
TEMPORAL POTENTIAL FUNCTION APPROACH FOR PATH PLANNING

IN DYNAMIC ENVIRONMENTS

by

VAMSIKRISHNA GOPIKRISHNA

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

December 2008

Copyright © by Vamsikrishna Gopikrishna 2008

All Rights Reserved

To my mother, my father, my teachers and God.

Those who have shaped me into what I am today.

iv

ACKNOWLEDGEMENTS

First and foremost I have to thank my parents and my family for their unwavering

faith in my capabilities. Without their support – both emotional and financial – my graduate

studies would have been just a pipe dream.

 Secondly, I must express my gratitude towards my graduate advisor Dr. Manfred

Huber for believing in me and for his invaluable guidance during my thesis research. His

encyclopedic knowledge of the subject and immeasurable patience, have made this thesis

what it is today. It has been an honor and privilege to work with him over the past two years.

 Next, I need to thank the members of my committee, Dr. Gergely Zaruba and David

Levine for devoting their time and energy to me in this process.

 I would like to thank all of my friends and colleagues, both here at UTA and at the

other universities for their support and their help. Specifically, I owe thanks to Srividhya

Rajendran, John H.C. Staton, Binu Matthew and Dr. Darin Brezeale for their tips and advice.

I would also like to thank Giles D’Silva, not only for sharing his tips for thesis writing with me

but also for helping me maintain my sanity for the last frantic months of my thesis research.

 I would also like to thank The University of Texas at Arlington’s Computer Science

and Engineering Department for the most productive and enjoyable two years of my

academic life. I would also like to thank Srinivasan T. of Sri Venkateshwara College of

Engineering, Dr. Suraishkumar G.K. and Dr. Deepak Khemani of IIT Madras for setting me

down path of research.

 Last but not the least, I want to thank God. Without his grace, none of this would

have been possible.

November 25, 2008

v

ABSTRACT

TEMPORAL POTENTIAL FUNCTION APPROACH FOR PATH PLANNING IN

DYNAMIC ENVIRONMENTS

Vamsikrishna Gopikrishna, M.S.

The University of Texas at Arlington, 2008

Supervising Professor: Manfred Huber

A Dynamic environment is one in which either the obstacles or the goal or both are

in motion. In most of the current research, robots attempting to navigate in dynamic

environments use reactive systems. Although reactive systems have the advantage of fast

execution and low overheads, the tradeoff is in performance in terms of the path optimality.

Often, the robot ends up tracking the goal, thus following the path taken by the goal, and

deviates from this strategy only to avoid a collision with an obstacle it may encounter. In a

path planner, the path from the start to the goal is calculated before the robot sets off. This

path has to be recalculated if the goal or the obstacles change positions. In the case of a

dynamic environment this happens often. One method to compensate for this is to take the

velocity of the goal and obstacles into account when planning the path. So instead of

following the goal, the robot can estimate where the best position to reach the goal is and

plan a path to that location. In this thesis, we propose such a method for path planning in

dynamic environments. The proposed method uses a potential function approach that

considers time as a variable when calculating the potential value. This potential value for a

particular location and time indicates the probability that a robot will collide with an obstacle,

vi

assuming that the robot executes a random walk from that location and that time onwards.

The robot plans a path by extrapolating the object’s motion using current velocities and by

calculating the potential values up to a look-ahead limit that is determined by calculating the

minimum path length using connectivity evaluation and then determining the utility of

expanding the look-ahead limit beyond the minimum path length. The method is fast, so the

path can be re-planned with very little overhead if the initial conditions change at execution

time. This thesis will discuss how the potential values are calculated and how a suitable

look-ahead limit is decided. Finally the performance of the proposed method is analyzed in a

simulated environment.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. iv

ABSTRACT ... v

LIST OF FIGURES ... x

Chapter Page

1. INTRODUCTION ... 1

2. BACKGROUND AND RELATED WORK .. 4

2.1 The Path Planning Problem .. 4

2.2 Static and Dynamic Environments .. 5

2.3 Modeling the Environment ... 6

2.4 Dynamic motion planning problem ..11

2.5 Path planning vs. Reactive Systems ...11

2.6 Potential fields and Harmonic Functions ...12

2.7 Path planning in Dynamic Environments ..19

3. TEMPORAL POTENTIAL FUNCTION APPROACH ..21

3.1 Overview ..21

3.2 Potential Value Calculation ...23

3.3 Look-ahead value determination ...25

3.4 Generating Potential value curves ..27

4. EXPERIMENTAL IMPLEMENTATION OF PROPOSED METHOD29

4.1 Implementation Details ..29

4.2 Random World Generation ..30

4.3 Backward Chaining to find start state for random goal ...30

viii

4.4 Random World Expansion ...32

4.5 Potential Value Calculation ...34

4.6 Generation of Potential Value Curves ...36

4.7 Extending the world array in time ..38

4.8 Forward chaining to find time to reach first reachable goal location38

4.9 Determining Look-ahead value to use ..39

4.10 Traversing World Array to find the Goal ..39

4.11 Display path ...40

4.12 Temporal Potential Path Planning Simulator ..40

4.13 Additional Notes on Implementation ...42

5. EXPERIMENTAL RESULTS AND OBSERVATIONS ..43

5.1 Description of Experiments conducted ..43

5.2 Effect of Look-Ahead on Potential Value ..43

5.3 Effect of Time to reach goal on Potential Value ..44

5.4 Effects of World Size on Potential Value ...46

5.5 Effects of World Density on Potential Value ..47

5.6 Path planner execution ..48

5.6 Avoidance of Suboptimal Goals ..52

6. CONCLUSION AND FUTURE WORK ..54

6.1 Conclusion ...54

6.2 Future Work ...55

Appendix

A. EXPERIMENTAL IMPLEMENTATION – MATLAB CODE ...56

B. FLOWCHART SYMBOLS ..71

REFERENCES ...73

ix

BIOGRAPHICAL INFORMATION ..77

x

LIST OF FIGURES

Figure Page

2.1 Grid based representation of a two dimensional world. ... 7

2.2 Feature Map of Belgioioso castle ... 8

2.2 Topological graph ... 8

2.3 Topological region with critical lines ... 9

2.4 Grid based representation of a two dimensional world extended in time 9

2.5 Configuration Space ...10

2.6 The tracking problem ..12

2.7 Forces due to potential fields ..13

2.8 Local and Global Minima ..14

2.9 The harmonic function �(�, �) = �� − 3��� ..16
3.1 The Temporal potential function approach. ..22

3.2 Calculation of Potential Value at time t ...24

3.3 Forward propagating to find goal ..25

3.4 Calculating � and � for original look-ahead. ...26
3.5 Potential Value Curve ...28

4.1 Flowchart for Backward Chaining to find Start State, Part 1 ..31

4.2 Flowchart for Backward Chaining to find Start State, Part 2 ..32

4.3 Flowchart for Random World Expansion, Part 1 ..33

4.4 Flowchart for Random World Expansion, Part 2 ..34

4.5 Potential Value Calculation ...35

4.6 Flowchart for generating potential value curves ...37

4.7 Flowchart of the Temporal Potential Function approach ..41

xi

5.1 Potential values of start state in given world ..44

5.2 Potential value curve of a random 10 × 10 world with obstacle density 9%45

5.3 Potential value curve of set of random 10 × 10 worlds with obstacle density 9%45

5.4 Potential curves of set of random worlds of varying sizes with obstacle density 9%46

5.6 Potential curves of sets of random 10 × 10 worlds of varying obstacle density47
5.7 Two dimensional representation of world 1. ...49

5.8 Three dimensional representation of world 1. ..49

5.9 Path Traversed by Robot in world 1. ..50

5.10 Two dimensional representation of world 2. ...50

5.11 Three dimensional representation of world 2. ..51

5.12 Path Traversed by Robot in world 2. ..51

5.13 Planner forced to pick risky path. ...52

5.14 Avoiding Sub-Optimal Goal ..53

1

CHAPTER 1

INTRODUCTION

There are two approaches to determining how a robot should move in a given

environment. In the path planning approach the robot first calculates, based on the obstacle

locations, what the best path to the goal location is and then follows it. Path planning

generally assumes that the planner has all pertinent information about the world at execution

time. If the world suddenly changes, then there is no other option than to scrap the plan

generated and plan a new one from scratch. In a reactive control system the robot sets off

towards the goal and then modifies it’s movements to avoid any obstacles it may encounter.

This makes sure that the robot does not need to spend time re-planning in case the

environment changes. However the tradeoff is in performance. There is a chance that the

robot will end up just tracking the goal, ignoring certain optimal ways to reach the goal.

The environment that a robot is expected to work in can be either static or dynamic.

In a static environment the state of the world, i.e. the locations of the goal and obstacle

states are fixed. An example for such a static environment is a robot having to navigate in a

room with no people in it. The only obstacles are the furniture whose locations are fixed. In a

dynamic environment the goal and obstacle locations can change as in the case of a robot

having to navigate a busy hallway. The people in the hallway can be considered as

obstacles, each of them having their own velocities and trajectories.

In dynamic environments, robot control is usually achieved by means of a reactive

system. This is because a path planning system would have to constantly re-plan as the

state of the environment keeps changing. This adds significant overhead to the execution,

frequently making the use of a reactive system more efficient. However, the tradeoff is in

accuracy. Since the robot only knows the location of the robot, the goal, and the obstacles at

2

that instant, it could end up just tracking the goal, following it around the world instead of

reaching it.

The goal of this thesis is to propose a method by which path planning can be used in

dynamic environments. The method has its roots in Harmonic functions and the potential

field approach to path planning. The proposed method selects a certain look-ahead value up

to which it plans a path. It then extrapolates the positions of the goal and obstacles up to that

time and then calculates a potential value for the remaining locations of the world at each

time step up to that look-ahead. The potential value of a particular location at a particular

time is the probability that the robot will collide with an obstacle if it takes a random walk

from that point and that time onwards. In the case of a goal location, it is zero. In the case of

an obstacle location it is one. In the other locations it is the average of the potential value of

the current location’s possible successor locations. Since our environment is dynamic, the

successors of a particular location are the nearby locations and the current location all at the

next time step. The potential values are calculated working back from the look-ahead to the

initial time step. After calculating the potential values for all locations, the robot follows the

path from the start state along the highest negative gradient to get to the goal. The value of

the look-ahead selected must be high enough that a solution is found if one exists. The first

solution we get may be too risky i.e. the goal could be surrounded closely by obstacles etc. It

is possible that a better solution exists which can be found by extending the look-ahead. A

way of evaluating a good look-ahead value, using the performance of randomly generated

worlds with similar properties of the main environment is discussed in this thesis. For this,

the graph connectivity method is used to find the first solution and the potential of the

starting location if the look-ahead had been set in such a fashion as to find just the first

solution world is calculated. This is compared with the generic potential value generated

from random worlds following the same characteristics as the given world. Based on these

comparisons, a proper look-ahead value can be decided upon.

