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Abstract—The resource-constrained project scheduling 

problem (RCPSP) is an extensively explored area. The existing 

RCPSP approaches tend to focus on single project scheduling 

problems without practical support to address the multiple 

project schedule coordination which involves constraints defined 

across projects. This paper extends RCPSP by involving time and 

resource constraints and proposes a practical dynamic task 

network scheduling algorithm. This algorithm takes time 

constraints, resource constraints, and particularly the dynamic  

task execution status into consideration. Dynamic scheduling 

through a partial task network is considered a unique feature of 

this algorithm. The proposed algorithm is fully implemented and 

tested in a web-based aircraft inspection maintenance 

management system. 

I. INTRODUCTION 

Scheduling, as loosely defined by Sule [1], involves 
defining priorities or arranging activities to meet certain 
requirements, constraints, or objectives. Project scheduling is 
less difficult if only precedence relationships constrain the 
activity schedule [2]. However, in practice, activities do not get 
completed on their own. Instead, they consume resources in the 
process. Allocating scarce resources among competing 
activities adds significant complexity to scheduling, which is 
known as the resource-constrained project scheduling problem 
(RCPSP) and is NP-hard in the strong sense [3].  

Time constraints attached to tasks intentionally leave 
further time lags between sequential tasks. For example, if a 
task is defined to “start no earlier than” a certain time, the time 
then becomes a hard constraint (front point barrier) that the task 
cannot surpass. The time constraints as well as the resource 
constraints extend the RCPSP to the problem of time- and 
resource-constrained project scheduling (TRCPSP). TRCPSP is 
“over-determined” or “over-constrained” when facing 
conflicting time and resource constraints. 

One example of TRCPSP is aircraft inspection and 
maintenance. A regular schedule of maintenance services on an 
aircraft is very important to ensure that the fleet can serve its 
missions promptly, properly, and reliably within its designed 
life cycle. In order to maintain an aircraft in a state of 
“airworthiness”, regulations require various kinds of periodical 
inspections [4]. In the periodical inspections and maintenance 
practice, major “scheduled” inspection/repair tasks require 
extensive expertise, constant re-assessment of changing 
priorities, and frequent re-scheduling in response to changes in 

personnel, skill sets, equipment availability, and most 
specifically, to coordinate with the receiving schedule of parts-
in-order from the supply department and the repaired 
components from the external machining shops.  

Another big challenge faced by aircraft maintenance 
facilities is to effectively resolve conflicts caused by shared 
resources among parallel maintenance projects or crews. The 
multi-project schedule coordination issue has been specifically 
addressed in a separate paper [5]. This paper will broadly 
review the literature in RCPSP researches and applications. A 
formal description of the TRCPSP is given in Section 3 
following a problem specification originated from the aircraft 
maintenance scheduling problem. We propose a practical 
dynamic scheduling algorithm based on task network reasoning 
and heuristics (in Section 4) which takes time constraints, 
resource constraints and task execution status into 
consideration. The proposed approach has been fully 
implemented and tested in a web-based aircraft periodical 
inspection and maintenance system. Implementation issues are 
briefly presented in Section 5. 

II. LITERATURE REVIEW 

Project planning and scheduling has attracted ever growing 
attention both from science and practice because of the broad 
applications of the term “Project”. It is concerned with single-
item or make-to-order production where scarce resources have 
to be met when scheduling dependent activities over time [6]. 

The RCPSP as a research domain has attracted intense 
activity for several decades in mathematical modeling 
(including integer programming, dynamic programming, and 
branch-and-bound approaches), operations research, constraint 
satisfaction, heuristics and meta-heuristics based computation 
methods, for example, genetic algorithm [7], simulated 
annealing [8], ant colony [9], and swarm theories [10].  

