel 1, thus causing many collisions. There-
fore, bothQA1 andQB1 will be reduced until entering
either region I or region III.

• Region III: similar to region I.
• Region IV: similar to region II.

Then, we observe that the points in Regions II and IV
are unstable and will move into Region I or III with large
probability. In Regions I and III, the strategy will move close to
the Nash equilibrium points with large probability. Therefore,
regardless where the initial point is, the updating rule in
(4) will generate a stationary equilibrium point with large
probability.

V. STOCHASTIC APPROXIMATION BASED CONVERGENCE

In this section, we prove the convergence of theQ-learning.
First, we find the equivalence between the updating rule (4)
and Robbins-Monro iteration [13] for solving an equation
with unknown expression. Then, we apply the conclusion in
stochastic approximation [7] to relate the dynamics of the
updating rule to an ordinary differential equation (ODE) and
prove the stability of the ODE.

A. Robbins-Monro Iteration

At a stationary point, the expected values ofQ-functions
satisfy the following four equations:

Qij =
Rije

Qi−j−/γ

eQi−j/γ + eQi−j−/γ
, i = A,B, j = 1, 2. (6)

Define q = (QA1, QA2, QB1, QB2)
T . Then (6) can be

rewritten as

g(q) = A(q)r − q = 0, (7)
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wherer = (RA1, RA2, RB1, RB2)
T and the matrixA (as a

function ofq) is given by

Aij =

{

e
Q

i−j−
/γ

e
Q

i−j
/γ

+e
Q

i−j−
/γ , if i = j

0, if i 6= j
. (8)

Then, the updating rule in (4) is equivalent to solving the
equation (7) (the expression of the equation is unknown since
the rewards, as well as the strategy of the other user, are
unknown) using Robbins-Monro algorithm [7], i.e.

q(t + 1) = q(t) + α(t)Y(t), (9)

whereY(t) is a random observation on functiong contami-
nated by noise, i.e.

Y(t) = r(t)− q(t)

= r̄(t)− q(t) + r̂(t)− r̄

= gt(q(t)) + δM(t), (10)

wheregt(q(t)) = r̄ − q(t), δM(t) = r̂(t) − q∗ is noise and
(recall thatri(t) means the reward of secondary useri at time
t)

r̄(t) = A(q(t))r. (11)

B. ODE and Convergence

The procedure of using Robbins-Monro algorithm (i.e. the
updating ofQ-function) is the stochastic approximation of the
solution of the equation. It is well known that the convergence
of such a procedure can be characterized by an ODE. Since the
noiseδM(t) in (10) is a Martingale difference, we can verify
the conditions in Theorem 12.3.5 in [7] (the verification is
omitted due to limited length of this paper) and obtain the
following proposition:

Proposition 1: With probability 1, the sequenceq(t) con-
verges to some limit set of the ODE

q̇ = g(q). (12)
What remains to do is to analyze the convergence property

of the ODE (12). We obtain the following proposition:
Proposition 2: The solution of ODE (12) converges to the

stationary point determined by (7).
Proof: We apply Lyapunov’s method to analyze the con-

vergence of the ODE (12). We define the Lyapunov function
as

V (t) = ‖g(t)‖2

=
∑

(r̄ij(t)−Qij(t))
2
. (13)

Then, we examine the derivative of the Lyapunov function
with respect to timet, i.e.

dV (t)

dt
= 2

∑ d(r̄ij(t)−Qij(t))

dt
(r̂ij(t)−Qij(t))

= 2
∑ dǫij(t)

dt
ǫij(t), (14)

whereǫij(t) , r̂ij(t)−Qij(t).

We have
dǫij(t)

dt
=

dr̄ij(t)

dt
−

dQij(t)

dt

=
dr̄ij(t)

dt
− ǫij(t), (15)

whererij(t) = (Ar)ij and we applied the ODE (12).
Then, we focus on the computation ofdrij(t)

dt . Wheni = A

andj = 1, we have

dr̄A1(t)

dt
=

d

dt

(

RA1e
QB2/γ

eQB1/γ + eQB2/γ

)

=
RA1e

QB1/γeQB2/γ

γ
(

eQB1/γ + eQB2/γ
)2

×

(

dQB2(t)

dt
−

dQB1(t)

dt

)

=
RA1e

QB1/γeQB2/γ

γ
(

eQB1/γ + eQB2/γ
)2

× (ǫB2(t)− ǫB1(t)) , (16)

where we applied the ODE (12) again.
Using similar arguments, we have

dr̄A2(t)

dt
=

RA2e
QB1/γeQB2/γ

γ
(

eQB1/γ + eQB2/γ
)2

× (ǫB1(t)− ǫB2(t)) , (17)

and

dr̄B1(t)

dt
=

RB1e
QA1/γeQA2/γ

γ
(

eQA1/γ + eQA2/γ
)2

× (ǫA2(t)− ǫA1(t)) , (18)

and

dr̄B2(t)

dt
=

RB2e
QA1/γeQA2/γ

γ
(

eQA1/γ + eQA2/γ
)2

× (ǫA1(t)− ǫA2(t)) . (19)

Combining the above results, we have

1

2

dV (t)

dt
= −

∑

ǫ2ij(t)

+ C12ǫA1ǫB2 − C11ǫA1ǫB1

+ C21ǫA2ǫB1 − C22ǫA2ǫB2 (20)

where

C12 =

 

RA1e
QB1/γeQB2/γ

γ (eQB1/γ + eQB2/γ)
2
+

RB2e
QA1/γeQA2/γ

γ (eQA1/γ + eQA2/γ)
2

!