3

The advantage of this method is that it finds the best path within the current look-

ahead limit. This is under the assumption that the optimality of the path is determined by the

potential values of the locations in the path, where the potential value represents the

probability that a robot at that location at that time will collide with an obstacle. The use of

graph connectivity ensures at least the shallowest solution will be found. And the comparison

with the potential values of the randomly generated worlds allows us to select a good look-

ahead value.

The remainder of this thesis is organized in the following fashion. Chapter 2 covers

the basic concepts that are utilized in this thesis. It also looks at some of the research done

with regards to path planning in dynamic environments. Chapter 3 will present a description

of the temporal potential function approach to path planning in dynamic environments.

Chapter 4 will discuss the details and module descriptions for an experimental

implementation of the proposed method. Chapter 5 will discuss the observations made from

the experimental implementation. Chapter 6 will conclude the thesis and discuss possible

future work.

4

CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 The Path Planning Problem

2.1.1 Definition of the Problem

The robot navigation or path planning problem is one in which an agent has to navigate an

environment containing a number of obstacles to reach a goal location [1]. The path planning

problem usually considers the following items: An initial state i.e. the state the robot is

initially in, a final state or goal state, i.e. the state the robot has to be in, the state space of

the robot, the set of possible actions that the robot can take and a cost function to calculate

the efficiency of the path. The state space of an agent is the set of all possible states that the

agent can be in. For a robot the velocity and location information can be considered to be its

state information. The cost function is a measure that determines the attractiveness of a

particular solution. It could be the time taken or the number of turns. A path planner using

harmonic functions does not require a start state, and the potential values it calculates are

the cost measure as they determine the robustness of the solution.

2.1.2 Applications of Path Planning Algorithms

An algorithm that solves the path planning problem has widespread applications in various

areas of industry like robotics, manufacturing plants, drug design, medical surgeries,

aerospace applications, warfare and video games. Any real world scenario where an agent

has to navigate an environment filled with obstacles can be considered a path planning

problem. For example path planning algorithms are used to calculate the motion of robotic

arms used in an assembly line. Motion planning software developed by the Fraunhofer

Chalmer’s Center is used by the Volvo Cars (in Torslanda, Sweden) assembly plant for the

5

sealing process of their car bodies using programmed robots to function automatically [2] [3].

The motion planning software developed at Kineo CAM is used in the automotive assembly

task to insert and remove a windshield wiper motor from a car body cavity [2]. In video

games path planning algorithms are used to determine the movement of game characters

and objects. Commercial robots like Honda’s ASIMO [4] and Sony’s AIBO [5] use path

planning algorithms to determine how to navigate the world. Path planning algorithms are

used by GPS based Satellite Navigation systems to find the best route to a given

destination. Path planning algorithms could also be used to simulate vehicles moving at very

high speeds involving dynamic constraints, uncertainties and obstacle avoidance. Planning

algorithms have also been used in computational biology to solve the docking problem which

requires determining if flexible molecules can insert themselves into a protein cavity.

Probabilistic Roadmap motion planning techniques (Used in robot motion planning) have

also proven successful at studying protein folding pathways and potential landscapes [6].

2.2 Static and Dynamic Environments

The environment a robot needs to work in can be either static or dynamic. In a static

environment the variables that define the world are fixed. So the positions of the various

objects in the environment need to be given to the robot only once. In a dynamic

environment, the locations of the obstacles and goals can change as time passes. So it is

necessary for the robot to continually update its representation of the environment. Robot

navigation in a dynamic environment has a few issues that need to be addressed. The robot

must keep track of all the objects in a dynamic environment. If using a path planner or any

other navigation system that needs the obstacle locations before deciding on a navigation

strategy, the navigation strategy must be recalculated every time they change. One

workaround is to include the dynamics of the environment in its model. Thus the path

planner can take into account the motion of the obstacles and the goal when planning a

path.

6

2.3 Modeling the Environment

For any agent to navigate the world it has to have a representation or map of the

environment. The map must contain the locations of the various obstacles in the world and

must be updated depending upon a change in the environment. To generate a map of the

environment, the robot uses sensors to find out the locations of the obstacles in the world

and converts that information into an internal representation. Some of the commonly used

approaches to modeling the environment are Grid Based Maps, Topological Maps and

Feature maps.

2.3.1 Grid based maps

Grid based maps are metric maps that divide the world into grid cells, each of which contains

information about the environment [7]. The cell could be an obstacle, free space or a goal.

Gird based maps are easy to construct and maintain as their resolution is independent of the

complexity of the environment. However the time and space complexity increases as the

environment size increases. When navigating an environment represented by a grid based

map, the robot has to make corrections for slippage and drift. This problem can be

addressed by using dead-reckoning and localization techniques. Grid based maps have

been used in the experimental implementation of the proposed method. A grid based

representation of an environment with eleven point obstacles and a goal state is shown in

Figure 2.1. The red points represent the obstacles and the green point represents the goal

state.

7

Figure 2.1 Grid based representation of a two dimensional world.

2.3.2 Feature Maps

Feature maps [8] contain representations of the typical features of the local environment of

the agent. These features include the agent, straight walls and polyhedral objects. The agent

continuously observes these features for local referencing. Sonar or laser sensors can be

typically used to build feature maps. SLAM techniques along with kalman filters and particle

filters can be used to create feature based maps on-line. These methods provide localization

of the agent at virtually any point in the local environment. Their complexity grows with larger

environments and number of map objects.

Some of the issues with creating feature maps arise due to limited sensor range, limited field

of view, occlusions and noisy data [8]. One method to overcome these is to use Probabilistic

frameworks for localization.

Figure 2.2 shows the feature map generated [8] for the Belgioioso Castle in Italy. A manually

controlled Pioneer robot (from University of Freiburg) explored this environment with a

trajectory of 228m in 16 minutes and 27 seconds. The 227 feature map with an error vector

of 576 components was built in 3 minutes 16 seconds.

8

Figure 2.2 Feature Map of Belgioioso castle [8]

2.3.3 Topological Maps

Topological maps are simplified maps that represent the environment using a graph based

approach [7]. Nodes in the graph represent important landmarks like doors, entry and exit

points etc, and Arcs represent that a non obstructed direct path exists between them.

Topological maps are often built upon metric maps by partitioning them into regions

separated by critical lines that join critical points. Critical lines can be considered to be

doorways and hallways and critical points can be the exit and entry points in the map. There

are a few drawback of using topological maps as they suffer from incorrect recognition in

situations where places look alike or if the same place has been sensed from different

viewpoints by taking different paths. The time complexity for constructing and maintaining

topological maps increases as complexity increases. This is due to the increase in the

number of critical lines or arcs.

Figure 2.2 Topological graph [7]

9

Figure 2.3 Topological region with critical lines [7]

2.3.4 Extending the representation in time.

To capture the dynamics of the environment one approach that can be used is to extend the

world in the third dimension. The positions of the obstacles and goal locations are

extrapolated up to a certain look-ahead value.

Figure 2.4 Grid based representation of a two dimensional world extended in time

10

2.3.5 Configuration Space

Configuration space [9] or c-space is the space in which the agent can freely move. C-

spaces provide abstraction for complex environments as the robot is reduced to a single

point. The number of dimensions of c-space is the degrees of freedom of the agent. The

configuration space � is given by

 � = ����� ∪ ���� (2.1)

where ����� is the space where the robot can move freely and ���� is the space occupied by
the obstacles and is defined by

 ���� = � �����
�

���
 (2.2)

where is the number of obstacles in this space.

Figure 2.5 Configuration Space

11

2.4 Dynamic motion planning problem

The dynamic motion planning problem is one in which the robots has to navigate an

environment where one or more of the obstacles in the system are moving [10]. Unlike in the

static environments the problem can not be solved by merely constructing a geometric path.

Instead a continuous function of time specifying the robot’s configuration at each instance

needs to be generated. One approach is to add a dimension – time – to the robot’s

configuration space [10]. But unlike the other two, the time dimension is irreversible. The

algorithms used for planning in static environments can be used in dynamic environment

with some modifications and extensions, which are aimed at taking the specificity of the time

dimension into account.

2.5 Path planning vs. Reactive Systems

In a path planning system the path to the goal is usually calculated before the robot sets off.

The robot has to follow the given plan to reach the goal. In a dynamic environment the

velocities of the obstacles and the goal are taken into account when calculating the goal. If

any of the variables describing the environment change during the planning process, the

path has to be re-planned. This could result in a lot of overhead if the planning algorithm is

going to be used in an environment where the dynamics of the environment constantly

change.

In a reactive system, there is no actual planning taking place. The robot moves towards the

goal, only changing course to avoid any obstacles it may encounter. In a static environment

this will result in the robot reaching the goal. However if the environment is a dynamic one

then the robot may end up tracking the goal. If the robot, at each time step tries to reach the

goal location then it will end up following the goal across the world instead of actually taking

the steps to reach it. This is known as the tracking problem. One solution would be to predict

when the robot can reach the goal and the location of the goal at that time and get to that

12

location. This can not be done by a reactive system. However a path planning system can

be easily modified to handle this.

Figure 2.6 The tracking problem

Consider Figure 2.6. The robot (represented by the blue diamond), moves to the current

location of goal (represented by the green square). But the square has moved away. This

process could possibly repeat forever making sure that the robot never reaches a goal state

but ends up tracking it.

A potential field approach combines characteristics of both the path planning system and the

reactive system. The potential values are calculated before the robot sets off but no path is

calculated. The robot uses the calculated potential values to avoid the obstacles and reach

the goal as in a reactive system. To avoid the tracking problem the potential of the obstacle

or goal can be specified as a function of time.

2.6 Potential fields and Harmonic Functions

2.6.1 Potential Fields

Potential fields have been proposed for obstacle avoidance by Khatib et al [11]. In the

potential field approach the robot in configuration space is acted upon by imaginary forces.

The goal produces an attractive force and the obstacles produce a repulsive force. The path

the robot follows can be found by calculating the resultant vector of these forces.

13

The field of artificial forces !"() in c-space are produced by a differentiable potential function
#: ����� → ℝ where
 !"()= −∇(("#() (2.3)

Here ∇(("#() represents the gradient vector of # at . We take the negative as we are

performing a gradient descent on the potential field. This is because the obstacles are set at

maximum and goals to a minimum potential value.

 #() = #)**�.() + #��-..() (2.4)

and

 !"= !")**�. + !"��-.. (2.5)

where

!")**�. = −∇(("#)**�.
!"��-.. = −∇(("#��-..

(2.6)

define the attractive and repulsive forces.

Figure 2.7 Forces due to potential fields

G

O

R

!")**�.

!"��-..

!("

14

Planners that use potential fields have the chance of getting stuck in local minima instead of

reaching the goal. Figure 2.8 shows a function with both local and global minima and

maxima. If the below image was the potential function the planner could become stuck in the

local minima instead of reaching the goal at the global minima.