Özdamar and Ulusoy [2] have summarized RCPSP 
approaches according to their objectives, resource types, 
constraint specifications, time-resource functions, single vs. 
multiple projects, and optimization vs. heuristics. Brucher et al. 
[6] conducted a comprehensive literature review on RCPSP 
approaches and they believed that project scheduling was not 
comparable to its counterpart of machine scheduling in a 
common notation and classification scheme. Based on the 
review and summary of 200 papers, they proposed a new 
classification scheme to close the gap. Each classified area of 
project scheduling under resource constraints has been 
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extensively surveyed since the 1960s. Herroelen et al. [11] has 
directed readers to these early reviews in its references while 
the survey itself focused on recent progress made with optimal 
branch-and-bound procedures and their important extensions. 
Özdamar and Ulusoy [2] looked after the heuristic approaches 
that they thought were more practical and feasible in solving 
real-world problems.  

To the view of the problem size, only small-sized problem 
instances with up to 60 activities can be solved exactly in a 
satisfactory manner, at least for the KSD set [12]. Therefore, 
heuristic solution procedures remain the only feasible method 
of handling practical resource-constrained project scheduling 
problems. Recent overviews of heuristic procedures for the 
RCPSP can be found in Kolisch and Hartmann [13,14].  

III. PROBLEM DESCRIPTION 

A. Problem Specification 

The real world time- and resource-constrained project 
scheduling problem for aircraft inspections and maintenance is 
very complex in that: 

• A regular project contains thousands of tasks 
depending on the size of the projects.  

• Task precedent relationships define the sequence of 
tasks. In some cases, a task is required to “pin” on a fixed 
time on the calendar which is usually called “time 
constraint”.  

• Different tasks in parallel ongoing projects often claim 
the use of shared and limited resources, which are defined 
as “resource constraints”. The following are some examples 
of resource constraints: 

o Shared equipments and tools 
o Shared staff with different qualifications 
o Shared working spaces with limited access 

capacity, for example, a cockpit 

• Customizable exclusive constraints are implicitly 
required by practice. Some tasks in aircraft inspection are 
“exclusive” in nature so that they cannot proceed at the 
same time. For example: 

“when draining fuel from an aircraft, all 
other scheduled tasks for the same aircraft 
which require electricity must be suspended 
until the draining is finished.” 

• Several aircraft are served in the same maintenance 
facility. In other words, schedule coordination of multiple 
projects is required. For example, the impact of the above 
draining fuel task can be extended to all tasks across the 
whole facility, no matter they belong to the same project or 
not.  

• Dynamic re-scheduling needs to be carried out 
frequently in order to bring project schedules up to date 
corresponding to changing situations, for example: 

o Tasks that are delayed 
o Tasks that are finished ahead of schedule 
o Shortage of staff in specialty trades 
o Shortage of equipment or tools 
o Delayed arrival of replacement or repaired parts  

o In emergent situations, “exchange of parts” may 
happen. For example, an aircraft (for example, Project 
A) can borrow a part already installed on another 
aircraft (for example, Project B) in order to expedite the 
progress of Project A. 

Above specifications for aircraft inspection and 
maintenance require a special algorithm that can generate new 
coordinated project plans considering all within- or cross-
project constraints and changing conditions. Due to the harsh 
requirements on project size, time constraints, resource 
constraints, and unknown numbers of exclusive constraints, the 
heuristic approach remains the only feasible method of 
handling this real-world TRCPSP problem. All approaches in 
literature have been tested at a small set of activities and 
constraints, which is not comparable to the scale of the 
TRCPSP problem specified in this paper. The scope of this 
paper is dynamic scheduling and allocating conflict resources 
within ONE aircraft inspection project.  

B. Problem Formalization 

We base our work on the concept of task network. A 
traditional task network N = (T, P) is composed of a set T of 
tasks and a set P of precedence relationships between tasks. T 
= {t1, t2, …, tn}, where n is the number of tasks and each ti is a 
task, 1 ≤ i ≤ n. Among them, t1 and tn stand for two dummy 
tasks which are the beginning and the finish of the project. A 
dummy task requires no actual work and it helps construct the 
project hierarchy. The definition of a task network must be 
COMPLETE. A complete network has no loops, no redundant 
precedence relationships, and no isolated tasks (a task that has 
neither preceding tasks nor subsequent tasks). 

