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ABSTRACT 

 

TEMPORAL POTENTIAL FUNCTION APPROACH FOR PATH PLANNING IN  

DYNAMIC ENVIRONMENTS 

 

Vamsikrishna Gopikrishna, M.S. 

 

The University of Texas at Arlington, 2008 

 

Supervising Professor:  Manfred Huber 

A Dynamic environment is one in which either the obstacles or the goal or both are 

in motion. In most of the current research, robots attempting to navigate in dynamic 

environments use reactive systems. Although reactive systems have the advantage of fast 

execution and low overheads, the tradeoff is in performance in terms of the path optimality.  

Often, the robot ends up tracking the goal, thus following the path taken by the goal, and 

deviates from this strategy only to avoid a collision with an obstacle it may encounter. In a 

path planner, the path from the start to the goal is calculated before the robot sets off. This 

path has to be recalculated if the goal or the obstacles change positions. In the case of a 

dynamic environment this happens often. One method to compensate for this is to take the 

velocity of the goal and obstacles into account when planning the path. So instead of 

following the goal, the robot can estimate where the best position to reach the goal is and 

plan a path to that location. In this thesis, we propose such a method for path planning in 

dynamic environments. The proposed method uses a potential function approach that 

considers time as a variable when calculating the potential value. This potential value for a 

particular location and time indicates the probability that a robot will collide with an obstacle, 
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assuming that the robot executes a random walk from that location and that time onwards. 

The robot plans a path by extrapolating the object’s motion using current velocities and by 

calculating the potential values up to a look-ahead limit that is determined by calculating the 

minimum path length using connectivity evaluation and then determining the utility of 

expanding the look-ahead limit beyond the minimum path length. The method is fast, so the 

path can be re-planned with very little overhead if the initial conditions change at execution 

time. This thesis will discuss how the potential values are calculated and how a suitable 

look-ahead limit is decided. Finally the performance of the proposed method is analyzed in a 

simulated environment. 
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CHAPTER 1 

INTRODUCTION  

There are two approaches to determining how a robot should move in a given 

environment. In the path planning approach the robot first calculates, based on the obstacle 

locations, what the best path to the goal location is and then follows it. Path planning 

generally assumes that the planner has all pertinent information about the world at execution 

time. If the world suddenly changes, then there is no other option than to scrap the plan 

generated and plan a new one from scratch. In a reactive control system the robot sets off 

towards the goal and then modifies it’s movements to avoid any obstacles it may encounter. 

This makes sure that the robot does not need to spend time re-planning in case the 

environment changes. However the tradeoff is in performance. There is a chance that the 

robot will end up just tracking the goal, ignoring certain optimal ways to reach the goal.  

The environment that a robot is expected to work in can be either static or dynamic. 

In a static environment the state of the world, i.e. the locations of the goal and obstacle 

states are fixed. An example for such a static environment is a robot having to navigate in a 

room with no people in it. The only obstacles are the furniture whose locations are fixed. In a 

dynamic environment the goal and obstacle locations can change as in the case of a robot 

having to navigate a busy hallway. The people in the hallway can be considered as 

obstacles, each of them having their own velocities and trajectories. 

In dynamic environments, robot control is usually achieved by means of a reactive 

system. This is because a path planning system would have to constantly re-plan as the 

state of the environment keeps changing. This adds significant overhead to the execution, 

frequently making the use of a reactive system more efficient. However, the tradeoff is in 

accuracy. Since the robot only knows the location of the robot, the goal, and the obstacles at 
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that instant, it could end up just tracking the goal, following it around the world instead of 

reaching it. 

The goal of this thesis is to propose a method by which path planning can be used in 

dynamic environments. The method has its roots in Harmonic functions and the potential 

field approach to path planning. The proposed method selects a certain look-ahead value up 

to which it plans a path. It then extrapolates the positions of the goal and obstacles up to that 

time and then calculates a potential value for the remaining locations of the world at each 

time step up to that look-ahead. The potential value of a particular location at a particular 

time is the probability that the robot will collide with an obstacle if it takes a random walk 

from that point and that time onwards. In the case of a goal location, it is zero. In the case of 

an obstacle location it is one. In the other locations it is the average of the potential value of 

the current location’s possible successor locations. Since our environment is dynamic, the 

successors of a particular location are the nearby locations and the current location all at the 

next time step. The potential values are calculated working back from the look-ahead to the 

initial time step. After calculating the potential values for all locations, the robot follows the 

path from the start state along the highest negative gradient to get to the goal. The value of 

the look-ahead selected must be high enough that a solution is found if one exists. The first 

solution we get may be too risky i.e. the goal could be surrounded closely by obstacles etc. It 

is possible that a better solution exists which can be found by extending the look-ahead. A 

way of evaluating a good look-ahead value, using the performance of randomly generated 

worlds with similar properties of the main environment is discussed in this thesis. For this, 

the graph connectivity method is used to find the first solution and the potential of the 

starting location if the look-ahead had been set in such a fashion as to find just the first 

solution world is calculated. This is compared with the generic potential value generated 

from random worlds following the same characteristics as the given world. Based on these 

comparisons, a proper look-ahead value can be decided upon.  
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The advantage of this method is that it finds the best path within the current look-

ahead limit. This is under the assumption that the optimality of the path is determined by the 

potential values of the locations in the path, where the potential value represents the 

probability that a robot at that location at that time will collide with an obstacle. The use of 

graph connectivity ensures at least the shallowest solution will be found. And the comparison 

with the potential values of the randomly generated worlds allows us to select a good look-

ahead value. 

The remainder of this thesis is organized in the following fashion. Chapter 2 covers 

the basic concepts that are utilized in this thesis. It also looks at some of the research done 

with regards to path planning in dynamic environments. Chapter 3 will present a description 

of the temporal potential function approach to path planning in dynamic environments. 

Chapter 4 will discuss the details and module descriptions for an experimental 

implementation of the proposed method. Chapter 5 will discuss the observations made from 

the experimental implementation. Chapter 6 will conclude the thesis and discuss possible 

future work. 
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CHAPTER 2 

BACKGROUND AND RELATED WORK 

2.1 The Path Planning Problem 

2.1.1 Definition of the Problem 

The robot navigation or path planning problem is one in which an agent has to navigate an 

environment containing a number of obstacles to reach a goal location [1]. The path planning 

problem usually considers the following items: An initial state i.e. the state the robot is 

initially in, a final state or goal state, i.e. the state the robot has to be in, the state space of 

the robot, the set of possible actions that the robot can take and a cost function to calculate 

the efficiency of the path. The state space of an agent is the set of all possible states that the 

agent can be in. For a robot the velocity and location information can be considered to be its 

state information. The cost function is a measure that determines the attractiveness of a 

particular solution. It could be the time taken or the number of turns. A path planner using 

harmonic functions does not require a start state, and the potential values it calculates are 

the cost measure as they determine the robustness of the solution. 

2.1.2 Applications of Path Planning Algorithms 

An algorithm that solves the path planning problem has widespread applications in various 

areas of industry like robotics, manufacturing plants, drug design, medical surgeries, 

aerospace applications, warfare and video games. Any real world scenario where an agent 

has to navigate an environment filled with obstacles can be considered a path planning 

problem. For example path planning algorithms are used to calculate the motion of robotic 

arms used in an assembly line. Motion planning software developed by the Fraunhofer 

Chalmer’s Center is used by the Volvo Cars (in Torslanda, Sweden) assembly plant for the 
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sealing process of their car bodies using programmed robots to function automatically [2] [3]. 

The motion planning software developed at Kineo CAM is used in the automotive assembly 

task to insert and remove a windshield wiper motor from a car body cavity [2]. In video 

games path planning algorithms are used to determine the movement of game characters 

and objects. Commercial robots like Honda’s ASIMO [4] and Sony’s AIBO [5] use path 

planning algorithms to determine how to navigate the world. Path planning algorithms are 

used by GPS based Satellite Navigation systems to find the best route to a given 

destination. Path planning algorithms could also be used to simulate vehicles moving at very 

high speeds involving dynamic constraints, uncertainties and obstacle avoidance. Planning 

algorithms have also been used in computational biology to solve the docking problem which 

requires determining if flexible molecules can insert themselves into a protein cavity. 

Probabilistic Roadmap motion planning techniques (Used in robot motion planning) have 

also proven successful at studying protein folding pathways and potential landscapes [6]. 

2.2 Static and Dynamic Environments 

The environment a robot needs to work in can be either static or dynamic. In a static 

environment the variables that define the world are fixed. So the positions of the various 

objects in the environment need to be given to the robot only once. In a dynamic 

environment, the locations of the obstacles and goals can change as time passes. So it is 

necessary for the robot to continually update its representation of the environment. Robot 

navigation in a dynamic environment has a few issues that need to be addressed. The robot 

must keep track of all the objects in a dynamic environment. If using a path planner or any 

other navigation system that needs the obstacle locations before deciding on a navigation 

strategy, the navigation strategy must be recalculated every time they change. One 

workaround is to include the dynamics of the environment in its model. Thus the path 

planner can take into account the motion of the obstacles and the goal when planning a 

path. 
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2.3 Modeling the Environment 

For any agent to navigate the world it has to have a representation or map of the 

environment. The map must contain the locations of the various obstacles in the world and 

must be updated depending upon a change in the environment. To generate a map of the 

environment, the robot uses sensors to find out the locations of the obstacles in the world 

and converts that information into an internal representation. Some of the commonly used 

approaches to modeling the environment are Grid Based Maps, Topological Maps and 

Feature maps. 