A number of approaches have been suggested to solve the local minima problem. One

solution is to use vector field histograms (VFH) [11] [12] [13]. We can also place an artificial

obstacle at local minima [14]. There has also been some research into designing new

potential functions that will avoid the creation of local minima [15] [16]. One such method is

to design the potential function as a Harmonic Function.

Figure 2.8 Local and Global Minima

15

2.6.2 Harmonic Function

A harmonic function is a real function with continuous second partial derivatives which

satisfies Laplace’s Equation [17]. Laplace’s equation [18] is the partial differential equation

 ∇�/ = 0 (2.7)

∇� is known as the Laplacian. It is the sum of the second derivatives of the given function. A

function / defined on a domain Ω ⊂ ℝ2is said to be harmonic if it satisfies the equation

 ∇�/ = 3 4�/4���
2

���
= 0 (2.8)

For example, if / is a functions of variables � and � the above equation can be written as
 ∇�/(�, �) = 4�/4�� + 4�/4�� = 0 (2.9)

Typically we are given a set of boundary conditions [19] and we need to solve for the

(unique) scalar field / that is a solution of the Laplace equation and that satisfies those
boundary conditions. Some of the commonly used boundary conditions are discussed in

Sub-Section 2.6.6

2.6.3 Characteristics of Harmonic Functions

A Harmonic function’s gradient path forms a smooth curve with no local maxima and minima.

There may be a few saddle points [20] from which the exit can be found by searching in the

neighborhood for a negative gradient. The gradient vector of a harmonic function has zero

curl so a gradient descent on this vector always leads to a global minimum. The curves

instantaneously tangential to the velocity vectors of the trajectory points (called streamlines)

are smooth for any point along the trajectory [2] [21]. Figure 2.9 shows the harmonic function

�(�, �) = �� − 3���.

16

Figure 2.9 The harmonic function �(�, �) = �� − 3���

2.6.4 Numerical Solutions of Laplace’s Equation

Techniques like Jacobi iteration, Gauss-Seidel iteration or successive over-relaxation can be

used to calculate the numerical value of the harmonic function at each grid location [21].

These methods require the environment to be discretized, for example by representing it as

a grid based map. Although these methods compute function values on a grid, multi-linear

functions are used to interpolate between grid points since such functions are harmonic and

smooth.

2.6.5 Relaxation Methods

Jacobi iteration for Laplace’s Equation replaces every non-boundary value for / with the
average of its neighbors’ values simultaneously

17

/(56�) 7�� , �89 = 14 ;/(5) 7��6�, �89 +/(5) 7��<�, �89
+/(5) 7�� , �86�9 +/(5) 7�� , �8<�9= (2.10)

Here > is the iteration number. The Jacobi iteration method generally requires a higher

number of iterations to converge than Gauss-Seidel or SOR. It is however very effective on

SIMD architectures.

Gauss-Seidel iteration is similar to Jacobi except that the iteration numbers for neighboring

values are mixed.

/(56�) 7�� , �89 = 14 ;/(5) 7��6�, �89 +/(56�) 7��<�, �89
+/(5) 7�� , �86�9 +/(56�) 7�� , �8<�9= (2.11)

Successive Over-Relaxation (SOR) converges more rapidly than Gauss-Seidel or Jacobi

Iteration. It is therefore one of the most popular methods used. The recurrence relation is

given by,

/(56�) 7�� , �89 =/(5) 7�� , �89
+ ?4 ;/(5) 7��6�, �89 +/(56�) 7��<�, �89 +/(5) 7�� , �86�9
+/(56�) 7�� , �8<�9 − 4/(5) 7�� , �89=

(2.12)

Here > is the iteration number and ? is the relaxation factor. The value of ? depends upon
the properties of the coefficient matrix and determines the speed of convergence. These

iterations are repeated until the change in values between iterations drops below a residual

value.

18

2.6.6 Boundary conditions

Solutions to Laplace’s equations can be computed using certain conditions called boundary

conditions. The commonly used ones are restricted forms of boundary conditions, namely

the Dirichlet and Neumann conditions [21].

In the Dirichlet boundary condition the potential of the boundary is set to a constant. This

constant is the maximum value in the configuration space. Since all obstacles are also

represented by a constant maximum, the potential flow is outward normal to the obstacle

surface. The gradient of the function tends to depart from the C-space obstacle boundaries.

The Dirichlet boundary condition is represented as

 @/|BΩ = C (2.13)

where C is a constant and Ω is the domain.

In the Neumann boundary condition the velocity vectors are forced to be tangential to the

obstacle boundary surface. This may cause the agent to stay close to the obstacle surfaces,

which may not be preferable in some cases. Since the Neumann condition still requires a

source and a sink for the flow, the outer boundary of the C-space map is used as a source.

The Neumann condition is represented as

 @4/4DEBΩ = 0 (2.14)

One can superpose the Dirichlet and Neumann solutions to obtain a harmonic function that

exhibits a behavior somewhere between the two. If /F is the Dirichlet solution and /G is the
Neumann solution, both in domain Ω, then the new harmonic function can be constructed by

taking a linear combination of the two.

 / = >/F + (1 − >)/G (3.1)

where > ∈ [0,1] is the superposition constant. The resulting / is harmonic, has no local

minima and guarantees collision free paths.

19

2.6.7 Harmonic Functions in Path Planning

Harmonic functions have many varied applications in robot control. The most popular

application is their use in path planning. If the c-space of the environment can be modeled

as a harmonic function, then all the robot has to do is to follow the negative potential

gradient to reach the goal and avoid the obstacles. The absence of local maxima and

minima and the continuity and differentiability of the harmonic functions guarantees that a

planner using harmonic functions generates paths that are correct and complete. Since the

gradient is smooth, the paths generated by the planner are well behaved. The negative

gradient computed has no local maxima or minima as the potential of a grid location is the

average of its neighbors. Thus the only types of critical points that can occur are saddle

points [20]. Saddle points are stationary points but not extrema. To escape a saddle point all

that the agent has to do is explore the neighborhood for a region of negative gradient. Using

harmonic functions we can build a system that combines the characteristics of both a path

planning system (since it calculates the potential values of the locations in the world) and a

reactive system (since the robot simply follows the path of decreasing potential and avoids

the obstacles) [2] [10] [12] [21] [22].

Harmonic functions have also been used along with other methods like probabilistic cell

decomposition [23] and probabilistic roadmaps [24] to build path planners. They have also

been used to build exploratory systems [25] [26] and to build real time obstacle avoidance

systems [27].

2.7 Path planning in Dynamic Environments

Current research in path planning for dynamic environments consists of two approaches.

One approach is to build an effective reactive system that moves towards the goal,

deflecting from the path when an obstacle comes towards it. One such method was

proposed by Ge and Cui of University of Singapore [28]. Their proposed method used a

potential field approach. The potential functions they used were defined as follows. The

20

attractive potential was a function of the relative distance and velocity between the robot and

the goal. Thus the attractive force acting on the robot is the negative gradient of the

attractive potential in terms of both position and velocity. Each obstacle has an influence

range specified. The repulsive potential of each obstacle is a function of the relative velocity

between it and the robot and the shortest distance between its body and the robot provided

that the robot is heading in its general direction (relative velocity is a positive vector) and the

robot is within the obstacle’s influence range. The repulsive force exerted by each obstacle

on the robot is the negative gradient of the obstacle’s repulsive potential in terms of both

position and velocity. The above described method has a few disadvantages. By definition,

the repulsive potential is an undefined value if the distance the robot will travel before

coming to a complete stop is greater than the distance between the robot and the obstacle.

So there may occur a situation where there is no way to avoid a collision. The robot can also

be trapped in local minima. In that case, the robot just waits at that position till the obstacle

moves away. If that does not happen for a long time, the planner uses conventional local

minimum recovery methods like wall following to escape local minima. Finally there is a

possibility that the goal may sometimes be in the obstacles influence radius. In that case the

robot will never reach it. One solution is to modify the repulsive potential function to include

the relative position and velocity between the goal and the robot. A similar approach has

been proposed by Poty, Melchior and Oustaloup of Université Bordeaux [29].

Another approach to path planning in dynamic environments was proposed by Wu, QiSen,

Mbede and Xinhan [30]. This method calculates potential field values using harmonic

functions and then follows path of negative potential gradient, using fuzzy rules to avoid

obstacles.

Finally we could include time as another dimension of the c-space (although a limited one as

movement is only possible in one direction). The proposed method discussed in the next

chapter belongs to this approach.

21

CHAPTER 3

TEMPORAL POTENTIAL FUNCTION APPROACH

3.1 Overview

In this chapter we will look at the proposed method for planning a path in a dynamic

environment. The method proposed is based on the harmonic function approach and the

potential field method of path planning. The way the planner works is as follows. It first

extrapolates the world to a certain look-ahead time. This look-ahead time is determined by

the following process. The time taken to reach the first goal is found by forward chaining. If

the dynamics changes during the forward chaining due to solution not being found for a long

time, the process is repeated. Using the time taken to reach the first goal the look-ahead

value is estimated based on observation of the potential value curves of a set of randomly

generated worlds with the same properties as the given world. These curves are generated

during the first execution of the planner. After finding the look-ahead limit the planner

calculates the potential values of all the locations in the world at all time steps from the start

to that look-ahead time. The robot reaches the goal by simply following the negative

potential gradient at each time step. If the robot ends up at an obstacle due to an error in

navigation, the potential values are recalculated. If the dynamics of the environment i.e. the

velocities of the obstacles or goals changes during runtime, the process is repeated form the

start. Once the goal is reached we repeat the process for a new goal location. The entire

planning process is illustrated by Figure 3.1.

22

Figure 3.1 The Temporal potential function approach.

Dynamics changed before
finding first goal

Forward
chain to find
time to first

goal

Calculate
potential
value
curves

Get
World

Estimate
look-ahead

to use

Calculate
potential
values for
world up to
look-ahead

Follow path
of negative
gradient to
get to goal

Dynamics
changed

Goal no longer
reachable

Goal
Reached

New Goal

Get
next
goal

23

3.2 Potential Value Calculation

In the potential field method each location in the world is assigned a potential value. In this

case the potential value is the probability of a robot at that location colliding with an obstacle

if it takes a random walk from that point. This probability is zero for the goal location and one

for an obstacle location. For other locations it is calculated by taking the average of the

potential values of the neighboring locations. The potential value of a particular location at

time t is given by the average of the potential values of that location’s successors at time

t+1, as shown in Equation 3.1

 K(�, �, L) = 1|M(�, �)| N 3 K(O, L + 1)
�∈P(Q,R)

S (3.1)

The set S is the set of the successors of a particular state i.e. the locations that can be

reached in the next time step. For a robot moving at a fixed velocity they are the locations

that it can move to in the next time step. The current location itself will become a neighbor in

the next time step as the option of just staying at the current location without moving is open

to the robot. Thus the set of neighbors or successors S of a location x, y can be defined as

the set of the locations that the robot can reach by moving from the current state at a

predetermined velocity and the current state itself. This set can also be used to describe a

location’s predecessors, i.e. the set of possible locations the robot could have been in during

the previous time step. The potential of a location, i.e. the probability of a robot at location x,

y colliding with an obstacle if it begins a random walk at time t is the average between the

potential values of the successors of the location at time t+1 where the successors are the

locations the robot can reach in time t+1 and the current location. For example in a world

where the robot can move up, down, left and right with a velocity of one grid location per

time step, the potential value can be calculated as illustrated in Figure 3.2. As can be seen

24

from the figure we need the values of a location’s future neighbors before we can calculate

the current probability. This implies that the potential values have to be propagated from the

future backwards. As a result a maximum duration or look-ahead value has to be selected in

order to facilitate the potential function calculator. For the entire world, we work backwards

from the look-ahead time step, calculating the potential value for each location in the world

from the values calculated in the previous time step until the initial step is reached.

