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Multi-agent Q-Learning of Channel Selection in
Multi-user Cognitive Radio Systems:
A Two by Two Case

Husheng Li

Abstract— Resource allocation is an important issue in cogni-
tive radio systems. It can be done by carrying out negotiatio
among secondary users. However, significant overhead may be Secondary user A @
incurred by the negotiation since the negotiation needs toddone _
frequently due to the rapid change of primary users’ activity. \* Access Point
In this paper, a channel selection scheme without negotiain ((57)
is considered for multi-user and multi-channel cognitive adio Secondary user B @ [B
systems. To avoid collision incurred by non-coordination,each
user secondary learns how to select channels according tosit
experience. Multi-agent reinforcement leaning (MARL) is gplied
in the framework of Q-learning by considering the opponent Secondary user C @ Channel 3
secondary users as a part of the environment. The dynamics \
of the Q-learning are illustrated using Metrick-Polak plot. A
rigorous proof of the convergence of Q-learning is providedvia
the similarity between the Q-learning and Robinson-Monro dgo-
rithm, as well as the analysis of convergence of the correspding . . . . _— .
ordinary differential equation (via Lyapunov function). E xamples Fig. 1: Il!ustratlon of Cqmpetlthn and conflict in multi-es
are illustrated and the performance of learning is evaluatd by ~and multi-channel cognitive radio systems.
numerical simulations.

Channel 1

S\

Channel 2

Channel 4

then negotiate the resource allocation according to their o
requirements of traffic (since the same resource cannot be
In recent years, cognitive radio has attracted extensiyRared by different secondary users if orthogonal transmis
studies in the community of wireless communications. Bion is assumed). These studies typically apply theories in
allows users without license (called secondary users)¢esac economics, e.g. game theory, bargaining theory or microeco

licensed frequency bands when the licensed users (caligshics.
primary users) are not present. Therefore, the cognitideora However, in many applications of cognitive radio, such a
technique can substantially alleviate the problem of undefegotiation based resource allocation may incur significan

I. INTRODUCTION

utilization of frequency spectrum [11] [10]. N “overhead. In traditional wireless communication systettms,
The following two problems are key to the cognitive radi@wailable resource is almost fixed (even if we consider the
systems: fluctuation of channel quality, the change of available vese

« Resource mining, i.e. how to detect the available resournsestill very slow and thus can be considered stationarygréh
(the frequency bands that are not being used by primdyre, the negotiation need not be carried out frequently and
users); usually it is done by carrying out spectrum sentte negotiation result can be applied for a long period o&dat

ing. communication, thus incurring tolerable overhead. Howeve
« Resource allocation, i.e. how to allocate the detectén many cognitive radio systems, the resource may change
available resource to different secondary users. very rapidly since the activity of primary users may be hyghl

Substantial work has been done for the resource minirfb{namic. Therefore, the available resource needs to beteqbda
Many signal processing techniques have been applied te seY®'Yy frequently and the data communication period should be
the frequency spectrum [17], e.g. cyclostationary feaffite fairly short since minimum violation to primary users stubul
quickest change detection [8], collaborative spectrunsisgn b€ guaranteed. In such a situation, the negotiation of resou
[3]. Meanwhile, plenty of researches have been conducted fdlocation may be highly inefficient since a substantialtioor
the resource allocation in Cognitive radio systems [12] [Gq)f time needs to be used for the negotiation. To alleviatd suc
Typically, it is assumed that the secondary users excharffe inefficiency, high speed transceivers need to be used to

information about detected available spectrum resournds dninimize the time consumed on negotiation. Particulatg, t
turn-around time, i.e. the time needed to switch from rdngiv
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this paper, we study the problem of spectrum access without vser® User®

negotiation in multi-user and multi-channel cognitive icad Chan1 | Chan2 Chan1 | Chan2
systems. In such a scheme, each secondary user senses chan-
nels and then choose an idle frequency channel to transmit
data, as if no other secondary user exists. If two secondary
users choose the same channel for data transmission, they
will collide with each other and the data packets cannot be
decoded by the receiver(s). Such a procedure is illustriated
Fig.[, where three secondary users access an access point vi
four channels. Since there is no mutual communication amongrig. 2: Payoff matrices in the game of channel selection.
these secondary users, conflict is unavoidable. However, th

secondary users can try to learn how to avoid each other,

as well as channel qualities (we assume that the secondaryhe following assumptions are placed throughout this paper
users have na priori information about the channel qualities), « The rewardgR;;} are unknown to both secondary users.
according to its experience. In such a context, the cognitio = They are fixed throughout the game.