2.3.1 Grid based maps 

Grid based maps are metric maps that divide the world into grid cells, each of which contains 

information about the environment [7]. The cell could be an obstacle, free space or a goal. 

Gird based maps are easy to construct and maintain as their resolution is independent of the 

complexity of the environment. However the time and space complexity increases as the 

environment size increases. When navigating an environment represented by a grid based 

map, the robot has to make corrections for slippage and drift. This problem can be 

addressed by using dead-reckoning and localization techniques. Grid based maps have 

been used in the experimental implementation of the proposed method. A grid based 

representation of an environment with eleven point obstacles and a goal state is shown in 

Figure 2.1. The red points represent the obstacles and the green point represents the goal 

state. 
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Figure 2.1 Grid based representation of a two dimensional world. 

2.3.2 Feature Maps 

Feature maps [8] contain representations of the typical features of the local environment of 

the agent. These features include the agent, straight walls and polyhedral objects. The agent 

continuously observes these features for local referencing. Sonar or laser sensors can be 

typically used to build feature maps. SLAM techniques along with kalman filters and particle 

filters can be used to create feature based maps on-line. These methods provide localization 

of the agent at virtually any point in the local environment. Their complexity grows with larger 

environments and number of map objects. 

Some of the issues with creating feature maps arise due to limited sensor range, limited field 

of view, occlusions and noisy data [8]. One method to overcome these is to use Probabilistic 

frameworks for localization. 

Figure 2.2 shows the feature map generated [8] for the Belgioioso Castle in Italy. A manually 

controlled Pioneer robot (from University of Freiburg) explored this environment with a 

trajectory of 228m in 16 minutes and 27 seconds. The 227 feature map with an error vector 

of 576 components was built in 3 minutes 16 seconds. 
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Figure 2.2 Feature Map of Belgioioso castle [8] 

2.3.3 Topological Maps 

Topological maps are simplified maps that represent the environment using a graph based 

approach [7]. Nodes in the graph represent important landmarks like doors, entry and exit 

points etc, and Arcs represent that a non obstructed direct path exists between them. 

Topological maps are often built upon metric maps by partitioning them into regions 

separated by critical lines that join critical points. Critical lines can be considered to be 

doorways and hallways and critical points can be the exit and entry points in the map. There 

are a few drawback of using topological maps as they suffer from incorrect recognition in 

situations where places look alike or if the same place has been sensed from different 

viewpoints by taking different paths. The time complexity for constructing and maintaining 

topological maps increases as complexity increases. This is due to the increase in the 

number of critical lines or arcs. 

 

Figure 2.2 Topological graph [7] 
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Figure 2.3 Topological region with critical lines [7] 

2.3.4 Extending the representation in time. 

To capture the dynamics of the environment one approach that can be used is to extend the 

world in the third dimension. The positions of the obstacles and goal locations are 

extrapolated up to a certain look-ahead value. 

 

Figure 2.4 Grid based representation of a two dimensional world extended in time 
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2.3.5 Configuration Space 

Configuration space [9] or c-space is the space in which the agent can freely move. C-

spaces provide abstraction for complex environments as the robot is reduced to a single 

point. The number of dimensions of c-space is the degrees of freedom of the agent. The 

configuration space � is given by 
 

 � = ����� ∪ ���� (2.1) 

 

where ����� is the space where the robot can move freely and ���� is the space occupied by 
the obstacles and is defined by 

 ���� = � �����
�

���
 (2.2) 

where   is the number of obstacles in this space. 

 

Figure 2.5 Configuration Space 
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2.4 Dynamic motion planning problem 

The dynamic motion planning problem is one in which the robots has to navigate an 

environment where one or more of the obstacles in the system are moving [10]. Unlike in the 

static environments the problem can not be solved by merely constructing a geometric path. 

Instead a continuous function of time specifying the robot’s configuration at each instance 

needs to be generated. One approach is to add a dimension – time – to the robot’s 

configuration space [10]. But unlike the other two, the time dimension is irreversible. The 

algorithms used for planning in static environments can be used in dynamic environment 

with some modifications and extensions, which are aimed at taking the specificity of the time 

dimension into account. 

2.5 Path planning vs. Reactive Systems 

In a path planning system the path to the goal is usually calculated before the robot sets off. 

The robot has to follow the given plan to reach the goal. In a dynamic environment the 

velocities of the obstacles and the goal are taken into account when calculating the goal. If 

any of the variables describing the environment change during the planning process, the 

path has to be re-planned. This could result in a lot of overhead if the planning algorithm is 

going to be used in an environment where the dynamics of the environment constantly 

change. 

In a reactive system, there is no actual planning taking place. The robot moves towards the 

goal, only changing course to avoid any obstacles it may encounter. In a static environment 

this will result in the robot reaching the goal. However if the environment is a dynamic one 

then the robot may end up tracking the goal. If the robot, at each time step tries to reach the 

goal location then it will end up following the goal across the world instead of actually taking 

the steps to reach it. This is known as the tracking problem. One solution would be to predict 

when the robot can reach the goal and the location of the goal at that time and get to that 



 

12 

 

location. This can not be done by a reactive system. However a path planning system can 

be easily modified to handle this. 

 

Figure 2.6 The tracking problem 

Consider Figure 2.6. The robot (represented by the blue diamond), moves to the current 

location of goal (represented by the green square). But the square has moved away. This 

process could possibly repeat forever making sure that the robot never reaches a goal state 

but ends up tracking it. 

A potential field approach combines characteristics of both the path planning system and the 

reactive system. The potential values are calculated before the robot sets off but no path is 

calculated. The robot uses the calculated potential values to avoid the obstacles and reach 

the goal as in a reactive system. To avoid the tracking problem the potential of the obstacle 

or goal can be specified as a function of time. 

2.6 Potential fields and Harmonic Functions 

2.6.1 Potential Fields 

Potential fields have been proposed for obstacle avoidance by Khatib et al [11]. In the 

potential field approach the robot in configuration space is acted upon by imaginary forces. 

The goal produces an attractive force and the obstacles produce a repulsive force. The path 

the robot follows can be found by calculating the resultant vector of these forces. 
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The field of artificial forces !"( ) in c-space are produced by a differentiable potential function 
#: ����� → ℝ where  
 !"( )= −∇(("#( ) (2.3) 

Here ∇(("#( ) represents the gradient vector of # at  . We take the negative as we are 

performing a gradient descent on the potential field. This is because the obstacles are set at 

maximum and goals to a minimum potential value. 

 #( ) =  #)**�.( ) + #��-..( ) (2.4) 

and 

 !"= !")**�. + !"��-.. (2.5) 

where 

 

!")**�. = −∇(("#)**�. 
!"��-.. = −∇(("#��-.. 

(2.6) 

 

define the attractive and repulsive forces. 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 Forces due to potential fields 
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Planners that use potential fields have the chance of getting stuck in local minima instead of 

reaching the goal. Figure 2.8 shows a function with both local and global minima and 

maxima. If the below image was the potential function the planner could become stuck in the 

local minima instead of reaching the goal at the global minima. 

A number of approaches have been suggested to solve the local minima problem. One 

solution is to use vector field histograms (VFH) [11] [12] [13]. We can also place an artificial 

obstacle at local minima [14]. There has also been some research into designing new 

potential functions that will avoid the creation of local minima [15] [16]. One such method is 

to design the potential function as a Harmonic Function. 

 

 

Figure 2.8 Local and Global Minima 



 

15 

 

2.6.2 Harmonic Function 

A harmonic function is a real function with continuous second partial derivatives which 

satisfies Laplace’s Equation [17]. Laplace’s equation [18] is the partial differential equation 

 ∇�/ = 0 (2.7) 

∇� is known as the Laplacian. It is the sum of the second derivatives of the given function. A 

function / defined on a domain Ω ⊂ ℝ2is said to be harmonic if it satisfies the equation 

 ∇�/ = 3 4�/4���
2

���
= 0 (2.8) 

For example, if / is a functions of variables � and � the above equation can be written as  
 ∇�/(�, �) = 4�/4�� + 4�/4�� = 0 (2.9) 

Typically we are given a set of boundary conditions [19] and we need to solve for the 

(unique) scalar field / that is a solution of the Laplace equation and that satisfies those 
boundary conditions. Some of the commonly used boundary conditions are discussed in 

Sub-Section 2.6.6 

2.6.3 Characteristics of Harmonic Functions 

A Harmonic function’s gradient path forms a smooth curve with no local maxima and minima. 

There may be a few saddle points [20] from which the exit can be found by searching in the 

neighborhood for a negative gradient. The gradient vector of a harmonic function has zero 

curl so a gradient descent on this vector always leads to a global minimum. The curves 

instantaneously tangential to the velocity vectors of the trajectory points (called streamlines) 

are smooth for any point along the trajectory [2] [21]. Figure 2.9 shows the harmonic function 

�(�, �) = �� − 3���. 
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Figure 2.9 The harmonic function �(�, �) = �� − 3��� 

2.6.4 Numerical Solutions of Laplace’s Equation 

Techniques like Jacobi iteration, Gauss-Seidel iteration or successive over-relaxation can be 

used to calculate the numerical value of the harmonic function at each grid location [21]. 

These methods require the environment to be discretized, for example by representing it as 

a grid based map. Although these methods compute function values on a grid, multi-linear 

functions are used to interpolate between grid points since such functions are harmonic and 

smooth. 