Figure 3.2 Calculation of Potential Value at time t

Once the potential values have been calculated for the entire world the robot then moves

from the starting location moving to the neighbor with the lowest potential value at each time

step. In effect it follows the negative gradient while moving along the positive time axis. This

is repeated until the robot reaches a goal, which indicates a success or the number of steps

taken equal the look-ahead, which indicates failure. If the dynamics of the environment (the

goal and obstacle velocities) change during run time, then we need to re-plan the path. The

selection of the look-ahead value is an important step as without an accurate look-ahead the

planner may settle for a sub-optimal solution or not find a solution at all. We will next look at

the method with which we can estimate what look-ahead to use.

x, y

x, y

x, y+1

x+1, y x-1, y t+1

t

x, y-1

25

3.3 Look-ahead value determination

The initial look-ahead value is determined by checking graph connectivity where the world is

considered to be a directed acyclic graph. This is done by starting at the initial location and

moving ahead one time step at a time to the current location’s neighbors. If any of the

neighbors is a goal then the number to steps it took to reach it is noted. If the neighbor is a

goal or a node that has already been visited then there is no need to expand it. Otherwise

the neighbors of the node are expanded next. This is illustrated by Figure 3.3.

Figure 3.3 Forward propagating to find goal

In the above figure, the blue nodes are the visited nodes, the red nodes are obstacles and

the green node is the goal. The nodes are expanded in a manner similar to a breadth first

search [1]. Only after all the nodes in a current time step are processed are its descendents

processed. This ensures that the first possible solution is obtained.

26

The look-ahead is initially set to the number of steps needed to find the first goal. Using this

we determine the potential of the start state by the method described in the previous section.

This potential value is then compared to the expected potential value curve derived for a set

of randomly generated environments with the same obstacle density as the current world.

We find out the look-ahead value where the current potential value would be obtained in a

random world, TU�. We also find the look-ahead value, TU�, where the likelihood of the
potential value being below the starting potential value of the first solution drops below a

certain percent. This percentage value can be a fixed value for the entire curve or one that

increases as the look-ahead increases. We then calculate

� = TU� − TUV
� = TU� − TU�

(3.2)

where TUV is the number of the steps after which the first solution was found by forward

chaining.

Figure 3.4 Calculating � and � for original look-ahead.
The new look-ahead value is simply the old look-ahead value incremented by � or �,
whichever is greater.

27

3.4 Generating Potential value curves

The potential value curves have to be generated before the planner can be used. These

curves have to only be generated once and can then be used for all the runs of the planner,

provided that the overall size and characteristics of the world do not change. The first step is

to select an obstacle density. The next step is to generate a set of random worlds. These

worlds are generated by creating random obstacles until the required obstacle density is

obtained. For each of these worlds, a look-ahead value is taken. One of the non obstacle

locations in the final time step before the look-ahead is converted into a goal and the

potential values of the world are calculated. One of the initial states that are reachable from

the goal is chosen as the start state. The potential value for this state is noted. The process

is repeated for a number of randomly generated worlds and for various look-ahead values.

The values obtained are plotted with the look-ahead values on the x axis and the potential

values of the start states on the y axis. Finally the mean values for the potential values for

each look-ahead value are calculated and joined by a curve. One such curve obtained is

given in Figure 3.5. The blue dots represent the potential values for each random world and

look-ahead combination and the green dots represent the means of each set of potential

values, grouped by look-ahead times. We also draw a line joining the mean values (potential

value curve) for the sake of visualization. These curves are generated for various obstacle

densities and are used by the planner as and when needed.

28

Figure 3.5 Potential Value Curve

In the next chapter we will look at an experimental implementation of the above discussed

methods. We will also see some of the issues faced when implementing such a planner.

29

CHAPTER 4

EXPERIMENTAL IMPLEMENTATION OF PROPOSED METHOD

4.1 Implementation Details

In this chapter we shall discuss the various modules that together, make up an experimental

implementation of the proposed method. The language used to implement the method is

MATLAB [31]. We shall discuss the program flow in each of the modules and how the data is

transferred between the modules. We will also discuss some of the issues that were faced

during the implementation process and how they were addressed.

The planner implementation consists of eleven modules which are discussed in the following

sections. Section 4.2 will describe the module to generate random worlds. Section 4.3 will

describe a module which finds all start states reachable from a given goal state by means of

graph connectivity. Section 4.5 will describe the module which calculates the potential values

of all the locations in the world. Section 4.6 describes the module which uses the above

described modules to generate the potential value curves. Section 4.7 describes a module

by which the given two dimensional world is converted into a three dimensional model,

where the third dimension is time. This module is used by the forward chaining module

described by Section 4.8 to find the first reachable goal location. The module described by

Section 4.9 uses the time taken to reach that goal location and the potential value curves

obtained from the module described by Section 4.6 to calculate a suitable look-ahead value.

The look-ahead value obtained is used by the module described in Section 4.7 to create a

three dimensional model of the environment and the locations in this environment have their

potential values calculated by the module described in Section 4.5. Once the potential

values have been calculated, the module described in Section 4.10 tries to find a path by

navigating through locations of least potential value at each increasing time step. If such a

30

path is found then it is displayed by means of the module described in Section 4.11. All the

above steps are executed by the module described in Section 4.12 which forms the main

planner.

4.2 Random World Generation

We shall now take a look at the module used to generate the random worlds used by the

module used to create the potential value curves, described in Section 4.6. First we calculate

the exact number of obstacles the world must contain from the density and size information

provided. Then we place that many obstacles in the world. For each of these obstacles we

select a random direction and velocity according to a given distribution. The obstacles are

placed at random locations in the world. The module returns a list of obstacles with their

position and velocity information. The worlds generated by the above module will have a set

of point obstacles, each with its own initial position and velocity information.

4.3 Backward Chaining to find start state for random goal

This module is used by the module in Section 4.4 to find one of the initial states from which

the given goal state can be reached. It uses the concept of graph connectivity to find the set

of nodes which are connected to the goal node. We create an empty three dimensional array

to flag the nodes already visited. We set the goal node flag to ‘visited’ and add it to a node

queue. The following steps are then repeated until the node queue is empty. We de-queue

the first node from the queue. We then check that node’s predecessors. If any of the

predecessors is an obstacle, we discard it. If any of them have been flagged as visited, we

discard it. Otherwise we flag them as visited and en-queue them to the end of the node

queue. Repeat the process. After the loop ends we should have a visitation array that

contains all the nodes that are connected to the goal node. This module is illustrated by the

flowchart given in Figures 4.1 and 4.2.

31

Figure 4.1 Flowchart for Backward Chaining to find Start State, Part 1

Get a parent of D
Is parent visited

Mark parent as
visited and
enqueue

All parents
of D done ?

Is D obstacle

Node
queue

Start

Get 3 dimensional
world array and
goal location

Initialize visitation
array of same size
as world array size

to 0.

Is queue empty

Dequeue node D
from queue

Start node queue
with goal

A

n

y

y

n

n

y

n

y

32

Figure 4.2 Flowchart for Backward Chaining to find Start State, Part 2

4.4 Random World Expansion

In this section we shall see how the random world generated in Section 4.2 is expanded into

a three dimensional array, with the third dimension representing time for use by the module

described in Section 4.3. The module also needs to fix a starting location for the world. To

generate the third dimension values, the module creates a three dimensional array of size

W × C × (T + 1) initialized to -1 where W and C are the dimensions of the world and T is the
look-ahead. For every obstacle the module determines the location where it will be at that

particular time step and set the potential value to 1. All other locations are marked as -1 and

are yet to be processed. A randomly selected location which is not an obstacle at time T is
taken as a goal and its potential value is set to 0. The next step is to find a start state from

which this goal is reachable. The module to do this is described in Section 4.3. This module

returns a set of states that can be reached from the goal states at the various time steps.

One of these states in the initial time step is chosen as the start state. The module then

returns the three dimensional array and the start state generated. This module is illustrated

in the flowchart given in Figures 4.3 and 4.4.

Output visitation array

Stop

A

33

Figure 4.3 Flowchart for Random World Expansion, Part 1

n

y

B

Are all obstacles
processed

y

n

Start

Get world size r, c
and look-ahead l
and obstacle list

Initialize result array of
size W × C × (T + 1) to -1
Copy random world
to layer 1 and set
layer T + 1 to 1

Set time L to 1
Select an obstacle

Find the location of
obstacle at L and set
value to 1 in layer L of

the result array

Is L = T

L = L + 1

34

Figure 4.4 Flowchart for Random World Expansion, Part 2

4.5 Potential Value Calculation

This module implements the calculation of the potential value for the locations in the world

as described by Equation 3.1. It takes as input the expanded world array produced by the

modules described by Sections 4.4 or 4.7. From the time step at the look-ahead value, the

algorithm works its way back in time, processing each location in the world. If the current

location has a potential value of -1 i.e. it has been marked as unprocessed then it takes the

average of the potential values of the surrounding locations and the present location all at

the next time step. If any of these locations does not exist i.e. the current location is on the

edge or corner of the world, then the average is computed only for the existing successor

locations. It then returns this updated world array, where the value at co-ordinate (�, �, L)

Select random free
location in layer T of
result array as goal

and set to 0

Backward chain
from goal to get
array of reachable

states

Select random
element from layer 1
of array of reachable
states as start state

Output start state
and result array

Stop

B

35

represents the likelihood that a robot will collide with an obstacle provided it takes a random

walk from location (�, �) at time step L. This is illustrated by the flowchart provided by Figure
4.5

Figure 4.5 Potential Value Calculation

Start

Get the 3-dimensional world array X of size WYU� × CYU� × (T + 1)
Set time L to look-ahead value T, � to 1and � to 1.

If X(�, �, L) = −1

X(�, �, L) = 1 5[[X(�, �, L + 1)+ X(� − 1, �, L + 1)+ X(� + 1, �, L + 1)+ X(�, � − 1, L + 1)+ X(�, � + 1, L + 1)]

If � = WYU�

If � = CYU�

If L = 1

� = � + 1

� = � + 1 � = 1
L = L − 1 � = 1 � = 1

return X

Stop

y

y

y

y

n

n

n

n

36

4.6 Generation of Potential Value Curves

This module is used to generate the potential value curves needed to find a good look-ahead

value to use during the planning stage. The process described below is a very time

consuming one and so is done only once. The initial step is to get the size of the world and

the obstacle density for which we need to generate the potential value curve. The next step

is to generate a set of random worlds of that size and that obstacle density. This is done by

the module described in Section 4.2. The initial look-ahead is set to a hundred time steps.