procedure includes not only the frequency spectrum but also» Both secondary users can sense both channels simul-

0 R_Al 0 R_B1

Vv Bsn
Vv Bsn

Zueyd |Tueyd
zueyd |tueyd

R_A2 0 R_B2 0

Payoff matrix of user A Payoff matrix of user B

the behavior of other secondary users. taneously, but can choose only one channel for data
To accomplish the task of learning channel selection, multi  transmission. It is more interesting and challenging to
agent reinforcement learning (MARL) [1] is a powerful tool. study the case that the secondary users can sense only

One challenge of MARL in our context is that the secondary one channel, thus forming a partially observable game.
users do not know the payoffs (thus the strategy) of each However, it is beyond the scope of this paper.

other in each stage; thus the environment of each secondary We consider only the case that both channels are available
user, including its opponents, is dynamic and may not assure since the actions that the secondary users can take are
convergence of learning. In such a situation, fictitiousypla  obvious (transmit over the only available channel or not
[2] [14], which estimates other users’ strategy and plays th  transmit if no channel is available). Thus, we ignore the
best response, can assure convergence to a Nash equilibrium task of sensing the frequency spectrum, which has been
point within certain assumptions. As an alternative way, we well studied by many researchers, and focus on only the
adopt the principle of Q-learning, i.e. evaluating the ealu cognition of the other secondary user’s behavior.

of different actions in an incremental way. For simplicity, « There is no communication between the two secondary
we consider only the case of two secondary users and two users.

channels. By applying the theory of stochastic approxiomati

[7], we will prove the main result of this paper, i.e. the I1l. GAME AND @-LEARNING

learning converges to a stationary point regardless of thejn this section, we introduce the corresponding game and

initial strategies (Propositioris 1 ahdl 2 ). Note that oud$tu the application of Q-learning to the channel selection [ewb
is one extreme of the resource allocation problem since no

negotiation is considered while the other extreme is fUl Game of Channel Selection
negotiation to achieve optimal performance. It is intengst . . . :
The channel selection problem is2ax 2 game, in which

to study the intermediate case, i.e. limited negotiation fg . ! . .
resource allocation. However, it is beyond the scope of ti‘H%e payoff matrices are given in Figl 2. Note that the actions

paper denoted bya;(t) for useri at time ¢, in the game are the
The remainder of this paper is organized as follows. I§]elections of channels. Obviously, the diagonal elemerttsea

Section[ll, the system model is introduced. The propos@&yOﬁ matrices are all zero since conflict incurs zero relwar
Q-learning for channel selection is explained in Secfidh II I_t IS _easa/ to venfy_ thath there are two NhasE eqw_l;bnuml
Intuitive explanation and rigorous proof for convergence apomts.ln the game, I.€. t_e strategies such that umdtyerg
explained in Sections 1V arid]V, respectively. The numeric§nanging strategy incurs its own performance degradation.

results are provided in Secti@nlVI while the conclusions a}%oth equilibrium points are pure, lea = l,ap = 2 and
drawn in Sectiofi V. as = 2,ag = 1 (orthogonal transmission).

Il. SYSTEM MODEL B. @-function

For simplicity, we consider only two secondary users, Since we assume that both channels are available, then there
denoted byA and B, and two channels, denoted by 1 ands only one state in the system. Therefore, ®dunction
2. The reward to secondary usgri = A, B, of channelj, is simply the expected reward of each action (note that, in
j=1,2,is R;; if secondary user transmits data over chann&hditional learning in stochastic environment, {efunction
4 and channej is not interrupted by primary user or the otheis defined over the pair of state and action), i.e.
Eig(r)nCdaz;rzoliss(r),ngteherwse_ t?e reward is 0 since the segondar Q(a) = E[R(a)], (1)