2.6.5 Relaxation Methods 

Jacobi iteration for Laplace’s Equation replaces every non-boundary value for / with the 
average of its neighbors’ values simultaneously 
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/(56�) 7�� , �89 = 14 ;/(5) 7��6�, �89 +/(5) 7��<�, �89
+/(5) 7�� , �86�9 +/(5) 7�� , �8<�9= (2.10) 

 

Here > is the iteration number. The Jacobi iteration method generally requires a higher 

number of iterations to converge than Gauss-Seidel or SOR. It is however very effective on 

SIMD architectures. 

Gauss-Seidel iteration is similar to Jacobi except that the iteration numbers for neighboring 

values are mixed. 

 

 

/(56�) 7�� , �89 = 14 ;/(5) 7��6�, �89 +/(56�) 7��<�, �89
+/(5) 7�� , �86�9 +/(56�) 7�� , �8<�9= (2.11) 

 

Successive Over-Relaxation (SOR) converges more rapidly than Gauss-Seidel or Jacobi 

Iteration. It is therefore one of the most popular methods used. The recurrence relation is 

given by, 

 

 

/(56�) 7�� , �89 =/(5) 7�� , �89
+ ?4 ;/(5) 7��6�, �89 +/(56�) 7��<�, �89 +/(5) 7�� , �86�9
+/(56�) 7�� , �8<�9 − 4/(5) 7�� , �89= 

(2.12) 

 

Here > is the iteration number and ? is the relaxation factor. The value of ? depends upon 
the properties of the coefficient matrix and determines the speed of convergence. These 

iterations are repeated until the change in values between iterations drops below a residual 

value. 
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2.6.6 Boundary conditions 

Solutions to Laplace’s equations can be computed using certain conditions called boundary 

conditions. The commonly used ones are restricted forms of boundary conditions, namely 

the Dirichlet and Neumann conditions [21]. 

In the Dirichlet boundary condition the potential of the boundary is set to a constant. This 

constant is the maximum value in the configuration space. Since all obstacles are also 

represented by a constant maximum, the potential flow is outward normal to the obstacle 

surface. The gradient of the function tends to depart from the C-space obstacle boundaries. 

The Dirichlet boundary condition is represented as 

 @/|BΩ = C (2.13) 

where C is a constant and Ω is the domain. 

In the Neumann boundary condition the velocity vectors are forced to be tangential to the 

obstacle boundary surface. This may cause the agent to stay close to the obstacle surfaces, 

which may not be preferable in some cases. Since the Neumann condition still requires a 

source and a sink for the flow, the outer boundary of the C-space map is used as a source. 

The Neumann condition is represented as 

 @4/4DEBΩ = 0 (2.14) 

One can superpose the Dirichlet and Neumann solutions to obtain a harmonic function that 

exhibits a behavior somewhere between the two. If /F is the Dirichlet solution and /G is the 
Neumann solution, both in domain Ω, then the new harmonic function can be constructed by 

taking a linear combination of the two. 

 / = >/F + (1 − >)/G (3.1) 

where > ∈ [0,1] is the superposition constant. The resulting / is harmonic, has no local 

minima and guarantees collision free paths. 
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2.6.7 Harmonic Functions in Path Planning 

Harmonic functions have many varied applications in robot control. The most popular 

application is their use in path planning. If the c-space of the environment can be modeled 

as a harmonic function, then all the robot has to do is to follow the negative potential 

gradient to reach the goal and avoid the obstacles. The absence of local maxima and 

minima and the continuity and differentiability of the harmonic functions guarantees that a 

planner using harmonic functions generates paths that are correct and complete. Since the 

gradient is smooth, the paths generated by the planner are well behaved. The negative 

gradient computed has no local maxima or minima as the potential of a grid location is the 

average of its neighbors. Thus the only types of critical points that can occur are saddle 

points [20]. Saddle points are stationary points but not extrema. To escape a saddle point all 

that the agent has to do is explore the neighborhood for a region of negative gradient. Using 

harmonic functions we can build a system that combines the characteristics of both a path 

planning system (since it calculates the potential values of the locations in the world) and a 

reactive system (since the robot simply follows the path of decreasing potential and avoids 

the obstacles) [2] [10] [12] [21] [22]. 

Harmonic functions have also been used along with other methods like probabilistic cell 

decomposition [23] and probabilistic roadmaps [24] to build path planners. They have also 

been used to build exploratory systems [25] [26] and to build real time obstacle avoidance 

systems [27]. 

2.7 Path planning in Dynamic Environments 

Current research in path planning for dynamic environments consists of two approaches. 

One approach is to build an effective reactive system that moves towards the goal, 

deflecting from the path when an obstacle comes towards it. One such method was 

proposed by Ge and Cui of University of Singapore [28]. Their proposed method used a 

potential field approach. The potential functions they used were defined as follows. The 
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attractive potential was a function of the relative distance and velocity between the robot and 

the goal. Thus the attractive force acting on the robot is the negative gradient of the 

attractive potential in terms of both position and velocity. Each obstacle has an influence 

range specified. The repulsive potential of each obstacle is a function of the relative velocity 

between it and the robot and the shortest distance between its body and the robot provided 

that the robot is heading in its general direction (relative velocity is a positive vector) and the 

robot is within the obstacle’s influence range. The repulsive force exerted by each obstacle 

on the robot is the negative gradient of the obstacle’s repulsive potential in terms of both 

position and velocity. The above described method has a few disadvantages. By definition, 

the repulsive potential is an undefined value if the distance the robot will travel before 

coming to a complete stop is greater than the distance between the robot and the obstacle. 

So there may occur a situation where there is no way to avoid a collision. The robot can also 

be trapped in local minima. In that case, the robot just waits at that position till the obstacle 

moves away. If that does not happen for a long time, the planner uses conventional local 

minimum recovery methods like wall following to escape local minima. Finally there is a 

possibility that the goal may sometimes be in the obstacles influence radius. In that case the 

robot will never reach it. One solution is to modify the repulsive potential function to include 

the relative position and velocity between the goal and the robot. A similar approach has 

been proposed by Poty, Melchior and Oustaloup of Université Bordeaux [29]. 

Another approach to path planning in dynamic environments was proposed by Wu, QiSen, 

Mbede and Xinhan [30]. This method calculates potential field values using harmonic 

functions and then follows path of negative potential gradient, using fuzzy rules to avoid 

obstacles. 

Finally we could include time as another dimension of the c-space (although a limited one as 

movement is only possible in one direction). The proposed method discussed in the next 

chapter belongs to this approach. 
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CHAPTER 3 

TEMPORAL POTENTIAL FUNCTION APPROACH 

3.1 Overview 

In this chapter we will look at the proposed method for planning a path in a dynamic 

environment. The method proposed is based on the harmonic function approach and the 

potential field method of path planning. The way the planner works is as follows. It first 

extrapolates the world to a certain look-ahead time. This look-ahead time is determined by 

the following process. The time taken to reach the first goal is found by forward chaining. If 

the dynamics changes during the forward chaining due to solution not being found for a long 

time, the process is repeated. Using the time taken to reach the first goal the look-ahead 

value is estimated based on observation of the potential value curves of a set of randomly 

generated worlds with the same properties as the given world. These curves are generated 

during the first execution of the planner. After finding the look-ahead limit the planner 

calculates the potential values of all the locations in the world at all time steps from the start 

to that look-ahead time. The robot reaches the goal by simply following the negative 

potential gradient at each time step. If the robot ends up at an obstacle due to an error in 

navigation, the potential values are recalculated. If the dynamics of the environment i.e. the 

velocities of the obstacles or goals changes during runtime, the process is repeated form the 

start. Once the goal is reached we repeat the process for a new goal location. The entire 

planning process is illustrated by Figure 3.1.  
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Figure 3.1 The Temporal potential function approach.  
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3.2 Potential Value Calculation 

In the potential field method each location in the world is assigned a potential value. In this 

case the potential value is the probability of a robot at that location colliding with an obstacle 

if it takes a random walk from that point. This probability is zero for the goal location and one 

for an obstacle location. For other locations it is calculated by taking the average of the 

potential values of the neighboring locations. The potential value of a particular location at 

time t is given by the average of the potential values of that location’s successors at time 

t+1, as shown in Equation 3.1 

 

 K(�, �, L) = 1|M(�, �)|  N 3 K(O, L + 1)
�∈P(Q,R)

S (3.1) 

 

The set S is the set of the successors of a particular state i.e. the locations that can be 

reached in the next time step. For a robot moving at a fixed velocity they are the locations 

that it can move to in the next time step. The current location itself will become a neighbor in 

the next time step as the option of just staying at the current location without moving is open 

to the robot. Thus the set of neighbors or successors S of a location x, y can be defined as 

the set of the locations that the robot can reach by moving from the current state at a 

predetermined velocity and the current state itself. This set can also be used to describe a 

location’s predecessors, i.e. the set of possible locations the robot could have been in during 

the previous time step. The potential of a location, i.e. the probability of a robot at location x, 

y colliding with an obstacle if it begins a random walk at time t is the average between the 

potential values of the successors of the location at time t+1 where the successors are the 

locations the robot can reach in time t+1 and the current location. For example in a world 

where the robot can move up, down, left and right with a velocity of one grid location per 

time step, the potential value can be calculated as illustrated in Figure 3.2. As can be seen 
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from the figure we need the values of a location’s future neighbors before we can calculate 

the current probability. This implies that the potential values have to be propagated from the 

future backwards. As a result a maximum duration or look-ahead value has to be selected in 

order to facilitate the potential function calculator.  For the entire world, we work backwards 

from the look-ahead time step, calculating the potential value for each location in the world 

from the values calculated in the previous time step until the initial step is reached. 