, (21)

and

C11 =

 

RA1e
QB1/γeQB2/γ

γ (eQB1/γ + eQB2/γ)
2
+

RB1e
QA1/γeQA2/γ

γ (eQA1/γ + eQA2/γ)
2

!

, (22)

and

C21 =

 

RA2e
QB1/γeQB2/γ

γ (eQB1/γ + eQB2/γ)
2
+

RB1e
QA1/γeQA2/γ

γ (eQA1/γ + eQA2/γ)
2

!

, (23)

and

C22 =

 

RA2e
QB1/γeQB2/γ

γ (eQB1/γ + eQB2/γ)
2
+

RB2e
QA1/γeQA2/γ

γ (eQA1/γ + eQA2/γ)
2

!

, (24)
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Fig. 4: An example of dynamics of theQ-learning.

It is easy to verify that

eQB1/γeQB2/γ

(

eQB1/γ + eQB2/γ
)2 < 1. (25)

Now, we assume thatRij < 2γ, thenCij < 2. Therefore,
we have

1

2

dV (t)

dt
< −

∑

ǫ2ij(t) + 2ǫA1ǫB2 + 2ǫA2ǫB1

= −(ǫA1 − ǫB2)
2 − (ǫA2 − ǫB1)

2 < 0. (26)

Therefore, whenRij < 2γ, the derivative of the Lyapunov
function is strictly negative, which implies that the ODE (12)
converges to a stationary point.

The final step of the proof is to remove the condition
Rij < 2γ. This is straightforward since we notice that the
convergence is independent of the scale of the rewardRij .
Therefore, we can always scale the reward such thatRij < 2γ.
This concludes the proof.

VI. N UMERICAL RESULTS

In this section, we use numerical simulations to demonstrate
the theoretical results obtained in previous sections. Forall
simulations, we useαij(t) = α0

t , where α0 is the initial
learning factor.

A. Dynamics

Figures 4 and 5 show the dynamics ofQA1

QA2

versusQB1

QB2

of
several typical trajectories. Note thatγ = 0.1 in Fig. 4 and
γ = 0.01 in Fig. 5. We observe that the trajectories move from
unstable regions (II and IV in Fig. 3) to stable regions (I and
III in Fig. 3). We also observe that the trajectories for smaller
temperatureγ is smoother since less explorations are carried
out.

Fig. 6 shows the evolution of the probability of choosing
channel 1 whenγ = 0.1. We observe that both secondary users
prefer channel 1 at the beginning and soon secondary userA

intends to choose channel 2, thus avoiding the collision.
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Fig. 5: An example of dynamics of theQ-learning.
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Fig. 6: An example of the evolution of channel selection
probability.

B. Learning Speed

Figures 7 and 8 show the delays of learning (equivalently,
the learning speed) for different learning factorα0 and dif-
ferent temperatureγ, respectively. The originalQ values are
randomly selected. When the probabilities of choosing channel
1 are larger than 0.95 for one secondary user and smaller than
0.05 for the other secondary user, we claim that the learning
procedure is completed. We observe that larger learning factor
α0 results in smaller delay while smallerγ yields faster
learning procedure.

C. Fluctuation

In practical systems, we may not be able to use vanishing
αij(t) since the environment could change (e.g. new secondary
users emerge or the channel qualities change). Therefore, we
need to set a lower bound forαij(t). Similarly, we also need
to set a lower bound for the probability of exploring all actions
(notice that the exploration probability in (2) can be arbitrarily
small). Fig. 9 shows that the learning procedure may yield sub-
stantial fluctuation if the lower bounds are improperly chosen
(the lower bounds forαij(t) and exploration probability are
set as 0.4 and 0.2 in Fig. 9).
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Fig. 9: Fluctuation when improper lower bounds are selected.

VII. C ONCLUSIONS

We have discussed the2 × 2 case of learning procedure
for channel selection without negotiation in cognitive radio
systems. During the learning, each secondary user considers
the channel and the other secondary user as its environment,
updates itsQ values and takes the best action. An intuitive
explanation for the convergence of learning is provided using
Metrick-Polak plot. By applying the theory of stochastic
approximation and ODE, we have shown the convergence
of learning under certain conditions. Numerical results show
that the secondary users can learn to avoid collision quickly.
However, if parameters are improperly chosen, the learning
procedure may yield substantial fluctuation.
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