The next step is to extend the world in the third dimension (time) and find the obstacle

positions up to the look-ahead time step. This is done by the module described in Section

4.4. The module also returns a start state that is reachable from a randomly selected goal

state in the time step at the look-ahead limit. Then the potential values for the locations in

the world are calculated by the module described in Section 4.5. The potential value of the

start state is then stored in an internal array. This process is repeated for decreasing values

of the look-ahead, from 100 all the way to 2. Initially the decrements are by 10 until the look-

ahead reaches 50 after which the decrements are by 5. This is because there are greater

changes in the look-ahead value when the look-ahead value is in the lower ranges than

when it is in the higher ranges. This is repeated for all the random worlds generated. The

potential values of the starting states of the various worlds are grouped together by the look-

ahead times and the mean values of the group are calculated. To better illustrate the

behavior of the potential values and to observe the effect of increasing the look-ahead value,

the potential values and mean values are plotted on a graph, along with the curve joining the

mean values. The potential values and their mean are output for future use. The main

planner uses this process to generate the potential curves once for various density values

and then uses the values for subsequent runs. The only time this module has to be called

again is if the size of the world changes. The module described above is illustrated by the

Flowchart given in Figure 4.6

37

Figure 4.6 Flowchart for generating potential value curves

Start

Get World Size O,
Density \

Set TU = 100
Generate random worlds of
size O and with density \

Extend a random world for
look-ahead TU and find a good

start state

Calculate potential values

Is TU > 2

Decrement TU by 10

Is 100 > TU > 50

Is 51 > TU > 5

Decrement la
by 5

Set TU = 2

y

Have all random
worlds been
processed

KLQ[], KLR[] CQ[], CR[]
Update potential
value array:

 y

n

n

y

n

Stop

CR[] = CR[] D_`abW(WUD\c` XcWT\O)d

CR[] = KcOOeaTb TU fUT_bO
Plot curves and output the KLQ[], KLR[], CQ[], CR[] data

n y

38

4.7 Extending the world array in time

This module extends the given two dimensional world array into a three dimensional array,

with the third dimension representing time. This is similar to the procedure used in Section

4.4. The difference is that instead of randomly selecting a goal state, the goal location at the

initial time step is provided. The goal’s position just has to be extrapolated across all the time

steps. To generate the third dimension values, the module creates a three dimensional array

of size W × C × (T + 1) initialized to -1 where W and C are the dimensions of the world and T is
the look-ahead. For every obstacle find the location where it will be at that particular time

step and mark with potential value 1. For the goal find the location where it will be at that

particular time step and mark with potential value 0. All other locations still marked as -1 are

yet to be processed. The module then returns the three-dimensional world array.

4.8 Forward chaining to find time to reach first reachable goal location

This module is used by the main planner to find the number of time steps needed to reach

the first reachable goal location. The method is similar to the backward chaining done in

Section 4.3. An empty three dimensional visitation array is created. A node queue is created

with the start state in it. Then the following steps are repeated in a loop. De-queue the first

location from the queue. If it is a goal state then return the time co-ordinate. If the time co-

ordinate limit is more than the forward chaining limit then return a failure message

(represented by a value of -1). If it is neither of the two then add the successors of the

current node to the end of the queue. Repeat the loop till the queue is empty or a goal state

is reached. The module described in Section 4.7 is used to extend the world in three

dimensions till the forward chaining limit to make checking for goal and obstacle states

easier. The forward chaining limit is used because the dynamics of the worlds may have

changed if we have been forward chaining for too long.

39

4.9 Determining Look-ahead value to use

This module uses the value obtained from the previous module and the set of potential value

curves generated in Section 4.6 to determine the amount of time the planner has to look-

ahead by. The module gets as an input the current world and the time taken to reach the first

goal. The modules described in Section 4.7 and Section 4.5 are used to find the potential

value of the start state. This value is compared to the potential value curve generated for the

set random worlds of the closest density as the given world. While deciding the closest

density it is better to use a conservative estimate i.e. the closest lower value. Assuming that

for each look-ahead the probabilities are distributed normally, we try to find the highest look-

ahead for which the z-table value falls just below a set threshold, where the threshold is set

to 0.05. This value is called TU�. The look-ahead value where the current start potential
would lie on the curve is TU� and the current look-ahead is TUV. The values of � and � are
obtained as given by Equation 3.2. The greater of these is added to TUV to get the new look-
ahead.

4.10 Traversing World Array to find the Goal

This module uses the three dimensional array filled with potential values generated by the

module described in Section 4.5 to generate a representation of the path that a robot that is

using the proposed path planner will navigate. It creates an empty three dimensional array to

hold the set of nodes visited during the traversal. Starting from the initial state, the following

steps are repeated. The current location at time L is marked as visited. If the current location

is a goal location then the visitation array is returned. The potential values of the current

location’s successors at time L + 1 are found. The successor with the minimum potential

value is found. Current location is changed to that location. The process is repeated until the

current location reaches a goal or an obstacle or until the number of time steps taken

becomes equal to the look-ahead limit. If the current location is an obstacle then return a

40

failure message. If the current location is at the final time step i.e. at the look-ahead limit,

return a failure message. Otherwise return the populated visitation array.

4.11 Display path

The purpose of this module is to display the representation of the path traversed by the

previous module in a fashion that can be easily understood by anyone. It just uses the node

visitation information given by the module described in Section 4.10 and the three

dimensional world array obtained from the module described in Section 4.7. It outputs a 3

dimensional plot where the obstacles are represented by points and the goals motion and

the robots path are represented by lines.

4.12 Temporal Potential Path Planning Simulator

This is the main part of the path planner simulator. It consists of two parts, the potential

value curve generator and the actual path planner. The first part has to be run only once. It

calculates the potential value curves for the given world size and the various densities. The

algorithm used to do this is discussed in Section 4.6. The second part is the path planner

that is executed for the given sample world. We use the forward chaining discussed in

Section 4.8 to find the time taken to reach the first solution. If the forward chaining takes too

long to find the solution, we reload the given world and repeat the process. This is because

the dynamics of the world may have changed. After obtaining the time required to reach the

shallowest goal, we use the potential value curves previously generated to find the best look-

ahead value. The module used to do this is discussed in Section 4.9. We then extend the

world in the third dimension (time) until the look-ahead value calculated. The module to do

this is discussed in Section 4.7. We then calculate the potential values for the world from the

look-ahead time limit till the initial state moving backwards, this module is discussed in

Section 4.5. Finally the path traversed by a robot using this planner is generated by travelling

from the initial state to the neighbor with the least potential value at each time step. The

41

module for this is discussed in Section 4.10. If the traversal does not reach a goal before the

look-ahead time limit then an error message is returned. This step is present purely to

capture any anomalous error and will never be executed. The path traversed by the robot is

displayed by the module described in Section 4.11. The flow chart given in Figure 4.7 best

illustrates this method.

Figure 4.7 Flowchart of the Temporal Potential Function approach

Curve
sets for
various
densities

Start

Is first run? Generate curve sets

Forward chain to
find first solution

Calculate potential values

Traverse till goal

If solution found
within a set time

Reload world

If goal found
n

Display Path

Output
‘Simulator Failure’

Stop

y

Find the best look-ahead

Extend the world up-to the
look-ahead

n

y

y

n

42

4.13 Additional Notes on Implementation

The modules described in Sections 4.3 and 4.8 use queues to store the list of nodes they

can possibly visit. Since the queue data structure is not natively implemented in MATLAB,

the Data Structures & Algorithms Toolbox [32] was used along with the updated pointer

library for MATLAB 7.0+ [33]. The actual code that was written for this implementation is

provided in Appendix A and an explanation of the various symbols used in the flowcharts

used in this chapter is given in Appendix B.

43

CHAPTER 5

EXPERIMENTAL RESULTS AND OBSERVATIONS

5.1 Description of Experiments conducted

In this chapter we shall see some of the experiments conducted with the proposed path

planner and the observations made. First a world with known obstacle and goal positions

and velocities is taken and the effect of increasing the look-ahead limit is observed. Then a

randomly generated world is taken and the potential value when the goal is set to just one

step below the look-ahead value is found. (This is the same way the potential value curves

are generated). Using this curve the effect the time taken to reach goal has on the potential

value can be observed. Next, the potential value curves for various world sizes and obstacle

densities are generated and compared. Next, a sample world is taken and the various steps

in the path planning process are executed and observed. Finally, observations are made on

how the robot picks the best solution within the given look-ahead limit.

5.2 Effect of Look-Ahead on Potential Value

Consider the potential value of a start state in a given world. The world used here is a known

world where the solution occurs at time step 12. As can be seen from Figure 5.1, the

potential value is 1 until the look-ahead time the planner would have reached the goal. If we

had proceeded with a smaller look-ahead, the planner would have ended in a failure. As the

look ahead increases, the potential value of the start state decreases until it reaches a

minimum and it does not reduce any further after that value. This emphasizes the

importance of selecting the correct look-ahead value since if too high a look ahead is

selected, the algorithm may perform a lot of unnecessary calculations.

44

Figure 5.1 Potential values of start state in given world

5.3 Effect of Time to reach goal on Potential Value

The potential value of the start state of a randomly generated world is shown for values of

various look-ahead limits in Figure 5.2. For each of these worlds the goal state is set just at

the look-ahead value. As can be seen, the potential of the start state increases as the

distance to reach the first goal increases. The kinks in the curve are due to small fluctuations

in the data value due to the world being generated randomly. So to get a more accurate

picture the values for a set of randomly generated worlds is calculated as shown in Figure

5.3. The blue dots in the graph represent the potential values for randomly generated worlds.

The green line represents the curve joining the mean of these values. As can be seen, the

curve is smoother here. Also, the effect of the goal distance on the potential values can be

clearly seen. The longer the robot navigates through the world without reaching a goal, the

more likely that it would hit an obstacle.

45

Figure 5.2 Potential value curve of a random 10 × 10 world with obstacle density 9%

Figure 5.3 Potential value curve of set of random 10 × 10 worlds with obstacle density 9%

46

5.4 Effects of World Size on Potential Value

The potential value curves generated by worlds of different sizes and a fixed obstacle

density are shown in Figure 5.5. Since the change is greatest in the lower ranges of the look-

ahead value, the x-axis (look-ahead value) is taken in logarithmic scale to improve clarity.

Figure 5.4 Potential curves of set of random worlds of varying sizes with obstacle density 9%

Although the curves are generated separately for each different world size, the curves are

remarkably similar. However we only use the curves that have been generated for a

particular world size when the planner is planning for that world size.