 

 

 

 

 

 

 

Figure 3.2 Calculation of Potential Value at time t 

Once the potential values have been calculated for the entire world the robot then moves 

from the starting location moving to the neighbor with the lowest potential value at each time 

step. In effect it follows the negative gradient while moving along the positive time axis. This 

is repeated until the robot reaches a goal, which indicates a success or the number of steps 

taken equal the look-ahead, which indicates failure. If the dynamics of the environment (the 

goal and obstacle velocities) change during run time, then we need to re-plan the path. The 

selection of the look-ahead value is an important step as without an accurate look-ahead the 

planner may settle for a sub-optimal solution or not find a solution at all. We will next look at 

the method with which we can estimate what look-ahead to use. 
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3.3 Look-ahead value determination 

The initial look-ahead value is determined by checking graph connectivity where the world is 

considered to be a directed acyclic graph. This is done by starting at the initial location and 

moving ahead one time step at a time to the current location’s neighbors. If any of the 

neighbors is a goal then the number to steps it took to reach it is noted. If the neighbor is a 

goal or a node that has already been visited then there is no need to expand it. Otherwise 

the neighbors of the node are expanded next. This is illustrated by Figure 3.3.  

 

Figure 3.3 Forward propagating to find goal 

In the above figure, the blue nodes are the visited nodes, the red nodes are obstacles and 

the green node is the goal. The nodes are expanded in a manner similar to a breadth first 

search [1]. Only after all the nodes in a current time step are processed are its descendents 

processed. This ensures that the first possible solution is obtained. 
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The look-ahead is initially set to the number of steps needed to find the first goal. Using this 

we determine the potential of the start state by the method described in the previous section. 

This potential value is then compared to the expected potential value curve derived for a set 

of randomly generated environments with the same obstacle density as the current world. 

We find out the look-ahead value where the current potential value would be obtained in a 

random world, TU�. We also find the look-ahead value, TU�, where the likelihood of the 
potential value being below the starting potential value of the first solution drops below a 

certain percent. This percentage value can be a fixed value for the entire curve or one that 

increases as the look-ahead increases. We then calculate 

 

� =  TU� −  TUV 
� =  TU� −  TU� 

(3.2) 

where TUV is the number of the steps after which the first solution was found by forward 

chaining. 

 

Figure 3.4 Calculating � and � for original look-ahead. 
The new look-ahead value is simply the old look-ahead value incremented by � or �, 
whichever is greater. 
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3.4 Generating Potential value curves 

The potential value curves have to be generated before the planner can be used. These 

curves have to only be generated once and can then be used for all the runs of the planner, 

provided that the overall size and characteristics of the world do not change. The first step is 

to select an obstacle density. The next step is to generate a set of random worlds. These 

worlds are generated by creating random obstacles until the required obstacle density is 

obtained. For each of these worlds, a look-ahead value is taken. One of the non obstacle 

locations in the final time step before the look-ahead is converted into a goal and the 

potential values of the world are calculated. One of the initial states that are reachable from 

the goal is chosen as the start state. The potential value for this state is noted. The process 

is repeated for a number of randomly generated worlds and for various look-ahead values. 

The values obtained are plotted with the look-ahead values on the x axis and the potential 

values of the start states on the y axis. Finally the mean values for the potential values for 

each look-ahead value are calculated and joined by a curve. One such curve obtained is 

given in Figure 3.5. The blue dots represent the potential values for each random world and 

look-ahead combination and the green dots represent the means of each set of potential 

values, grouped by look-ahead times. We also draw a line joining the mean values (potential 

value curve) for the sake of visualization. These curves are generated for various obstacle 

densities and are used by the planner as and when needed. 
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Figure 3.5 Potential Value Curve 

In the next chapter we will look at an experimental implementation of the above discussed 

methods. We will also see some of the issues faced when implementing such a planner.



 

29 

 

CHAPTER 4 

EXPERIMENTAL IMPLEMENTATION OF PROPOSED METHOD 

4.1 Implementation Details 

In this chapter we shall discuss the various modules that together, make up an experimental 

implementation of the proposed method. The language used to implement the method is 

MATLAB [31]. We shall discuss the program flow in each of the modules and how the data is 

transferred between the modules. We will also discuss some of the issues that were faced 

during the implementation process and how they were addressed. 

The planner implementation consists of eleven modules which are discussed in the following 

sections. Section 4.2 will describe the module to generate random worlds. Section 4.3 will 

describe a module which finds all start states reachable from a given goal state by means of 

graph connectivity. Section 4.5 will describe the module which calculates the potential values 

of all the locations in the world. Section 4.6 describes the module which uses the above 

described modules to generate the potential value curves. Section 4.7 describes a module 

by which the given two dimensional world is converted into a three dimensional model, 

where the third dimension is time. This module is used by the forward chaining module 

described by Section 4.8 to find the first reachable goal location. The module described by 

Section 4.9 uses the time taken to reach that goal location and the potential value curves 

obtained from the module described by Section 4.6 to calculate a suitable look-ahead value. 

The look-ahead value obtained is used by the module described in Section 4.7 to create a 

three dimensional model of the environment and the locations in this environment have their 

potential values calculated by the module described in Section 4.5. Once the potential 

values have been calculated, the module described in Section 4.10 tries to find a path by 

navigating through locations of least potential value at each increasing time step. If such a 
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path is found then it is displayed by means of the module described in Section 4.11. All the 

above steps are executed by the module described in Section 4.12 which forms the main 

planner. 

4.2 Random World Generation 

We shall now take a look at the module used to generate the random worlds used by the 

module used to create the potential value curves, described in Section 4.6. First we calculate 

the exact number of obstacles the world must contain from the density and size information 

provided. Then we place that many obstacles in the world. For each of these obstacles we 

select a random direction and velocity according to a given distribution. The obstacles are 

placed at random locations in the world. The module returns a list of obstacles with their 

position and velocity information. The worlds generated by the above module will have a set 

of point obstacles, each with its own initial position and velocity information. 

4.3 Backward Chaining to find start state for random goal 

This module is used by the module in Section 4.4 to find one of the initial states from which 

the given goal state can be reached. It uses the concept of graph connectivity to find the set 

of nodes which are connected to the goal node. We create an empty three dimensional array 

to flag the nodes already visited. We set the goal node flag to ‘visited’ and add it to a node 

queue. The following steps are then repeated until the node queue is empty. We de-queue 

the first node from the queue. We then check that node’s predecessors. If any of the 

predecessors is an obstacle, we discard it. If any of them have been flagged as visited, we 

discard it. Otherwise we flag them as visited and en-queue them to the end of the node 

queue. Repeat the process. After the loop ends we should have a visitation array that 

contains all the nodes that are connected to the goal node. This module is illustrated by the 

flowchart given in Figures 4.1 and 4.2. 
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Figure 4.1 Flowchart for Backward Chaining to find Start State, Part 1  
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Figure 4.2 Flowchart for Backward Chaining to find Start State, Part 2 

4.4 Random World Expansion 

In this section we shall see how the random world generated in Section 4.2 is expanded into 

a three dimensional array, with the third dimension representing time for use by the module 

described in Section 4.3. The module also needs to fix a starting location for the world. To 

generate the third dimension values, the module creates a three dimensional array of size 

W × C × (T + 1) initialized to -1 where W and C are the dimensions of the world and T is the 
look-ahead. For every obstacle the module determines the location where it will be at that 

particular time step and set the potential value to 1. All other locations are marked as -1 and 

are yet to be processed. A randomly selected location which is not an obstacle at time T is 
taken as a goal and its potential value is set to 0. The next step is to find a start state from 

which this goal is reachable. The module to do this is described in Section 4.3. This module 

returns a set of states that can be reached from the goal states at the various time steps. 

One of these states in the initial time step is chosen as the start state. The module then 

returns the three dimensional array and the start state generated. This module is illustrated 

in the flowchart given in Figures 4.3 and 4.4. 
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Figure 4.3 Flowchart for Random World Expansion, Part 1 
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Figure 4.4 Flowchart for Random World Expansion, Part 2 

4.5 Potential Value Calculation 
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represents the likelihood that a robot will collide with an obstacle provided it takes a random 

walk from location (�, �) at time step L. This is illustrated by the flowchart provided by Figure 
4.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Potential Value Calculation  
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4.6 Generation of Potential Value Curves 

This module is used to generate the potential value curves needed to find a good look-ahead 

value to use during the planning stage. The process described below is a very time 

consuming one and so is done only once. The initial step is to get the size of the world and 

the obstacle density for which we need to generate the potential value curve. The next step 

is to generate a set of random worlds of that size and that obstacle density. This is done by 

the module described in Section 4.2. The initial look-ahead is set to a hundred time steps. 