y any information over this channel. For

simplicity, we denote by~ the other user (channel) differentwherea is the action,R is the reward dependent on the action
from user (channel). and the expectation is over the randomness of the othersuser’



action. Since the action is the selection of channel, we @eno QALQ_A2

by Q:; the value of selecting channglby secondary user. —

C. Exploration

In contrast to fictitious play [2], which is deterministitiet I
action in Q-learning is stochastic to assure that all actions
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will be tested. We consider Boltzmann distribution for rand
exploration, i.e. / IV
eQii/Y \
P(useri choose channegl) = ——————— (2)
eQij /v + eQij7 al / s
where~ is called temperature, which controls the frequency N
of exploration. 0 1 Q_B1/Q_B2
Obviously, when secondary usérselects channef, the
expected reward is given by Fig. 3: lllustration of the dynamics in the Q-learning.
. R’L .eQi*j* /’7
E[RZ(-])]: Q.,./jy Q._._ /v’ (3) . . .
evimill +e¥iti Q_Bl > @p2; then, with large pr_o_ba_b|I|ty, the s_trateg_les
since secondary usei~ chooses channej with proba- will converge to the Nash equilibrium point in which
bilit Ri—i/ (collision happens and secondar secondary usersi and B access channels 1 and 2,
y eQi—i " 1R PP y respectively.

users receives no reward) and channgtl with probability . Region II: in this region, both secondary users prefer
———5— (the transmissions are orthogonal and sec- accessing channel 1, thus causing many collisions. There-
ondary Useri receives reward; ). fore, bothQ 4, and Q1 will be reduced until entering

' either region | or region lll.

« Region llI: similar to region I.

« Region IV: similar to region II.

Then, we observe that the points in Regions Il and IV
are unstable and will move into Region | or Il with large
Qij(t +1) = (1 — a;j)Qij(t) + i (t)ri(t)I(a;(t) = j), (4) probability. In Regions I and Ill, the strategy will move stoto

, ] the Nash equilibrium points with large probability. There,
wherea;(t) is a step factor (when channgis not selected by (oqardless where the initial point is, the updating rule in

useri, a;;(t) = 0) andr,(t) is the reward of secondary user @’ il generate a stationary equilibrium point with large
and is characteristic function for the event that chanhé probability.

selected at the-th spectrum access. Our study is focused on
the dynamics of[{4). To assure convergence, we assume that
V. STOCHASTIC APPROXIMATION BASED CONVERGENCE

D. Updating @-Functions

In the procedure of)-learning, theQ-functions are updated
after each spectrum access via the following rule:

ZO‘U (t) = 0, Vi=4,B,j=1,2. ®) In this section, we prove the convergence of @dearning.
=t First, we find the equivalence between the updating flule (4)
IV. INTUITION ON CONVERGENCE and Robbins-Monro iteration [13] for solving an equation

il be sh . . h dati Iwith unknown expression. Then, we apply the conclusion in
As will be shown in Propositioris 1 ad 2, the updating ru Stochastic approximation [7] to relate the dynamics of the

of Q functions in (#) wil converge fo a stationary equ"ibr,iu%pdating rule to an ordinary differential equation (ODEJan
point close to Nash equilibrium if the step factor satisfies, .« the stability of the ODE

certain conditions. Before the rigorous proof, we provite
intuitive explanation for the convergence using the geoimet
argument proposed in [9]. A. Robbins-Monro Iteration
The intuitive explanation is provided in Fig] 3 (we call . . )
it Metrick-Polak plot since it was originally proposed by A. At @ stationary point, the expected values @{functions

Metrick and B. Polak in [9]), where the axises arg = % satisfy the following four equations:

and up = g;, respectively. As labeled in the figure, the RijeQi*f* /v

plane is divided into four regions by two lingsy = 1 and  Qij =
up = 1, in which the dynamics of)-learning are different.