A task t∈Τ can be represented as 6-tuple (ID, D, EST, LST, 
EFT, LFT) where ID - an unique identifier; D - duration; EST - 
earliest start time; LST - latest start time; EFT - earliest finish 
time; and LFT - latest finish time of the task. We use t.D, t.EST, 
t.LST, t.EFT and t.LFT to refer to individual elements. Each 
task is executed without interruption, which means that the 
duration of a task cannot be split or leveled. In a traditional task 
network, EST and LST are generally used to determine whether 
a task is on the critical path. For a task t∈Τ, if t.EST = t.LST, 
we say the task is “critical” because its delay will cause the 
delay of the entire project. The paths composed of critical tasks 
are called “critical paths”. People may also be concerned with 
EFT and LFT in a task network; however, in most cases, they 
can be ignored. 

The following paragraphs define the constraints in task 
networks with further details. 

• Precedence constraints - P 

For pt, st∈Τ, (pt, st)∈P means that pt is a preceding task of 
st and st is a subsequent task of pt, i.e., st cannot start if pt 
is not finished. Given a task network N = (T, P) and a task 
t∈Τ, we use Pre(t) and Sub(t) to denote all direct preceding 
tasks and direct subsequent tasks of t in N. Formally, we 
have 

pt∈Pre(t)⇒∃pt∈Τ: ∃(pt, t)∈P, and  
st∈Sub(t)⇒∃st∈Τ: ∃(t, st)∈P. 
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There is no time lag between the tasks in a traditional task 
network. That is, for any task 

t∈Τ, t.EST = max(pt.EFT), pt∈ Pre(t)        (1) 
Equation (1) expresses the precedence constraints on task t 
which require that t can only start when all the predecessor 
tasks pt∈Pre(t) are completed. 

• Time constraints - TC 

There are four types of time constraints that can be 
attached to a task t. They are: 

- START-NO-EARLIER-THAN: TtTCtsnet ∈∈ ,),(  

- START-NO-LATER-THAN: TtTCtsnlt ∈∈ ,),(  

- FINISH-NO-EARLIER-THAN: TtTCtfnet ∈∈ ,),(  

- FINISH-NO-LATER-THAN: TtTCtfnlt ∈∈ ,),(  

The time constraints require that the following conditions 
must be satisfied: 

. .t EST t tsne≥ ; tsnltLSTt .. ≤ ;  

tfnetEFTt .. ≥ ; tfnltLFTt .. ≤        (2) 

Considering the precedence relationship ( ) Pstt ∈, , the 

four time constraints attached to t in (2) can be reduced to 
two time constraints attached to t and st as in (3). Fig. 1 
illustrates the formulation procedure of the time 
constraints. 

tsnetESTt .. ≥ ; tsnltLSTt .. ≤ ;  

tfnetESTst .. ≥ ; tfnltLSTst .. ≤                  (3) 

• Resource constraints - RC 

The resources constraints described in III.A are to be 
extracted to “renewable resources”. Suppose that there are 
K types of renewable resource and the resource constraints 
applied to a task t can be represented as: 

( ), , ,1k tkt r RC k Kδ ∈ ≤ ≤ , where rk is a type of 

resource and δk is the capacity that is required by task t on 
rk. A type of resource rk is available with a limited capacity 
ak. The constraint that rk puts on the whole project is that at 
any time, the number of rk required by all tasks should be 
within its maximum capacity/availability ak. 

Kknia
Tt

kkt

i

i
,...,2,1;,...,2,1, ==≤∑

∈

δ         (4) 

• Exclusive Constraint 

Suppose that there are K types of exclusive requirements, 
an exclusive constraint applied to a task t can be 

represented as ( ), ,1kt e EC k K∈ ≤ ≤ , where ek is an 

exclusive constraint. It must be satisfied that for the whole 
project, if a task t has an exclusive constraint ek defined on 
it, then for ∀t'∈T and t'≠t: 

).)'.().'.((

)).'().'.((

LFTtLSTtLSTtLFTt

EFTtESTtESTtEFTt

≥∪≤
∩≥∪≤

         (5) 

Ideally, the objective of a TRCPSP problem is to minimize 
the project duration (the finishing time of the unique dummy 
task tn), subject to all constraints listed above. However, in 
practical situations, the objective is to find a feasible rather than 
optimal solution within a reasonable computation time frame. 
We have developed a heuristic-based dynamic task network 
scheduling algorithm to achieve this goal.  