The next step is to extend the world in the third dimension (time) and find the obstacle 

positions up to the look-ahead time step. This is done by the module described in Section 

4.4. The module also returns a start state that is reachable from a randomly selected goal 

state in the time step at the look-ahead limit. Then the potential values for the locations in 

the world are calculated by the module described in Section 4.5. The potential value of the 

start state is then stored in an internal array. This process is repeated for decreasing values 

of the look-ahead, from 100 all the way to 2. Initially the decrements are by 10 until the look-

ahead reaches 50 after which the decrements are by 5. This is because there are greater 

changes in the look-ahead value when the look-ahead value is in the lower ranges than 

when it is in the higher ranges. This is repeated for all the random worlds generated. The 

potential values of the starting states of the various worlds are grouped together by the look-

ahead times and the mean values of the group are calculated. To better illustrate the 

behavior of the potential values and to observe the effect of increasing the look-ahead value, 

the potential values and mean values are plotted on a graph, along with the curve joining the 

mean values. The potential values and their mean are output for future use. The main 

planner uses this process to generate the potential curves once for various density values 

and then uses the values for subsequent runs. The only time this module has to be called 

again is if the size of the world changes. The module described above is illustrated by the 

Flowchart given in Figure 4.6 
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Figure 4.6 Flowchart for generating potential value curves  
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4.7 Extending the world array in time 

This module extends the given two dimensional world array into a three dimensional array, 

with the third dimension representing time. This is similar to the procedure used in Section 

4.4. The difference is that instead of randomly selecting a goal state, the goal location at the 

initial time step is provided. The goal’s position just has to be extrapolated across all the time 

steps. To generate the third dimension values, the module creates a three dimensional array 

of size W × C × (T + 1) initialized to -1 where W and C are the dimensions of the world and T is 
the look-ahead. For every obstacle find the location where it will be at that particular time 

step and mark with potential value 1. For the goal find the location where it will be at that 

particular time step and mark with potential value 0. All other locations still marked as -1 are 

yet to be processed. The module then returns the three-dimensional world array. 

4.8 Forward chaining to find time to reach first reachable goal location 

This module is used by the main planner to find the number of time steps needed to reach 

the first reachable goal location. The method is similar to the backward chaining done in 

Section 4.3. An empty three dimensional visitation array is created. A node queue is created 

with the start state in it. Then the following steps are repeated in a loop. De-queue the first 

location from the queue. If it is a goal state then return the time co-ordinate. If the time co-

ordinate limit is more than the forward chaining limit then return a failure message 

(represented by a value of -1). If it is neither of the two then add the successors of the 

current node to the end of the queue. Repeat the loop till the queue is empty or a goal state 

is reached. The module described in Section 4.7 is used to extend the world in three 

dimensions till the forward chaining limit to make checking for goal and obstacle states 

easier. The forward chaining limit is used because the dynamics of the worlds may have 

changed if we have been forward chaining for too long. 
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4.9 Determining Look-ahead value to use 

This module uses the value obtained from the previous module and the set of potential value 

curves generated in Section 4.6 to determine the amount of time the planner has to look-

ahead by. The module gets as an input the current world and the time taken to reach the first 

goal. The modules described in Section 4.7 and Section 4.5 are used to find the potential 

value of the start state. This value is compared to the potential value curve generated for the 

set random worlds of the closest density as the given world. While deciding the closest 

density it is better to use a conservative estimate i.e. the closest lower value. Assuming that 

for each look-ahead the probabilities are distributed normally, we try to find the highest look-

ahead for which the z-table value falls just below a set threshold, where the threshold is set 

to 0.05. This value is called TU�. The look-ahead value where the current start potential 
would lie on the curve is TU� and the current look-ahead is TUV. The values of � and � are 
obtained as given by Equation 3.2. The greater of these is added to TUV to get the new look-
ahead. 

4.10 Traversing World Array to find the Goal 

This module uses the three dimensional array filled with potential values generated by the 

module described in Section 4.5 to generate a representation of the path that a robot that is 

using the proposed path planner will navigate. It creates an empty three dimensional array to 

hold the set of nodes visited during the traversal. Starting from the initial state, the following 

steps are repeated. The current location at time L is marked as visited. If the current location 

is a goal location then the visitation array is returned. The potential values of the current 

location’s successors at time L + 1 are found. The successor with the minimum potential 

value is found. Current location is changed to that location. The process is repeated until the 

current location reaches a goal or an obstacle or until the number of time steps taken 

becomes equal to the look-ahead limit. If the current location is an obstacle then return a 
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failure message. If the current location is at the final time step i.e. at the look-ahead limit, 

return a failure message. Otherwise return the populated visitation array. 

4.11 Display path 

The purpose of this module is to display the representation of the path traversed by the 

previous module in a fashion that can be easily understood by anyone. It just uses the node 

visitation information given by the module described in Section 4.10 and the three 

dimensional world array obtained from the module described in Section 4.7. It outputs a 3 

dimensional plot where the obstacles are represented by points and the goals motion and 

the robots path are represented by lines. 

4.12 Temporal Potential Path Planning Simulator 

This is the main part of the path planner simulator. It consists of two parts, the potential 

value curve generator and the actual path planner. The first part has to be run only once. It 

calculates the potential value curves for the given world size and the various densities. The 

algorithm used to do this is discussed in Section 4.6. The second part is the path planner 

that is executed for the given sample world. We use the forward chaining discussed in 

Section 4.8 to find the time taken to reach the first solution. If the forward chaining takes too 

long to find the solution, we reload the given world and repeat the process. This is because 

the dynamics of the world may have changed. After obtaining the time required to reach the 

shallowest goal, we use the potential value curves previously generated to find the best look-

ahead value. The module used to do this is discussed in Section 4.9. We then extend the 

world in the third dimension (time) until the look-ahead value calculated. The module to do 

this is discussed in Section 4.7. We then calculate the potential values for the world from the 

look-ahead time limit till the initial state moving backwards, this module is discussed in 

Section 4.5. Finally the path traversed by a robot using this planner is generated by travelling 

from the initial state to the neighbor with the least potential value at each time step.  The 
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module for this is discussed in Section 4.10. If the traversal does not reach a goal before the 

look-ahead time limit then an error message is returned. This step is present purely to 

capture any anomalous error and will never be executed. The path traversed by the robot is 

displayed by the module described in Section 4.11. The flow chart given in Figure 4.7 best 

illustrates this method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Flowchart of the Temporal Potential Function approach 
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4.13 Additional Notes on Implementation 

The modules described in Sections 4.3 and 4.8 use queues to store the list of nodes they 

can possibly visit. Since the queue data structure is not natively implemented in MATLAB, 

the Data Structures & Algorithms Toolbox [32] was used along with the updated pointer 

library for MATLAB 7.0+ [33]. The actual code that was written for this implementation is 

provided in Appendix A and an explanation of the various symbols used in the flowcharts 

used in this chapter is given in Appendix B. 
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CHAPTER 5 

EXPERIMENTAL RESULTS AND OBSERVATIONS 

5.1 Description of Experiments conducted 

In this chapter we shall see some of the experiments conducted with the proposed path 

planner and the observations made. First a world with known obstacle and goal positions 

and velocities is taken and the effect of increasing the look-ahead limit is observed. Then a 

randomly generated world is taken and the potential value when the goal is set to just one 

step below the look-ahead value is found. (This is the same way the potential value curves 

are generated). Using this curve the effect the time taken to reach goal has on the potential 

value can be observed. Next, the potential value curves for various world sizes and obstacle 

densities are generated and compared. Next, a sample world is taken and the various steps 

in the path planning process are executed and observed. Finally, observations are made on 

how the robot picks the best solution within the given look-ahead limit.  

5.2 Effect of Look-Ahead on Potential Value 

Consider the potential value of a start state in a given world. The world used here is a known 

world where the solution occurs at time step 12. As can be seen from Figure 5.1, the 

potential value is 1 until the look-ahead time the planner would have reached the goal. If we 

had proceeded with a smaller look-ahead, the planner would have ended in a failure. As the 

look ahead increases, the potential value of the start state decreases until it reaches a 

minimum and it does not reduce any further after that value. This emphasizes the 

importance of selecting the correct look-ahead value since if too high a look ahead is 

selected, the algorithm may perform a lot of unnecessary calculations. 
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Figure 5.1 Potential values of start state in given world 

 

5.3 Effect of Time to reach goal on Potential Value 

The potential value of the start state of a randomly generated world is shown for values of 

various look-ahead limits in Figure 5.2. For each of these worlds the goal state is set just at 

the look-ahead value. As can be seen, the potential of the start state increases as the 

distance to reach the first goal increases. The kinks in the curve are due to small fluctuations 

in the data value due to the world being generated randomly. So to get a more accurate 

picture the values for a set of randomly generated worlds is calculated as shown in Figure 

5.3. The blue dots in the graph represent the potential values for randomly generated worlds. 

The green line represents the curve joining the mean of these values. As can be seen, the 

curve is smoother here. Also, the effect of the goal distance on the potential values can be 

clearly seen. The longer the robot navigates through the world without reaching a goal, the 

more likely that it would hit an obstacle. 
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Figure 5.2 Potential value curve of a random 10 × 10 world with obstacle density 9% 

 

 

Figure 5.3 Potential value curve of set of random 10 × 10 worlds with obstacle density 9% 
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5.4 Effects of World Size on Potential Value 

The potential value curves generated by worlds of different sizes and a fixed obstacle 

density are shown in Figure 5.5. Since the change is greatest in the lower ranges of the look-

ahead value, the x-axis (look-ahead value) is taken in logarithmic scale to improve clarity. 