47

5.5 Effects of World Density on Potential Value

The potential value curves for random worlds of a fixed size and different densities given in

Figure 5.6. The potential values tend to get closer to 1 quicker i.e. at lower look-ahead value

as the obstacle density increases. As the number of obstacles increases so too does the

probability of a robot colliding with it during a random walk.

Figure 5.6 Potential curves of sets of random 10 × 10 worlds of varying obstacle density

48

5.6 Path planner execution

We shall now look at sample executions of the path planner. The worlds we input for the

path planner is similar to the random worlds we generate for the potential value curves. They

contain a set of point obstacle each with their own velocities and a goal location with its own

velocity.

A two dimensional grid map showing positions of the goal and obstacles in the first world is

given in Figure 5.7. The first step is to check if the set of potential value curves exists for the

given world’s size and density. If they do not exist, then the curves are generated for the

world’s parameters. The next time a similar world is encountered we can use the previously

generated curve. A curve generated in this fashion is shown in Figure 5.3.

The next step is to use forward chaining to find the time required to reach the first goal. After

obtaining the number of steps required to reach the first solution, the value is compared to

the potential value curve of the closest density lower than the world’s density and the correct

look-ahead is determined.

After obtaining the look-ahead value the planner builds a three dimensional grid map of the

world. The goal and obstacle locations are extrapolated up to the look-ahead value

previously obtained. The world thus obtained is shown in Figure 5.8. The red dots represent

obstacle positions and the green dots represent the goal positions. The green line shows the

path the goal takes. Any position where a goal and obstacle may intersect is also considered

as an obstacle.

The next step is to calculate the potential values for each of the cells. This is calculated by

the method described in Section 4.5. There is no need to repeat the iteration as the values

converge on the first run. This is because changing the value of a location does not change

the value of its successor locations. After obtaining the potential value the planner follows

the negative gradient in increasing time, to find the path. The path obtained for the example

49

world is given in Figure 5.9. The blue line shows the path taken and the blue dots show the

robot position at each time step.

 Figure 5.7 Two dimensional representation of world 1.

Figure 5.8 Three dimensional representation of world 1.

50

Figure 5.9 Path Traversed by Robot in world 1.

Another sample execution was done for a different world. The two and three dimensional

representations of this world are shown in Figure 5.10 and Figure 5.11. The path travelled by

the robot is given in Figure 5.12. The blue dots represent the robot and the blue line

represents the path it takes. The red dots represent the obstacles. The green dots represent

the goal and the green line represents the path it takes.

Figure 5.10 Two dimensional representation of world 2.

51

Figure 5.11 Three dimensional representation of world 2.

Figure 5.12 Path Traversed by Robot in world 2.

52

5.6 Avoidance of Suboptimal Goals

The traversal algorithm discussed in Section 3.10 should naturally avoid suboptimal

solutions and pick the most optimal solution within the given look-ahead limit. Here optimality

is determined as the minimum collision probability in the case of a Random Walk. Consider

the following path generated in Figure 5.13. The goal has been deliberately placed in a risky

position for the purpose of this experiment. Since this is the only goal location available in

the world, the planner has no option but to plan a path to that location.

However consider Figure 5.14. Here another goal has been placed in a much safer position.

The path planner now plans a path to the safer goal location, even though it will take an

extra 25 time steps more to reach the goal. This is because the free space near the first goal

has a high collision probability in case of a random walk because of its proximity to mobile

obstacles but the free space near the second goal will have a lower collision probability. The

potential values are always calculated such that the robot ends up going to the safest goal

within the given look-ahead time

Figure 5.13 Planner forced to pick risky path.

53

Figure 5.14 Avoiding Sub-Optimal Goal

54

CHAPTER 6

CONCLUSION AND FUTURE WORK

This thesis developed and implemented a path planner for use in dynamic environments that

uses a harmonic function extended in the time dimension. The following chapter provides

conclusion for this work, along with future directions for research.

6.1 Conclusion

Consider for example someone attempting to catch a falling ball, the person automatically

calculates where the ball will be when he can catch it and moves his hands to that position

instead of trying to move his hands towards the ball. This is in essence the principle behind

the proposed approach. The path planner looks ahead by a predetermined amount and

calculates the potential values of the world locations from the initial time up to the look-

ahead time. The robot then follows the negative potential gradient with respect to time to

reach the goal. Since we use forward chaining to find the depth to the first goal we are

guaranteed a solution. Also, the usage of potential value curves gives us a good chance of

finding a good solution. Since the potential values represent the probability that a robot

executing a random walk from that position at that time will collide with an obstacle, following

the path of negative potential gradient will mean that the robot will follow the safest path to

the goal.

Harmonic Functions were used as the basis for the path planning algorithm because they

generate smooth, complete and correct paths. Since the world has been stretched in the

time dimension, the multiple iterations of the numerical evaluation of a harmonic function are

executed in one pass over the three-dimensional world array.

55

MATLAB was used to simulate the path planner due to the ease with which large

calculations can be done in them. Some external toolboxes were needed for extra

functionality like queues.

6.2 Future Work

In the proposed method, if the dynamics of the environment change during runtime, there is

no option other than to re-plan from that point on. It remains to be seen if the potential values

can be updated on the fly. This could greatly reduce the re-planning time.

56

APPENDIX A

EXPERIMENTAL IMPLEMENTATION – MATLAB CODE

57

Random World Generation

gen_random_obs.m

function rworlds = gen_random_obs(rows,cols,density,nworlds)
%
%Generated set of random obstacles to use to create random worlds
%
nobs = round((density/100)*rows*cols); %find number of obstacles
for i = 1:nworlds
 w(1:rows,1:cols) = -1;
 for j = 1:nobs
 tf = 1;
 while tf==1 %select empty location
 tr = round(1 + (rows - 1) .* rand);
 tc = round(1 + (cols - 1) .* rand);
 tf = 0;
 if w(tr,tc) == 1
 tf = 1;
 end
 end
 w(tr,tc) = 1;
 tdir = round(1 + (4 - 1) .* rand);%set a random direction
 switch tdir
 case 1
 td = 'N';
 case 2
 td = 'E';
 case 3
 td = 'W';
 case 4
 td = 'S';
 end
 tv = round((min(rows,cols)-1) .* rand);%set a random velocity
 rw(i).obs(j).r = tr;
 rw(i).obs(j).c = tc;
 rw(i).obs(j).vel = tv;
 rw(i).obs(j).dir = td;
 end
end
rworlds = rw;
end

58

Backward Chaining to find start state for random goal

backward_chain.m

function vn = backward_chain(w,tr,tc,la)
%
%Backward chain from goal of given world to find the initial states %that
%are reachable
%
t.r = tr;
t.c = tc;
t.l = la;
q = qu_new;% start node queue
q = qu_enqu(q,t);% enqueue goal
v(1:size(w,1),1:size(w,2),1:la) = 0;
while qu_empty(q) ~= 1
 cu = qu_front(q);
 q = qu_dequ(q);% dequeue goal
 if (w(cu.r,cu.c,cu.l) ~= 1)&&(cu.l~=1)% check if obstacle or initial state
 if v(cu.r,cu.c,cu.l-1) ~= 1
 t.r = cu.r;
 t.c = cu.c;
 t.l = cu.l - 1;
 q = qu_enqu(q,t); % enqueue descendant
 v(cu.r,cu.c,cu.l-1) = 1;% mark descendant as visited
 end
 if (cu.r > 1)&&(v(cu.r-1,cu.c,cu.l-1) ~= 1)
 t.r = cu.r - 1;
 t.c = cu.c;
 t.l = cu.l - 1;
 q = qu_enqu(q,t);
 v(cu.r-1,cu.c,cu.l-1) = 1;
 end
 if (cu.c > 1)&&(v(cu.r,cu.c-1,cu.l-1) ~= 1)
 t.r = cu.r;
 t.c = cu.c - 1;
 t.l = cu.l - 1;
 q = qu_enqu(q,t);
 v(cu.r,cu.c-1,cu.l-1) = 1;
 end
 if (cu.r < size(w,1))&&(v(cu.r+1,cu.c,cu.l-1) ~= 1)
 t.r = cu.r + 1;
 t.c = cu.c;
 t.l = cu.l - 1;
 q = qu_enqu(q,t);
 v(cu.r+1,cu.c,cu.l-1) = 1;
 end
 if (cu.c < size(w,2))&&(v(cu.r,cu.c+1,cu.l-1) ~= 1)
 t.r = cu.r;
 t.c = cu.c + 1;
 t.l = cu.l - 1;
 q = qu_enqu(q,t);

59

 v(cu.r,cu.c+1,cu.l-1) = 1;
 end
 end
end
q = qu_free(q);% free queue space
vn = v; % return values
end

Random World Expansion

gen_random_world.m

function [world st_r st_c] = gen_random_world(rows,cols,obs,lookahead)
%
%generate random world in three dimensions
%
w (1:rows,1:cols,1:lookahead)=-1; % create empty world
w (:,:,lookahead+1) = 1; % set lookahead boundry to 1
for i = 1:length(obs) % extrapolate obatacle locations
 tr = obs(i).r;
 tc = obs(i).c;
 tv = obs(i).vel;
 w(tr,tc,1) = 1;
 for j = 1:lookahead-1
 switch obs(i).dir
 case 'N'
 tr = round(tr - tv);
 if tr < 1
 tr = 1 + (tr * -1);
 obs(i).dir = 'S';
 end
 case 'E'
 tc = round(tc + tv);
 if tc > cols
 tc = cols - (tc - cols);
 obs(i).dir = 'W';
 end
 case 'S'
 tr = round(tr + tv);
 if tr > rows
 tr = rows - (tr - rows);
 obs(i).dir = 'N';
 end
 case 'W'
 tc = round(tc - tv);
 if tc < 1
 tc = 1 + (tc * -1);
 obs(i).dir = 'E';
 end
 otherwise
 disp('Not Supported')
 end

60

 if (w(tr,tc,j+1) == 1)
 switch obs(i).dir
 case 'N'
 tr = tr + 1;
 if tr > rows
 tr = tr - 1;
 end
 case 'E'
 tc = tc - 1;
 if tc < 1
 tc = tc + 1;
 end
 case 'S'
 tr = tr - 1;
 if tr < 1
 tr = tr + 1;
 end
 case 'W'
 tc = tc + 1;
 if tc > cols
 tc = tc - 1;
 end
 otherwise
 disp('Not Supported')
 end
 end
 w(tr,tc,j+1) = 1;
 end
end
tf = 1;
tr = 0;
tc = 0;
while tf == 1% select random goal
 tf = 0;
 tflg = 1;
 while tflg == 1
 tr = round(1 + (rows - 1) .* rand);
 tc = round(1 + (cols - 1) .* rand);
 tflg = 0;
 if (w(tr,tc,lookahead) ~= -1)
 tflg = 1;
 end
 end
 w(tr,tc,lookahead) = 0;
 v = backward_chain(w,tr,tc,lookahead);
 if any(v(:,1))== 0
 tf = 1;
 w(tr,tc,lookahead) = -1;
 else
 tflg = 1;
 while tflg == 1
 tflg = 0;