IV. A DYNAMIC SCHEDULING ALGOTHM  
FOR TASK NETWORKS 

The planning of a project estimates the start time and finish 
time of each task before the tasks are actually executed. 
However, projects often do not progress as scheduled. Firstly, 
task duration is just an estimate so a task may finish earlier or 
later than expected. Secondly, tasks may be dynamically 
inserted into, or removed from the project, resulting in changes 
to the schedule. Thirdly, conflicting task arrangements make 
the schedule obsolete any time they arise. Therefore, the plan 
should be dynamically adjusted during the execution of the 
project. 

A. Planning of a Traditional Task Network 

Before a network (which represents a project) is planned 
for the first time, the network will be initialized by creating 
tasks, creating precedence relationships, and setting all 
corresponding ESTs, LSRs, EFTs, and LFTs to null. 

The algorithm for calculating the EST and LST of each task 
uses a two-round reasoning process. In the first round, the 
algorithm starts from the very beginning of the network (t1: 
START_OF_THE_PROJECT), setting both the EST and LST 
of t1 to the given start time of the project. Then, it traverses the 
network until it reaches the last task (tn: 
FINISH_OF_THE_PROJECT). For each task t and its 
subsequent task st∈Sub(t), st.EST is calculated in the 
following way: 

. . ,  if .
.

max( . , . . ), if .

t D t EST st EST null
st EST

st EST t D t EST st EST null

+ =⎧
= ⎨ + ≠⎩

 

In the second round, the algorithm starts from the last task tn, 
set tn.LST= tn.EST ; and then, it traverses the entire network  

Figure 1: Time constraints 
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until reaching the first task t1. For each task t and its preceding 
task pt∈Pre(t), pt.LST is calculated as: 

. . , if .
.

min( . , . . ), if .

t LST pt D pt LST null
pt LST

pt LST t LST pt D pt LST null

− =⎧
= ⎨ − ≠⎩

 
The traditional task network planning has several limitations: 

• The planning of a traditional task network requires a 
single entry node in the network, which is always t1 - 
START_OF_THE_PROJECT. If the project has already 
started, i.e., some tasks are “finished” or “ongoing”, the 
traditional task network does not support the re-scheduling 
of the rest of planned tasks. However, in many cases, a 
project is required to be re-scheduled at any time when 
necessary, especially when the project is already in 
progress. 

• It only considers the precedence relationships between 
tasks. It does not support the facts that tasks compete for 
shared resources, or they may in fact be exclusive to each 
other. Resolving resource or exclusive conflicts means 
sequencing parallel tasks by prioritizing them. 

• A traditional task network does not include intended 
time lags (or gaps) between tasks. It is supposed that a task 
will start right after all its preceding tasks are finished 
without any delay. However, in reality, intended gaps may 
be applied between tasks in terms of time constraints or 
other reasons. 

To address the above limitations of a traditional task 
network, we propose the concepts of Extended Task Network, 
Partial Task Network and a dynamic scheduling algorithm 
based on the partial task network. In the proposed algorithm, a 
project can be dynamically re-planned based on a given “plan 
time” and the planning process will only affect the tasks that 
are not started yet. The planning does not always start from the 
very beginning of the project; instead, it can start from 
multiple entry points of a dynamically constructed partial task 
network. Also, more constraints other than the precedence 
relationship are resolved in our algorithm. 

B. Extended Task Network 

An extended task network N = (T, P, C) is composed of a 
set T of tasks, a set P of precedence relationships between 
tasks, and a set C of constraints. In an extended task network, 
a precedence relationship p∈P is defined as a 3-tuple p = (pt, 
st, vd), where pt is the preceding task, st is the subsequent task, 
and vd is a virtual duration (or an intended time gap) on the 
link between pt and st. Therefore, for a task st∈T, st.EST = 
max(pt.EST + pt.D + vd), where pt∈ Pre(t). A constraint c∈C 
is either a time constraint, a resource constraint, or an 
exclusive constraint. 