 

Figure 5.4 Potential curves of set of random worlds of varying sizes with obstacle density 9% 

 
Although the curves are generated separately for each different world size, the curves are 

remarkably similar. However we only use the curves that have been generated for a 

particular world size when the planner is planning for that world size. 
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5.5 Effects of World Density on Potential Value 

The potential value curves for random worlds of a fixed size and different densities given in 

Figure 5.6. The potential values tend to get closer to 1 quicker i.e. at lower look-ahead value 

as the obstacle density increases. As the number of obstacles increases so too does the 

probability of a robot colliding with it during a random walk. 

 

 

Figure 5.6 Potential curves of sets of random 10 × 10 worlds of varying obstacle density 
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5.6 Path planner execution 

We shall now look at sample executions of the path planner. The worlds we input for the 

path planner is similar to the random worlds we generate for the potential value curves. They 

contain a set of point obstacle each with their own velocities and a goal location with its own 

velocity.  

A two dimensional grid map showing positions of the goal and obstacles in the first world is 

given in Figure 5.7. The first step is to check if the set of potential value curves exists for the 

given world’s size and density. If they do not exist, then the curves are generated for the 

world’s parameters. The next time a similar world is encountered we can use the previously 

generated curve. A curve generated in this fashion is shown in Figure 5.3. 

The next step is to use forward chaining to find the time required to reach the first goal. After 

obtaining the number of steps required to reach the first solution, the value is compared to 

the potential value curve of the closest density lower than the world’s density and the correct 

look-ahead is determined. 

After obtaining the look-ahead value the planner builds a three dimensional grid map of the 

world. The goal and obstacle locations are extrapolated up to the look-ahead value 

previously obtained. The world thus obtained is shown in Figure 5.8. The red dots represent 

obstacle positions and the green dots represent the goal positions. The green line shows the 

path the goal takes. Any position where a goal and obstacle may intersect is also considered 

as an obstacle. 

The next step is to calculate the potential values for each of the cells. This is calculated by 

the method described in Section 4.5. There is no need to repeat the iteration as the values 

converge on the first run. This is because changing the value of a location does not change 

the value of its successor locations. After obtaining the potential value the planner follows 

the negative gradient in increasing time, to find the path. The path obtained for the example 
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world is given in Figure 5.9. The blue line shows the path taken and the blue dots show the 

robot position at each time step. 

 

 Figure 5.7 Two dimensional representation of world 1. 

 

 

Figure 5.8 Three dimensional representation of world 1. 
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Figure 5.9 Path Traversed by Robot in world 1. 

Another sample execution was done for a different world. The two and three dimensional 

representations of this world are shown in Figure 5.10 and Figure 5.11. The path travelled by 

the robot is given in Figure 5.12. The blue dots represent the robot and the blue line 

represents the path it takes. The red dots represent the obstacles. The green dots represent 

the goal and the green line represents the path it takes. 

 

Figure 5.10 Two dimensional representation of world 2. 
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Figure 5.11 Three dimensional representation of world 2. 

 

Figure 5.12 Path Traversed by Robot in world 2. 
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5.6 Avoidance of Suboptimal Goals 

The traversal algorithm discussed in Section 3.10 should naturally avoid suboptimal 

solutions and pick the most optimal solution within the given look-ahead limit. Here optimality 

is determined as the minimum collision probability in the case of a Random Walk. Consider 

the following path generated in Figure 5.13. The goal has been deliberately placed in a risky 

position for the purpose of this experiment. Since this is the only goal location available in 

the world, the planner has no option but to plan a path to that location. 

However consider Figure 5.14. Here another goal has been placed in a much safer position. 

The path planner now plans a path to the safer goal location, even though it will take an 

extra 25 time steps more to reach the goal. This is because the free space near the first goal 

has a high collision probability in case of a random walk because of its proximity to mobile 

obstacles but the free space near the second goal will have a lower collision probability. The 

potential values are always calculated such that the robot ends up going to the safest goal 

within the given look-ahead time 

 

Figure 5.13 Planner forced to pick risky path. 
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Figure 5.14 Avoiding Sub-Optimal Goal 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

This thesis developed and implemented a path planner for use in dynamic environments that 

uses a harmonic function extended in the time dimension. The following chapter provides 

conclusion for this work, along with future directions for research. 

6.1 Conclusion 

Consider for example someone attempting to catch a falling ball, the person automatically 

calculates where the ball will be when he can catch it and moves his hands to that position 

instead of trying to move his hands towards the ball. This is in essence the principle behind 

the proposed approach. The path planner looks ahead by a predetermined amount and 

calculates the potential values of the world locations from the initial time up to the look-

ahead time. The robot then follows the negative potential gradient with respect to time to 

reach the goal. Since we use forward chaining to find the depth to the first goal we are 

guaranteed a solution. Also, the usage of potential value curves gives us a good chance of 

finding a good solution. Since the potential values represent the probability that a robot 

executing a random walk from that position at that time will collide with an obstacle, following 

the path of negative potential gradient will mean that the robot will follow the safest path to 

the goal. 

Harmonic Functions were used as the basis for the path planning algorithm because they 

generate smooth, complete and correct paths. Since the world has been stretched in the 

time dimension, the multiple iterations of the numerical evaluation of a harmonic function are 

executed in one pass over the three-dimensional world array. 



 

55 

 

MATLAB was used to simulate the path planner due to the ease with which large 

calculations can be done in them. Some external toolboxes were needed for extra 

functionality like queues. 

6.2 Future Work 

In the proposed method, if the dynamics of the environment change during runtime, there is 

no option other than to re-plan from that point on. It remains to be seen if the potential values 

can be updated on the fly. This could greatly reduce the re-planning time.
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APPENDIX A 

EXPERIMENTAL IMPLEMENTATION – MATLAB CODE 
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Random World Generation 

gen_random_obs.m 

function rworlds = gen_random_obs(rows,cols,density,nworlds) 
% 
%Generated set of random obstacles to use to create random worlds 
% 
nobs = round((density/100)*rows*cols); %find number of obstacles 
for i = 1:nworlds 
    w(1:rows,1:cols) = -1; 
    for j = 1:nobs 
        tf = 1; 
        while tf==1 %select empty location 
            tr = round(1 + ( rows - 1) .* rand); 
            tc = round(1 + ( cols - 1) .* rand); 
            tf = 0; 
            if w(tr,tc) == 1 
                tf = 1; 
            end             
        end 
        w(tr,tc) = 1; 
        tdir = round(1 + ( 4 - 1) .* rand);%set a random direction 
        switch tdir 
            case 1 
                td = 'N'; 
            case 2 
                td = 'E'; 
            case 3 
                td = 'W'; 
            case 4 
                td = 'S'; 
        end         
        tv = round((min(rows,cols)-1) .* rand);%set a random velocity 
        rw(i).obs(j).r = tr; 
        rw(i).obs(j).c = tc; 
        rw(i).obs(j).vel = tv; 
        rw(i).obs(j).dir = td; 
    end 
end 
rworlds = rw; 
end 
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Backward Chaining to find start state for random goal 

backward_chain.m 

function vn = backward_chain(w,tr,tc,la) 
% 
%Backward chain from goal of given world to find the initial states %that 
%are reachable 
% 
t.r = tr; 
t.c = tc; 
t.l = la; 
q = qu_new;% start node queue 
q = qu_enqu(q,t);% enqueue goal 
v(1:size(w,1),1:size(w,2),1:la) = 0; 
while qu_empty(q) ~= 1 
    cu = qu_front(q); 
    q = qu_dequ(q);% dequeue goal 
    if (w(cu.r,cu.c,cu.l) ~= 1)&&(cu.l~=1)% check if obstacle or initial state 
        if v(cu.r,cu.c,cu.l-1) ~= 1 
            t.r = cu.r; 
            t.c = cu.c; 
            t.l = cu.l - 1; 
            q = qu_enqu(q,t); % enqueue descendant 
            v(cu.r,cu.c,cu.l-1) = 1;% mark descendant as visited 
        end 
        if (cu.r > 1)&&(v(cu.r-1,cu.c,cu.l-1) ~= 1) 
            t.r = cu.r - 1; 
            t.c = cu.c; 
            t.l = cu.l - 1; 
            q = qu_enqu(q,t); 
            v(cu.r-1,cu.c,cu.l-1) = 1; 
        end 
        if (cu.c > 1)&&(v(cu.r,cu.c-1,cu.l-1) ~= 1) 
            t.r = cu.r; 
            t.c = cu.c - 1; 
            t.l = cu.l - 1; 
            q = qu_enqu(q,t); 
            v(cu.r,cu.c-1,cu.l-1) = 1; 
        end 
        if (cu.r < size(w,1))&&(v(cu.r+1,cu.c,cu.l-1) ~= 1) 
            t.r = cu.r + 1; 
            t.c = cu.c; 
            t.l = cu.l - 1; 
            q = qu_enqu(q,t); 
            v(cu.r+1,cu.c,cu.l-1) = 1; 
        end 
        if (cu.c < size(w,2))&&(v(cu.r,cu.c+1,cu.l-1) ~= 1) 
            t.r = cu.r; 
            t.c = cu.c + 1; 
            t.l = cu.l - 1; 
            q = qu_enqu(q,t); 
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            v(cu.r,cu.c+1,cu.l-1) = 1; 
        end 
    end     
end 
q = qu_free(q);% free queue space 
vn = v; % return values 
end 