We discuss these four regions separately: Define q — (QAl,QAQ,QBhQBz)T. Then [8) can be
« Region I: in this regionQa1 > Qa2; therefore, sec- rewritten as

ondary userA prefers visiting channel 1; meanwhile,
secondary userB prefers accessing channel 2 since g(q) =A(qQr—q=0, @)

, 1=AB, j=1,2. 6
eer/v_,_eer/v J ©6)



wherer = (RAl,RAQ,Rgl,RBQ)T and the matrixA (as a We have

function of q) is given by deij(t)  dry(t) B dQi;(t)
Qi o a  dt dt
A= @ e =g 8) _ dry t
’ { 0, if i # j — -~ Gilt); (15)

Then, the updating rule iJ(4) is equivalent to solving th\éVher:erij (*) f: (Ar)s; ahnd we appllgd téh;j(tO)DEEIEILZ)i )
equation[(V) (the expression of the equation is unknownesinc Then, we focus on the computation &:;;=. When: =

the rewards, as well as the strategy of the other user, &%/ = 1. we have
unknown) using Robbins-Monro algorithm [7], i.e. drai(t) d ( R1e@e2/7 )

dt dt \ e@s1/7 + eQB2/7
q(t + 1) = q(t) +a)Y (), 9) RAleQBl/'YeQB2/'Y
whereY (t) i_s a random observation on functigncontami- N ~y (eQBl/’Y 4 eQBz/’Y)z
nated by noise, i.e. ) (dQBz(t) B dQBl(t)>
Y(t) = x(t)—a(t) dt dt
_ f'(t)—q(t)-f-f'(t)—l_' _ RAleQBl/’YeQB2/'Y
= wila(t) + M), (10) v (eQm1/7 4 eQra/7)’
X t) — t)), 16
whereg,(q(t)) =t — q(t), IM(t) = #(t) — q* is noise and _ (cpalf) eBlf ) (18)
(recall thatr; (t) means the reward of secondary uset time Where we applied the ODE (L2) again.
t) Using similar arguments, we have
= QB1/7@B2/
K1) = Al()r. (11) drast) _ _BaemTeT T
dt ~y (eQBl/’Y + eQB2/'Y)
B. ODE and Convergence X (ep(t) —ep2(t)) (7)
The procedure of using Robbins-Monro algorithm (i.e. th%nd B
updating ofQ-function) is the stochastic approximation of the drpi(t) _ _Rp eQui/neQaz/y
solution of the equation. It is well known that the converggen dt v (eQAl/'Y + eQA2/’Y)2
of §uch a pro_cedure_ can be c_haracterlzed by an ODE. S|n<_:e the X (eas(t) — ear(t)), (18)
noised M (t) in (I0) is a Martingale difference, we can verify
the conditions in Theorem 12.3.5 in [7] (the verification ignd
omitted due to limited length of this paper) and obtain the dipa(t) RpoeQar/7eQaz/v
following proposition: dt - 5 (eQui/7 + eQA2/,Y)2
Proposition 1: With probability 1, the sequenacg(t) con-
P P y quenag(t) % (ear(t) — ean(t)). (19)

verges to some limit set of the ODE
Combining the above results, we have

q = g(a)- (12)
What remains to do is to analyze the convergence property l_dv(t) - _ Z e (t)
of the ODE [(12). We obtain the following proposition: 2 adt Y
Proposition 2: The solution of ODE[(I2) converges to the + Cncaep — Cncaen
stationary point determined bll(7). +  Chi€azepr — Cazeanepe (20)