C. Partial Task Network (PTN) 

Besides making an initial plan for the entire project, it is 
required to plan just a portion of the project and make sure that 
the schedule of the planned portion will fit in the entire 
schedule. A partial task network NP = (TP, PP, CP) as a part of 
a full extended task network N = (T, P, C) is composed of a set 
TP of tasks, a set PP of precedence relationship, and a set CP of 

constraints, where TP ⊆ T, PP ⊆ P, and CP ⊆ C. For pt, st ∈ TP, 
(pt, st) ∈ PP means that pt is a preceding task of st. A partial 
network satisfies the following closure rule:  

pt ∈ TP→¬∃st ∈ TP: (pt, st) ∈ P ∧ (pt, st) ∉ PP          (7) 

Equation (7) means that if one task is in a partial task 
network, then all of its direct and indirect subsequent tasks 
should also be included in the partial task network as well. A 
partial task network reflects a portion of a full task network 
and the portion itself must be complete.  

The partial network is used to calculate the ESTs and LSTs 
of a set of planned tasks while other preceding tasks outside 
the partial network are not affected. Given a task t in the full 
task network, its original EST and LST are set as t.ESTO and 
t.LSTO. If the new EST and LST values of a partial network are 
denoted as t.ESTP and t.LSTP, then: 

t.EST = max(t.ESTP, max(pt.ESTO + pt.D + vd(pt, t))), 
where pt is a preceding task of t in terms of the full task 
network (not the partial task network) and vd(pt, t) means 
the virtual duration on the link between pt and t. 

Similarly, 
t.LST = max(t.LSTP, max(pt.LSTO + pt.D + vd(pt, t))). 

D. Dynamic Scheduling Algorithm for the Partial Task 

Network 

The process of creating and planning a partial task network 
includes five major steps as described below. 

STEP 1: Finding the heads of the partial network. 

To perform a re-planning, the first step is to find the 
“heads” of the partial network, and build a partial network 
based on the heads. A head is a task that has no preceding task 
that should be included in the partial network. 

For dynamic planning based on a given plan time ι, there 
are three ways to deal with the tasks: 

(1) Finished or ongoing tasks should be discarded; 
(2) The tasks that were planned to start later than ι can be 
moved forward to start from ι if all its preceding tasks are 
already finished; 
(3) The tasks that were planned to start earlier than ι but 
actually not started yet should be postponed to start from ι. 

Fig. 2 shows a scenario when a project needs to be re-
planned at time ι. In this scenario task t1 is finished, task t2 has 
started but not finished (ongoing) and all others tasks (t3, t4, t5 
and t6) are planned (not started). The solid or dashed lines 
between tasks represent the precedence relationships.  

At time ι, an observation from rule (3) is that task t3 and t5 
should be postponed to time ι since their original ESTs are 
earlier than ι; and from rule (2), task t4 and t6 should be moved 
forward (or expedited) since their original ESTs are later than 
ι. However, t5 is not a head since t5 has a preceding task t3; t3 
is a head and should be postponed to time ι. t4 is another head 
and should be pushed forward to time ι because its direct 
proceeding task t1 is not included in the partial network 
according to rule (1). Since t6 has an ongoing task t2 that is 
expected to be finished later than ι, t6 actually cannot be 
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pushed forward to ι. However, since t6 has no preceding tasks 
that should be included in the partial network, it is also a head. 
In Fig. 2, the yellow circles indicate that t3, t4, and t6 will be 
used as heads in the planning process.  

The ESTs of the head tasks need to be determined before 
the next step. Basically the EST of each head task can be set as 
the given time ι. The exceptional cases are: 

(1) A head task to be pushed forward is preceded with 
ongoing tasks. If the maximum EFT of a head task 
ht’s proceeding tasks is denoted as EFTmaxp and 
EFTmaxp ≥ ι, ht.EST should be set as EFTmaxp.  

(2) If there is a START-NO-EARLIER-THAN time 
constraint attached to a head task ht and the 
constrained time is ιc, then ht.EST should be the 
maximum of ESTmaxp and ιc.  

For re-planning based on a specific set of given tasks, 
simply take them as the heads of the partial network. However, 
only the independent tasks should be taken as heads. All 
dependent tasks that have direct or indirect proceeding tasks in 
the given set should be eliminated first. 