Random World Expansion 

gen_random_world.m 

function [world st_r st_c] = gen_random_world(rows,cols,obs,lookahead) 
% 
%generate random world in three dimensions 
% 
w (1:rows,1:cols,1:lookahead)=-1; % create empty world 
w (:,:,lookahead+1) = 1; % set lookahead boundry to 1 
for i = 1:length(obs) % extrapolate obatacle locations 
    tr = obs(i).r; 
    tc = obs(i).c; 
    tv = obs(i).vel; 
    w(tr,tc,1) = 1; 
    for j = 1:lookahead-1 
        switch obs(i).dir 
            case 'N' 
                tr = round(tr - tv); 
                if tr < 1  
                    tr = 1 + (tr * -1); 
                    obs(i).dir = 'S'; 
                end 
            case 'E' 
                tc = round(tc + tv); 
                if tc > cols 
                    tc = cols - (tc - cols); 
                    obs(i).dir = 'W'; 
                end                
            case 'S' 
                tr = round(tr + tv); 
                if tr > rows 
                    tr = rows - (tr - rows); 
                    obs(i).dir = 'N'; 
                end 
            case 'W' 
                tc = round(tc - tv); 
                if tc < 1  
                    tc = 1 + (tc * -1); 
                    obs(i).dir = 'E'; 
                end 
            otherwise 
                disp('Not Supported') 
        end 
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        if (w(tr,tc,j+1) == 1) 
            switch obs(i).dir 
                case 'N' 
                    tr = tr + 1; 
                    if tr > rows  
                        tr = tr - 1; 
                    end 
                case 'E' 
                    tc = tc - 1; 
                    if tc < 1 
                        tc = tc + 1; 
                    end   
                case 'S' 
                    tr = tr - 1; 
                    if tr < 1 
                        tr = tr + 1; 
                    end 
                case 'W' 
                    tc = tc + 1; 
                    if tc > cols 
                        tc = tc - 1; 
                    end 
                otherwise 
                    disp('Not Supported') 
            end 
        end 
        w(tr,tc,j+1) = 1; 
    end 
end 
tf = 1; 
tr = 0; 
tc = 0; 
while tf == 1% select random goal 
    tf = 0; 
    tflg = 1; 
    while tflg == 1 
        tr = round(1 + ( rows - 1) .* rand); 
        tc = round(1 + ( cols - 1) .* rand); 
        tflg = 0; 
        if ( w(tr,tc,lookahead) ~= -1 ) 
            tflg = 1; 
        end 
    end 
    w(tr,tc,lookahead) = 0; 
    v  = backward_chain(w,tr,tc,lookahead); 
    if any(v(:,1))== 0 
        tf = 1; 
        w(tr,tc,lookahead) = -1; 
    else 
        tflg = 1; 
        while tflg == 1 
            tflg = 0; 
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            tr = round(1 + ( rows - 1) .* rand);% find stat state 
            tc = round(1 + ( cols - 1) .* rand); 
            if v(tr,tc,1) == 0 
                tflg = 1; 
            end 
        end 
    end 
end 
world = w; 
st_r = tr; 
st_c = tc; 
end 

Potential Value Calculation 

calc_pot_values.m 

function res = calc_pot_values(w) 
% 
%calculate potential values for non obstacle and foal locations in %given world 
% 
r = size(w,1); 
c = size(w,2); 
for t = size(w,3):-1:1 
    for x = 1:r 
        for y = 1:c 
            if w(x,y,t) == -1 
                n = w(x,y,t+1); 
                if x ~= 1 
                    n = n + w(x-1,y,t+1); 
                else 
                    n = n + 1;% boundary condition 
                end 
                if x ~= r 
                    n = n + w(x+1,y,t+1); 
                else 
                    n = n + 1; 
                end 
                if y ~= 1 
                    n = n + w(x,y-1,t+1); 
                else 
                    n = n + 1; 
                end 
                if y ~= c 
                    n = n + w(x,y+1,t+1); 
                else 
                    n = n + 1; 
                end 
                w(x,y,t) = n / 5;% take average of neighbors 
            end 
        end 
    end 
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end 
res = w; 
end 

Generate Potential value curves 

gen_curves.m 

function gen_curves(rows,cols,density) 
% 
%generate potential value curves 
% 
rw = gen_random_obs(rows,cols,density,25); 
g2x = [2 5:5:45 50:10:100]; 
g2y(1:16) = 0; 
g1x(1:400) = 0; 
g1y(1:400) = 0; 
for ri = 1:25 
    g1i = ri; 
    disp(sprintf('Density = %d%% World Number = %d Lookahead = 2',density,ri)) 
    [w st_r st_c]= gen_random_world(rows,cols,rw(ri).obs,2); 
    p = calc_pot_values(w); 
    g1x(g1i) = 2; 
    g1y(g1i) = p(st_r,st_c,1); 
    g1i = g1i + 25; 
    g2y(1) = g2y(1) + p(st_r,st_c,1); 
    for la = 5:5:45 
        disp(sprintf('Density = %d%% World Number = %d Lookahead = %d',density,ri,la)) 
        [w st_r st_c]= gen_random_world(rows,cols,rw(ri).obs,la); 
        p = calc_pot_values(w);         
        g1x(g1i) = la; 
        g1y(g1i) = p(st_r,st_c,1); 
        g1i = g1i + 25; 
    end 
    for la = 50:10:100 
        disp(sprintf('Density = %d%% World Number = %d Lookahead = %d',density,ri,la)) 
        [w st_r st_c]= gen_random_world(rows,cols,rw(ri).obs,la); 
        p = calc_pot_values(w); 
        g1x(g1i) = la; 
        g1y(g1i) = p(st_r,st_c,1); 
        g1i = g1i + 25; 
    end 
end 
for i = 1:16 
    g2y(i) = mean(g1y((1:25)+25*(i-1))); 
end 
figure(density) 
plot(g1x,g1y,'b.') 
hold on 
plot(g2x,g2y,'g*-') 
set(gca,'xtick',[2 5:5:45 50:10:100]) 
fign = sprintf('-f%d',density); 
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fn = sprintf('graph_%d_%d_%d',rows,cols,density); 
print(fign,'-djpeg',fn) 
hold off 
tmp.ptx=g1x; 
tmp.pty=g1y; 
tmp.cx=g2x; 
tmp.cy=g2y; 
fn = sprintf('curveset_%d_%d_%d',rows,cols,density); 
assignin('base',fn,tmp); 
evalin('base',sprintf('save curveset_%d_%d_%d.mat %s',rows,cols,density,fn)); 
end 

Extending world array in time 

extend_world.m 

function world = extend_world(rows,cols,obs,goal,lookahead) 
% 
%extends the world to the given look-ahead 
% 
w (1:rows,1:cols,1:lookahead)=-1; %intialize world 
w (:,:,lookahead+1) = 1; %initialize loo-ahead boundary 
for i = 1:length(obs) %extrapolate obstacle positons 
    tr = obs(i).r; 
    tc = obs(i).c; 
    tv = obs(i).vel; 
    w(tr,tc,1) = 1; 
    for j = 1:lookahead-1 
        switch obs(i).dir 
            case 'N' 
                tr = round(tr - tv); 
                if tr < 1  
                    tr = 1 + (tr * -1); 
                    obs(i).dir = 'S'; 
                end 
            case 'E' 
                tc = round(tc + tv); 
                if tc > cols 
                    tc = cols - (tc - cols); 
                    obs(i).dir = 'W'; 
                end                
            case 'S' 
                tr = round(tr + tv); 
                if tr > rows 
                    tr = rows - (tr - rows); 
                    obs(i).dir = 'N'; 
                end 
            case 'W' 
                tc = round(tc - tv); 
                if tc < 1  
                    tc = 1 + (tc * -1); 
                    obs(i).dir = 'E'; 



 

64 

 

                end 
            otherwise 
                disp('Not Supported') 
        end 
        if (w(tr,tc,j+1) == 1) 
            switch obs(i).dir 
                case 'N' 
                    tr = tr + 1; 
                    if tr > rows  
                        tr = tr - 1; 
                    end 
                case 'E' 
                    tc = tc - 1; 
                    if tc < 1 
                        tc = tc + 1; 
                    end   
                case 'S' 
                    tr = tr - 1; 
                    if tr < 1 
                        tr = tr + 1; 
                    end 
                case 'W' 
                    tc = tc + 1; 
                    if tc > cols 
                        tc = tc - 1; 
                    end 
                otherwise 
                    disp('Not Supported') 
            end 
        end 
        w(tr,tc,j+1) = 1; 
    end 
end 
%extrapolate goal location 
tr = goal.r; 
tc = goal.c; 
tv = goal.vel; 
w(tr,tc,1) = 0; 
for j = 1:lookahead-1 
    switch goal.dir 
        case 'N' 
            tr = round(tr - tv); 
            if tr < 1 
                tr = 1 + (tr * -1); 
                goal.dir = 'S'; 
            end 
        case 'E' 
            tc = round(tc + tv); 
            if tc > cols 
                tc = cols - (tc - cols); 
                goal.dir = 'W'; 
            end 
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        case 'S' 
            tr = round(tr + tv); 
            if tr > rows 
                tr = rows - (tr - rows); 
                goal.dir = 'N'; 
            end 
        case 'W' 
            tc = round(tc - tv); 
            if tc < 1 
                tc = 1 + (tc * -1); 
                goal.dir = 'E'; 
            end 
        otherwise 
            disp('Not Supported') 
    end 
    if w(tr,tc,j+1) ~= 1 
        w(tr,tc,j+1) = 0; 
    end 
end 
world = w; 
end 