61

 tr = round(1 + (rows - 1) .* rand);% find stat state
 tc = round(1 + (cols - 1) .* rand);
 if v(tr,tc,1) == 0
 tflg = 1;
 end
 end
 end
end
world = w;
st_r = tr;
st_c = tc;
end

Potential Value Calculation

calc_pot_values.m

function res = calc_pot_values(w)
%
%calculate potential values for non obstacle and foal locations in %given world
%
r = size(w,1);
c = size(w,2);
for t = size(w,3):-1:1
 for x = 1:r
 for y = 1:c
 if w(x,y,t) == -1
 n = w(x,y,t+1);
 if x ~= 1
 n = n + w(x-1,y,t+1);
 else
 n = n + 1;% boundary condition
 end
 if x ~= r
 n = n + w(x+1,y,t+1);
 else
 n = n + 1;
 end
 if y ~= 1
 n = n + w(x,y-1,t+1);
 else
 n = n + 1;
 end
 if y ~= c
 n = n + w(x,y+1,t+1);
 else
 n = n + 1;
 end
 w(x,y,t) = n / 5;% take average of neighbors
 end
 end
 end

62

end
res = w;
end

Generate Potential value curves

gen_curves.m

function gen_curves(rows,cols,density)
%
%generate potential value curves
%
rw = gen_random_obs(rows,cols,density,25);
g2x = [2 5:5:45 50:10:100];
g2y(1:16) = 0;
g1x(1:400) = 0;
g1y(1:400) = 0;
for ri = 1:25
 g1i = ri;
 disp(sprintf('Density = %d%% World Number = %d Lookahead = 2',density,ri))
 [w st_r st_c]= gen_random_world(rows,cols,rw(ri).obs,2);
 p = calc_pot_values(w);
 g1x(g1i) = 2;
 g1y(g1i) = p(st_r,st_c,1);
 g1i = g1i + 25;
 g2y(1) = g2y(1) + p(st_r,st_c,1);
 for la = 5:5:45
 disp(sprintf('Density = %d%% World Number = %d Lookahead = %d',density,ri,la))
 [w st_r st_c]= gen_random_world(rows,cols,rw(ri).obs,la);
 p = calc_pot_values(w);
 g1x(g1i) = la;
 g1y(g1i) = p(st_r,st_c,1);
 g1i = g1i + 25;
 end
 for la = 50:10:100
 disp(sprintf('Density = %d%% World Number = %d Lookahead = %d',density,ri,la))
 [w st_r st_c]= gen_random_world(rows,cols,rw(ri).obs,la);
 p = calc_pot_values(w);
 g1x(g1i) = la;
 g1y(g1i) = p(st_r,st_c,1);
 g1i = g1i + 25;
 end
end
for i = 1:16
 g2y(i) = mean(g1y((1:25)+25*(i-1)));
end
figure(density)
plot(g1x,g1y,'b.')
hold on
plot(g2x,g2y,'g*-')
set(gca,'xtick',[2 5:5:45 50:10:100])
fign = sprintf('-f%d',density);

63

fn = sprintf('graph_%d_%d_%d',rows,cols,density);
print(fign,'-djpeg',fn)
hold off
tmp.ptx=g1x;
tmp.pty=g1y;
tmp.cx=g2x;
tmp.cy=g2y;
fn = sprintf('curveset_%d_%d_%d',rows,cols,density);
assignin('base',fn,tmp);
evalin('base',sprintf('save curveset_%d_%d_%d.mat %s',rows,cols,density,fn));
end

Extending world array in time

extend_world.m

function world = extend_world(rows,cols,obs,goal,lookahead)
%
%extends the world to the given look-ahead
%
w (1:rows,1:cols,1:lookahead)=-1; %intialize world
w (:,:,lookahead+1) = 1; %initialize loo-ahead boundary
for i = 1:length(obs) %extrapolate obstacle positons
 tr = obs(i).r;
 tc = obs(i).c;
 tv = obs(i).vel;
 w(tr,tc,1) = 1;
 for j = 1:lookahead-1
 switch obs(i).dir
 case 'N'
 tr = round(tr - tv);
 if tr < 1
 tr = 1 + (tr * -1);
 obs(i).dir = 'S';
 end
 case 'E'
 tc = round(tc + tv);
 if tc > cols
 tc = cols - (tc - cols);
 obs(i).dir = 'W';
 end
 case 'S'
 tr = round(tr + tv);
 if tr > rows
 tr = rows - (tr - rows);
 obs(i).dir = 'N';
 end
 case 'W'
 tc = round(tc - tv);
 if tc < 1
 tc = 1 + (tc * -1);
 obs(i).dir = 'E';

64

 end
 otherwise
 disp('Not Supported')
 end
 if (w(tr,tc,j+1) == 1)
 switch obs(i).dir
 case 'N'
 tr = tr + 1;
 if tr > rows
 tr = tr - 1;
 end
 case 'E'
 tc = tc - 1;
 if tc < 1
 tc = tc + 1;
 end
 case 'S'
 tr = tr - 1;
 if tr < 1
 tr = tr + 1;
 end
 case 'W'
 tc = tc + 1;
 if tc > cols
 tc = tc - 1;
 end
 otherwise
 disp('Not Supported')
 end
 end
 w(tr,tc,j+1) = 1;
 end
end
%extrapolate goal location
tr = goal.r;
tc = goal.c;
tv = goal.vel;
w(tr,tc,1) = 0;
for j = 1:lookahead-1
 switch goal.dir
 case 'N'
 tr = round(tr - tv);
 if tr < 1
 tr = 1 + (tr * -1);
 goal.dir = 'S';
 end
 case 'E'
 tc = round(tc + tv);
 if tc > cols
 tc = cols - (tc - cols);
 goal.dir = 'W';
 end

65

 case 'S'
 tr = round(tr + tv);
 if tr > rows
 tr = rows - (tr - rows);
 goal.dir = 'N';
 end
 case 'W'
 tc = round(tc - tv);
 if tc < 1
 tc = 1 + (tc * -1);
 goal.dir = 'E';
 end
 otherwise
 disp('Not Supported')
 end
 if w(tr,tc,j+1) ~= 1
 w(tr,tc,j+1) = 0;
 end
end
world = w;
end

Forward chaining to find time to shallowest goal

forward_chain.m

function res = forward_chain(rows,cols,obs,goal,start,proplimit)
%
%forward chain to find time to shallowest goal
%
w = extend_world(rows,cols,obs,goal,proplimit);
t.r = start.r;
t.c = start.c;
t.l = 1;
q = qu_new;
q = qu_enqu(q,t);%initalize queue with start state
v(1:rows,1:cols,1:proplimit) = 0;
while qu_empty(q) ~= 1
 cu = qu_front(q);
 q = qu_dequ(q);%dequeue node
 v(cu.r,cu.c,cu.l) = 1;%mark node visited
 %if node is goal return depth
 if w(cu.r,cu.c,cu.l) == 0
 res = cu.l;
 q = qu_free(q);
 clear q;
 return;
 end
 %if chaining has reached propogation limit return reload
 if cu.l == size(w,3)
 res = -1;
 q = qu_free(q);

66

 clear q;
 return;
 end
 %enqueue non-obstacle sucessor nodes that have not been visited yet
 if w(cu.r,cu.c,cu.l) ~= 1
 if v(cu.r,cu.c,cu.l+1) ~= 1
 t.r = cu.r;
 t.c = cu.c;
 t.l = cu.l + 1;
 q = qu_enqu(q,t);
 v(cu.r,cu.c,cu.l+1) = 1;
 end
 if (cu.r > 1)&&(v(cu.r-1,cu.c,cu.l+1) ~= 1)
 t.r = cu.r - 1;
 t.c = cu.c;
 t.l = cu.l + 1;
 q = qu_enqu(q,t);
 v(cu.r-1,cu.c,cu.l+1) = 1;
 end
 if (cu.c > 1)&&(v(cu.r,cu.c-1,cu.l+1) ~= 1)
 t.r = cu.r;
 t.c = cu.c - 1;
 t.l = cu.l + 1;
 q = qu_enqu(q,t);
 v(cu.r,cu.c-1,cu.l+1) = 1;
 end
 if (cu.r < size(w,1))&&(v(cu.r+1,cu.c,cu.l+1) ~= 1)
 t.r = cu.r + 1;
 t.c = cu.c;
 t.l = cu.l + 1;
 q = qu_enqu(q,t);
 v(cu.r+1,cu.c,cu.l+1) = 1;
 end
 if (cu.c < size(w,2))&&(v(cu.r,cu.c+1,cu.l+1) ~= 1)
 t.r = cu.r;
 t.c = cu.c + 1;
 t.l = cu.l + 1;
 q = qu_enqu(q,t);
 v(cu.r,cu.c+1,cu.l+1) = 1;
 end
 end
end
res = -1; %return reload if queue empty.
q = qu_free(q);
clear q;
end

67

Determining look-ahead to use

find_good_la.m

function new_la = find_good_la(rows,cols,obs,goal,start,old_la,curveset)
%
%find a good look-ahead value to use
%
limits = 0.05;%set threshold
w = extend_world(rows,cols,obs,goal,old_la);
p = calc_pot_value(w);
stpot = p(start.r,start.c,1);
ti = 1;
for i = 1:16
 if curveset.cy(i) <= stpot
 ti = i;
 else
 break;
 end
end
la1 = curveset.cx(ti);
la0 = old_la;
la2 = 500;
for i = ti+1:16
 sig = std(curveset.pty((1:25)+25*(i-1)));
 mu = curveset.cy(i);
 z = (stpot - mu)/sig;
 zVal = normcdf(z);% z table value
 if (zVal <= limits)
 la2 = curveset.cx(i);
 else
 break;
 end
end
a = la2 - la0;
b = la2 - la1;
new_la = la0 + max([a b]);
end

Traversing world array to find goal

traverse_world.m

function [success path] = traverse_world(start,pot)
%
% traverse world
%
res(size(pot,1),size(pot,2))=0;
t = 1;
nr = start.r;
nc = start.c;
res(nr,nc,t)=1;

68

while((t<size(pot,3))&&(pot(nr,nc,t)~=0)&&(pot(nr,nc,t)~=1))
 if(nr ~= 1)
 n = pot(nr-1,nc,t+1);
 else
 n = Inf;
 end
 if(nc ~= size(pot,2))
 e = pot(nr,nc+1,t+1);
 else
 e = Inf;
 end
 if(nr ~= size(pot,1))
 s = pot(nr+1,nc,t+1);
 else
 s = Inf;
 end
 if(nc ~= 1)
 w = pot(nr,nc-1,t+1);
 else
 w = Inf;
 end
 st = pot(nr,nc,t+1);
 minv = min([n,e,s,w,st]);
 if (minv == st)
 %do nothing
 elseif((minv == n)&&(nr ~= 1))
 nr = nr - 1;
 elseif((minv == e)&&(nc ~= 10))
 nc = nc + 1;
 elseif((minv == s)&&(nr ~= 10))
 nr = nr + 1;
 elseif((minv == w)&&(nc ~= 1))
 nc = nc - 1;
 end
 t = t + 1;
 res(nr,nc,t)=1;
end
if(pot(nr,nc,t)==0)
 success = 1; %if goal reached
else
 success = 0; %if goal no longer reachable
end
path = res;
end