Proof: We apply Lyapunov’s method to analyze the conwhere

\alérgence of the ODH_(12). We define the Lyapunov functiog [ Rare®s1/7e@52/7 Rppe@A1/7cQa2/7 -
2= ry(eQBl/’Y-‘,—@QB2/’Y)2 fy(@QAl/’Y+eQA2/'Y)2 ’
Vi) = lle@l® and
_ 2
= Z (7’1-]- (t) — Qij (t)) . (13) _ RAleQBl/'YeQB2/’Y RBleQm/’YeQAz/’Y 29
. . . . "= fy(eQBl/7+eQB2/"/)2 fy(eQAl/“/+eQA2/W)2 ’ ( )
Then, we examine the derivative of the Lyapunov function
with respect to time, i.e. and
QB1/7,QB2/7 Qa1/v,RQa2/v
av(t d(rij (t) — Qij(t _ [ _Llaze e Rpie e
—() = 2 (r”( ) QU( )) (fz(t) - Qz(t)) Con = QB1/v QB2/7)? Qa1/v Qaz/7)? |’ (23)
o = j j 7 (eQm1/7 4 e@B2/7)? T (eQa1/1 + eQaz/7)
de;;i(t
= 2 Zt( )Eij (t), (14) and
Cop — RA26QBI/'Y€QB2/’Y RB26QA1/76QA2/’Y (24)
wheree;; (t) £ 74 (t) — Qi; (1) 7 (e@B1/7 4 eQB2/7)2 | 5 (eQar/7 4 eRaz/v)? )
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Fig. 4: An example of dynamics of th@-learning. Fig. 5: An example of dynamics of th@-learning.
1 E————— i
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It is easy to verify that % osl |
--- B
eQB1/7c@B2/Y § 0.7+ — |
5 <1 (25) e
(eQBl/’Y + erz/’Y) .§ 0.67
O 0.5r
Now, we assume thak;; < 2v, thenC;; < 2. Therefore, G
we have S 04
= 031
1dV (t) g
> S > " €(t) + 2ea1€ep2 + 2en2e 81 goz
o
= —(€A1—632)2—(6A2—631)2 < 0. (26) 0.1r
o 0 ‘ ‘ ‘ ‘
Therefore, whenR;; < 2+, the derivative of the Lyapunov 0 20 0 e 80 100
function is strictly negative, which implies that the OOE2[1
converges to a stationary point. Fig. 6: An example of the evolution of channel selection

The final step of the proof is to remove the conditioprobability.
R;; < 2v. This is straightforward since we notice that the
convergence is independent of the scale of the rewasd
Therefore, we can always scale the reward suchihak 2. B. Learning Speed

This concludes the proof. Figures Y and8 show the delays of learning (equivalently,

the learning speed) for different learning factes and dif-
ferent temperature, respectively. The original) values are
VI. NUMERICAL RESULTS randomly selected. When the probabilities of choosing nkan

In this section, we use numerical simulations to demorestrak are larger than 0.95 for one secondary user and smaller than
the theoretical results obtained in previous sections. dfor 0-05 for the other secondary user, we claim that the learning
simulations, we usev;(t) = 22, whereqy is the initial procedure is completed. We observe that larger learnirtgrfac
learning factor. ap results in smaller delay while smalley yields faster

learning procedure.

A. Dynamics

Figures % andl5 show the dynamics%ﬁ versusgEL of
several typical trajectories. Note that= 0.1 in Figﬁj and In practical systems, we may not be able to use vanishing
v = 0.01 in Fig.[8. We observe that the trajectories move from;;(¢) since the environment could change (e.g. new secondary
unstable regions (Il and 1V in Fif] 3) to stable regions (I andsers emerge or the channel qualities change). Therefere, w
Il'in Fig. B). We also observe that the trajectories for deval need to set a lower bound far;;(¢). Similarly, we also need
temperaturey is smoother since less explorations are carrigd set a lower bound for the probability of exploring all acts
out. (notice that the exploration probability inl(2) can be adoity

Fig.[8 shows the evolution of the probability of choosingmall). Fig[® shows that the learning procedure may yield su
channel 1 whery = 0.1. We observe that both secondary useistantial fluctuation if the lower bounds are improperly afros
prefer channel 1 at the beginning and soon secondary Aise(the lower bounds fory;;(t) and exploration probability are
intends to choose channel 2, thus avoiding the collision. set as 0.4 and 0.2 in Figl 9).

C. Fluctuation



Fig.

Qp.

Fig.

VII. CONCLUSIONS
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We have discussed th x 2 case of learning procedure

for channel selection without negotiation in cognitive icad

] systems. During the learning, each secondary user cossider
the channel and the other secondary user as its environment,
updates its) values and takes the best action. An intuitive
explanation for the convergence of learning is providedgisi
Metrick-Polak plot. By applying the theory of stochastic

| approximation and ODE, we have shown the convergence
] of learning under certain conditions. Numerical resultsvgh
that the secondary users can learn to avoid collision quickl

0.2 8
However, if parameters are improperly chosen, the learning
ot procedure may yield substantial fluctuation.
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Fig. 9: Fluctuation when improper lower bounds are selected
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