Forward chaining to find time to shallowest goal 

forward_chain.m 

function res = forward_chain(rows,cols,obs,goal,start,proplimit) 
% 
%forward chain to find time to shallowest goal 
% 
w = extend_world(rows,cols,obs,goal,proplimit); 
t.r = start.r; 
t.c = start.c; 
t.l = 1; 
q = qu_new; 
q = qu_enqu(q,t);%initalize queue with start state 
v(1:rows,1:cols,1:proplimit) = 0; 
while qu_empty(q) ~= 1 
    cu = qu_front(q); 
    q = qu_dequ(q);%dequeue node 
    v(cu.r,cu.c,cu.l) = 1;%mark node visited 
    %if node is goal return depth 
    if w(cu.r,cu.c,cu.l) == 0 
        res = cu.l; 
        q = qu_free(q);  
        clear q; 
        return; 
    end 
    %if chaining has reached propogation limit return reload 
    if cu.l == size(w,3) 
        res = -1; 
        q = qu_free(q);  
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        clear q; 
        return; 
    end 
    %enqueue non-obstacle sucessor nodes that have not been visited yet 
    if w(cu.r,cu.c,cu.l) ~= 1  
        if v(cu.r,cu.c,cu.l+1) ~= 1 
            t.r = cu.r; 
            t.c = cu.c; 
            t.l = cu.l + 1; 
            q = qu_enqu(q,t); 
            v(cu.r,cu.c,cu.l+1) = 1; 
        end 
        if (cu.r > 1)&&(v(cu.r-1,cu.c,cu.l+1) ~= 1) 
            t.r = cu.r - 1; 
            t.c = cu.c; 
            t.l = cu.l + 1; 
            q = qu_enqu(q,t); 
            v(cu.r-1,cu.c,cu.l+1) = 1; 
        end 
        if (cu.c > 1)&&(v(cu.r,cu.c-1,cu.l+1) ~= 1) 
            t.r = cu.r; 
            t.c = cu.c - 1; 
            t.l = cu.l + 1; 
            q = qu_enqu(q,t); 
            v(cu.r,cu.c-1,cu.l+1) = 1; 
        end 
        if (cu.r < size(w,1))&&(v(cu.r+1,cu.c,cu.l+1) ~= 1) 
            t.r = cu.r + 1; 
            t.c = cu.c; 
            t.l = cu.l + 1; 
            q = qu_enqu(q,t); 
            v(cu.r+1,cu.c,cu.l+1) = 1; 
        end 
        if (cu.c < size(w,2))&&(v(cu.r,cu.c+1,cu.l+1) ~= 1) 
            t.r = cu.r; 
            t.c = cu.c + 1; 
            t.l = cu.l + 1; 
            q = qu_enqu(q,t); 
            v(cu.r,cu.c+1,cu.l+1) = 1; 
        end 
    end     
end 
res = -1; %return reload if queue empty. 
q = qu_free(q);  
clear q; 
end 
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Determining look-ahead to use 

find_good_la.m 

function new_la = find_good_la(rows,cols,obs,goal,start,old_la,curveset) 
% 
%find a good look-ahead value to use 
% 
limits = 0.05;%set threshold 
w = extend_world(rows,cols,obs,goal,old_la); 
p = calc_pot_value(w); 
stpot = p(start.r,start.c,1); 
ti = 1; 
for i = 1:16 
    if curveset.cy(i) <= stpot 
        ti = i; 
    else 
        break; 
    end 
end 
la1 = curveset.cx(ti); 
la0 = old_la; 
la2 = 500; 
for i = ti+1:16 
    sig = std(curveset.pty((1:25)+25*(i-1))); 
    mu = curveset.cy(i); 
    z = (stpot - mu)/sig; 
    zVal = normcdf(z);% z table value 
    if (zVal <= limits) 
        la2 = curveset.cx(i); 
    else 
        break; 
    end 
end 
a = la2 - la0; 
b = la2 - la1; 
new_la = la0 + max([a b]); 
end 

Traversing world array to find goal 

traverse_world.m 

function [success path] = traverse_world(start,pot) 
% 
% traverse world 
% 
res(size(pot,1),size(pot,2))=0; 
t = 1; 
nr = start.r; 
nc = start.c; 
res(nr,nc,t)=1; 
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while((t<size(pot,3))&&(pot(nr,nc,t)~=0)&&(pot(nr,nc,t)~=1)) 
    if(nr ~= 1) 
        n = pot(nr-1,nc,t+1); 
    else 
        n = Inf; 
    end 
    if(nc ~= size(pot,2)) 
        e = pot(nr,nc+1,t+1); 
    else 
        e = Inf; 
    end 
    if(nr ~= size(pot,1)) 
        s = pot(nr+1,nc,t+1); 
    else 
        s = Inf; 
    end 
    if(nc ~= 1) 
        w = pot(nr,nc-1,t+1); 
    else 
        w = Inf; 
    end 
    st = pot(nr,nc,t+1); 
    minv = min([n,e,s,w,st]); 
    if (minv == st) 
        %do nothing 
    elseif((minv == n)&&(nr ~= 1)) 
        nr = nr - 1; 
    elseif((minv == e)&&(nc ~= 10)) 
        nc = nc + 1; 
    elseif((minv == s)&&(nr ~= 10)) 
        nr = nr + 1; 
    elseif((minv == w)&&(nc ~= 1)) 
        nc = nc - 1; 
    end 
    t = t + 1; 
    res(nr,nc,t)=1; 
end 
if(pot(nr,nc,t)==0) 
    success = 1; %if goal reached 
else 
    success = 0; %if goal no longer reachable 
end 
path = res; 
end 

Display path 

show_path.m 

function show_path(world,path) 
% 
% Display the path to the user 
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% 
i=1; 
for t = 1:size(path,3) 
    for r = 1:size(world,1) 
        for c = 1:size(world,2) 
            if world(r,c,t)==1 
                ox(i)=r; 
                oy(i)=c; 
                oz(i)=t; 
                i = i + 1; 
            end 
        end 
    end 
end 
plot3(ox,oy,oz,'MarkerSize',30,'Marker','.','LineStyle','none','Color',[1 0 0]) 
grid 
hold on 
i=1; 
for t = 1:size(path,3) 
    for r = 1:size(world,1) 
        for c = 1:size(world,2) 
            if world(r,c,t)==0 
                gx(i)=r; 
                gy(i)=c; 
                gz(i)=t; 
                i = i + 1; 
            end 
        end 
    end 
end 
plot3(gx,gy,gz,'MarkerSize',30,'Marker','.','LineWidth',3,'Color',[0 1 0]) 
i=1; 
for t = 1:size(path,3) 
    for r = 1:size(path,1) 
        for c = 1:size(path,2) 
            if path(r,c,t)==1 
                x(i)=r; 
                y(i)=c; 
                z(i)=t; 
                i = i + 1; 
            end 
        end 
    end 
end 
plot3(x,y,z,'MarkerSize',30,'Marker','.','LineWidth',3,'Color',[0 0 1]) 
axis([1,size(path,1),1,size(path,2),1,size(path,3)]) 
view(-16,4) 
hold off 
end 
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Temporal path planning simulator 

planner.m 

function planner(rows,cols,obs,start,goal) 
% 
% path planner simulator 
% 
density = size(obs,2)/(rows*cols);% find obstacle density 
ndensity = 9; 
for d = 9:10:89 
    if d <= density 
        ndensity = d; 
    else 
        break; 
    end 
end 
csetname = sprintf('curveset_%d_%d_%d',rows,cols,ndensity); 
if(evalin('base',sprintf('exist(''%s'',''var'')',csetname))==0)% try to load curveset from matlab 
runtime memory 
    if(evalin('base',sprintf('exist(''%s.mat'',''file'')',csetname))==0)% try to load curveset from 
hard drive 
        disp('Generating curve set'); 
        evalin('base',sprintf('gen_curves(%d,%d,%d)',rows,cols,ndensity));% generate curveset 
    else 
        disp('Loading curve set from file'); 
        evalin('base',sprintf('load %s.mat',csetname)); 
    end 
    curveset = evalin('base', csetname); 
else 
    disp('Loading curve set from memory'); 
    curveset = evalin('base', csetname); 
end 
clear csetname; 
sol1 = forward_chain(rows,cols,obs,goal,start,100);% find time to reach shallowest solution 
if (sol1 == -1) 
    disp('Run program after reloading world');% Dynamics changed 
    return; 
end 
la = find_good_la(rows,cols,obs,goal,start,sol1,curveset);% estimate lookahead to use 
world = extend_world(rows,cols,obs,goal,la);% extend world in time 
pot_vals = calc_pot_values(world);% Calculate potential values 
[res path] = traverse_world(start,pot_vals);% Follow negative potential gradient 
if (res == 0) 
    disp('Run program after reloading world');% Dynamics changed or Goal became 
unreachable 
    return; 
end 
show_path(world,path)% display path traversed 
end
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APPENDIX B 

FLOWCHART SYMBOLS 
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Terminator – Used to denote start or end of a process 

 I/O – Used to denote input or output operation 

 Decision – Used to represent conditional statements 

 Process – Used to represent internal process 

 
Pre Defined Process – Used to represent processes that are defined 

elsewhere, i.e. other modules. 

 Internal Storage – Used to represent values that are stored internally. 

 
Direct Access Storage – Used to represent values that are stored in 

the main workspace of MATLAB [30] 

 
Out of Page Connector – Used to link to flowchart sections not in 

current page 

 
Program Flow – Represents the direction of control flow in the 

flowchart 

 Data Flow – Represents the direction of the flow of data in the flowchart 
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