Display path

show_path.m

function show_path(world,path)
%
% Display the path to the user

69

%
i=1;
for t = 1:size(path,3)
 for r = 1:size(world,1)
 for c = 1:size(world,2)
 if world(r,c,t)==1
 ox(i)=r;
 oy(i)=c;
 oz(i)=t;
 i = i + 1;
 end
 end
 end
end
plot3(ox,oy,oz,'MarkerSize',30,'Marker','.','LineStyle','none','Color',[1 0 0])
grid
hold on
i=1;
for t = 1:size(path,3)
 for r = 1:size(world,1)
 for c = 1:size(world,2)
 if world(r,c,t)==0
 gx(i)=r;
 gy(i)=c;
 gz(i)=t;
 i = i + 1;
 end
 end
 end
end
plot3(gx,gy,gz,'MarkerSize',30,'Marker','.','LineWidth',3,'Color',[0 1 0])
i=1;
for t = 1:size(path,3)
 for r = 1:size(path,1)
 for c = 1:size(path,2)
 if path(r,c,t)==1
 x(i)=r;
 y(i)=c;
 z(i)=t;
 i = i + 1;
 end
 end
 end
end
plot3(x,y,z,'MarkerSize',30,'Marker','.','LineWidth',3,'Color',[0 0 1])
axis([1,size(path,1),1,size(path,2),1,size(path,3)])
view(-16,4)
hold off
end

70

Temporal path planning simulator

planner.m

function planner(rows,cols,obs,start,goal)
%
% path planner simulator
%
density = size(obs,2)/(rows*cols);% find obstacle density
ndensity = 9;
for d = 9:10:89
 if d <= density
 ndensity = d;
 else
 break;
 end
end
csetname = sprintf('curveset_%d_%d_%d',rows,cols,ndensity);
if(evalin('base',sprintf('exist(''%s'',''var'')',csetname))==0)% try to load curveset from matlab
runtime memory
 if(evalin('base',sprintf('exist(''%s.mat'',''file'')',csetname))==0)% try to load curveset from
hard drive
 disp('Generating curve set');
 evalin('base',sprintf('gen_curves(%d,%d,%d)',rows,cols,ndensity));% generate curveset
 else
 disp('Loading curve set from file');
 evalin('base',sprintf('load %s.mat',csetname));
 end
 curveset = evalin('base', csetname);
else
 disp('Loading curve set from memory');
 curveset = evalin('base', csetname);
end
clear csetname;
sol1 = forward_chain(rows,cols,obs,goal,start,100);% find time to reach shallowest solution
if (sol1 == -1)
 disp('Run program after reloading world');% Dynamics changed
 return;
end
la = find_good_la(rows,cols,obs,goal,start,sol1,curveset);% estimate lookahead to use
world = extend_world(rows,cols,obs,goal,la);% extend world in time
pot_vals = calc_pot_values(world);% Calculate potential values
[res path] = traverse_world(start,pot_vals);% Follow negative potential gradient
if (res == 0)
 disp('Run program after reloading world');% Dynamics changed or Goal became
unreachable
 return;
end
show_path(world,path)% display path traversed
end

71

APPENDIX B

FLOWCHART SYMBOLS

72

Terminator – Used to denote start or end of a process

 I/O – Used to denote input or output operation

 Decision – Used to represent conditional statements

 Process – Used to represent internal process

Pre Defined Process – Used to represent processes that are defined

elsewhere, i.e. other modules.

 Internal Storage – Used to represent values that are stored internally.

Direct Access Storage – Used to represent values that are stored in

the main workspace of MATLAB [30]

Out of Page Connector – Used to link to flowchart sections not in

current page

Program Flow – Represents the direction of control flow in the

flowchart

 Data Flow – Represents the direction of the flow of data in the flowchart

73

REFERENCES

[1] Russell S., Norvig P. (1995). Artificial Intelligence: A Modern Approach, Second

Edition. Englewood Cliffs, NJ: Prentice Hall.

[2] LaValle S. M. (2006). Planning Algorithms. New York, NY: Cambridge University

Press.

[3] The Fraunhofer-Chalmers Research Centre for Industrial Mathematics. Automatic

Path Planning. http://www.fcc.chalmers.se/geo/intro-1/automatic-path-planning.

[4] Honda Technology Research Institute Company, Limited. (2000 –). ASIMO.

http://asimo.honda.com/

[5] Sony Corporation. (1999 – 2006). AIBO. http://support.sony-europe.com/aibo

[6] Song G., Amato N. M. (2001). Using motion planning to study protein folding

pathways. Journal of Computational Biology. pp 287–296.

[7] Thrun S., Bücken A. (1996). Integrating grid-based and topological maps for mobile

robot navigation. Proceedings of the AAAI Thirteenth National Conference on Artificial

Intelligence. Vol 2, p 944. Portland, OR.

[8] Rodriguez-Losada D., Matia F., Galan R. (2006). Building geometric feature based

maps for indoor service robots. Robotics and Autonomous Systems. vol 54, no 7, pp 546–

558.

[9] Lozano-Pérez T. (1983). Spatial planning: A configuration space approach. IEEE

Trans. Computers. Vol 32, no 2, pp 108–120.

[10] Latombe J-C. (1991). Robot Motion Planning. Norwell, MA: Kluwer Academic.

[11] Khatib O. (1986). Real-time obstacle avoidance for manipulators and mobile robots.

International Journal of Robotics Research. Vol 5, no 1, pp 90–98.

74

[12] Faria G., Romero R., Prestes E., Idiart M. (2004). Comparing harmonic functions

and potential fields in the trajectory control of mobile robots. Proceeding of the 2004 IEEE

Conference on Robotics, Automation and Mechatronics. Vol 2, pp 762–767.

[13] Borenstein J., Koren Y., Member S. (1991). The vector field histogram - fast

obstacle avoidance for mobile robots. IEEE Journal of Robotics and Automation. Vol 7, pp

278–288.

[14] Park M. G., LEE M. C. (2003). A new technique to escape local minimum in artificial

potential field based path planning. KSME International Journal. Vol 17, n 12, pp 1876–1885.

[15] Ge S. S., Cui Y. J. (2000). New Potential Functions for Mobile Robot Path Planning.

IEEE Transactions on Robotics and Automation. Vol 16, no 5, pp 615–620.

[16] Zhang P.-Y., Lü T.-S., Song L.-B. (2004). Soccer robot path planning based on the

artificial potential field approach with simulated annealing. Robotica. Vol 22, pp 563–566.

[17] Weisstein E. W., Harmonic Function. MathWorld – A Wolfram Web Resource.

http://mathworld.wolfram.com/HarmonicFunction.html

[18] Weisstein E. W., Laplace's Equation. MathWorld – A Wolfram Web Resource.

http://mathworld.wolfram.com/LaplacesEquation.html

[19] The Laplace Equation and Harmonic Functions. MathPages – A collection of HTML

lectures on various subjects in mathematics and physics.

http://www.mathpages.com/home/kmath214/kmath214.htm

[20] Weisstein E. W., Saddle Point. MathWorld – A Wolfram Web Resource.

http://mathworld.wolfram.com/SaddlePoint.html

[21] Connolly C. I., Grupen R. A. (1993). On the Applications of Harmonic Functions to

Robotics. Journal of Robotic Systems. Vol 10, pp 931–946.

[22] Connolly C. I., Grupen R. A. (1994). Nonholonomic Path Planning using Harmonic

Functions. University of Massachusetts at Amherst Computer Science Department technical

report UM-CS-1994-050.

75

[23] Risell J., Iñiguez P., (2005) Path Planning using Harmonic Functions and

Probabilistic Cell Decomposition. Proceedings of the 2005 IEEE International Conference on

Robotics and Automation.

[24] Kazemi M., Mehrandezh M., Gupta K. (2005). Sensor-based robot path planning

using harmonic function-based probabilistic roadmaps. Proceedings of 12th International

Conference on Advanced Robotics. pp 84–89.

[25] e Silva Jr. E. P., Engel P. M., Trevisan M., Idiart M. A. P. (2002). Exploration method

using harmonic functions. Robotics and Autonomous Systems. Vol 40, no 1, pp 25-42.

[26] Trevisan M., Idiart M. A., Prestes E., Engel P. M. (2005), Exploratory navigation

based on dynamical boundary value problems. Journal of Intelligent and Robotic Systems.

Vol 45, no 2, pp 101-114.

[27] Kim J.O., Khosla P.K. (1992). Real-Time Obstacle Avoidance using Harmonic

Potential Functions. IEEE Transactions on Robotics and Automation. Vol 8, no 3, pp 338–

349.

[28] Ge S. S., Cui Y. J. (2002). Dynamic motion planning for mobile robots using

potential field method. Autonomus Robots. Vol 13, pp 207–222.

[29] Poty A., Melchior P., Oustaloup A. (2004). Dynamic Path Planning for mobile robots

using fractional potential field. First International Symposium on Control, Communications

and Signal Processing. pp 557-561.

[30] Wu W., QiSen Z., Mbede J. B., Xinhan H. (2001). Research on Path Planning for

Mobile Robot among Dynamic Obstacles. Joint 9th IFSA World Congress and 20th NAFIPS

International Conference. Vol 2, pp 763–767.

[31] The MathWorks. (2007). MATLAB (v7.5.0 R2007b).

http://www.mathworks.com/products/matlab/

[32] Keren Y. (2001). Data Structures & Algorithms Toolbox.

http://www.mathworks.com/matlabcentral/fileexchange/212

76

[33] Zolotykh N. (2007). MATLAB Pointer Library. http://code.google.com/p/pointer/

77

BIOGRAPHICAL INFORMATION

Vamsikrishna Gopikrishna received his Bachelors in Computer Science &

Engineering from Sri Venkateshwara College of Engineering under Anna University,

Chennai, India in 2006. He began his graduate career at the University of Texas at Arlington

from the Spring of 2007. He received his masters in Computer Science and Engineering in

the Fall of 2008. His research interests include Artificial Intelligence, Robotics and Data

Mining. His Paper on TC-ID3: A TESTCODE based ID3 Classifier for Protein Coding Region

Identification was accepted for oral presentation at International Conference on

Computational Intelligence for Modeling, Control and Automation held at Sydney, Australia in

November 2006, whose proceedings were published by IEEE Computer Society. He has

also done independent research on Improvements to A* Algorithm under the guidance of Dr.

Deepak Khemani of Indian Institute of Technology, Chennai. He has also an avid coder and

software developer having developed a Banking-Customer Care system for Microsoft

Student Project Program using Microsoft .NET technologies and a LAN chat system for use

in office environment using socket programming in Visual C++ for Pentasoft Technologies,

Chennai during In-Plant Training.