STEP 2: Creating a partial task network. 

After the heads (denoted as a set H) are discovered, a 
virtual starting task vt is created and connected to each head 
task. The duration of the virtual task is set as 0. As the virtual 
entry node of the network, vt.EST = vt.LST =ι. For any ht ∈ H, 
a link (vt, ht) is created and added into PP. For each link (vt, 
ht), a virtual duration is calculated as vt.EST – ht.EST. 

A complete PTN is then constructed by finding the closure 
of the head tasks. A closure is composed by all the tasks that 
have direct or indirect precedence relationships with the head 
task. The PTN created from Fig. 2 is drawn in Fig. 3. The span 
of ι is enlarged to clearly illustrate how vt is connected to the 
head tasks. 

STEP 3: Calculating the ESTs of the tasks in the PTN 

The algorithm of calculating the ESTs of all tasks in the 
PTN will start from the virtual task node vt. When calculating 
the EST of a subsequent task st of the current task t, st.EST = 
t.EST + t.D+ vd, where vd is the virtual duration on the link 
between t and st. 

After st.EST is calculated, the algorithm validates whether 
any time constraints attached to st is violated. If a task st has a 
START-NO-EARLIER-THAN time constraint defined and the 
constrained time is ιc, the algorithm checks the just calculated 
st.EST. If st.EST is earlier than ιc, the task should actually be 
forced to start at ιc, i.e., set the virtual duration between st and 
the current task t to ιc – st.EST and then update st.EST to ιc. 

If st has START-NO-LATER-THEN time constraint 
defined and the constrained time is ιc, but the calculated st.EST 
is later than ιc, then an irresolvable conflict has occurred. The 
algorithm has to terminate. Either the time constraints on st or 
the network definition should be modified to avoid such a 
conflict. 

STEP 4. Resolving other conflicts between tasks 

For the current task t, if t has an exclusive constraint 
defined, or if t needs to use a limited resource, then other tasks 
that are affected by the exclusive constraint or that require the 
same resource actually cannot be scheduled simultaneously 
with t, even though they do not have precedence relationships. 
Therefore, when resolving the conflicts, some tasks should be 
moved to a later time and the virtual durations on links should 
be updated accordingly.  

If task t and t' overlap in terms of time schedule but t and t' 
cannot be executed at the same time, the algorithm applies 
heuristic rules to determine the priorities of t and t'. The one 
with a lower priority should be moved to a later time. 
Assuming that t is to be moved, then t.EST is set as t'.EFT. 
Then, for each preceding task pt of t, the virtual duration vd of 
pt and t is set as |pt.EST-t.EST|. This process is repeated until 
there is no more conflict remaining. 

STEP 5. Calculating LSTs of tasks 

In the final step, the LSTs of tasks are calculated 
backwards using the formulation described in the extended 
task network which considers virtual durations on task links.  

V. IMPLEMENTATION AND CASE STUDY 

Based on the proposed partial task network and dynamic 
scheduling algorithm, we have developed a web-based system 
to manage multiple aircraft inspection projects. The system 
has a three-layer architecture: the presentation layer, which 
contains a set of JSP pages; the application layer, which is 
composed of a set of Java classes that implement the system 
functionalities, execute task network scheduling algorithms, Figure 3: Creating a PTN at time ι 
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and provide information to the presentation layer; 
and, the persistence layer, which is built as a MySQL 
database, providing fundamental data query and 
persistent storage to the application layer.  

The hierarchy of aircraft inspection projects is 
built in four layers: Project  Phases  Areas  
Cards. Again, we involve more pairs of dummy tasks 
at different levels to help represent the hierarchy. A 
regular task MUST belong to a “stage” in a project; 
and it may further belong to a group defined under the 
stage (“Area” or “Area and Cards”). 

The system supports creating new projects from 
pre-defined templates. The inspection tasks included 
in the templates are usually routine inspection tasks 
that must be applied to every aircraft under 
inspection. A sample template contains 700~800 
routine inspection tasks and 600~700 dummy tasks 
for marking the boundaries of 12 stages and roughly 
300 groups in the project hierarchy. Users can 
dynamically add new inspection tasks during any stage of a 
project. 

When creating a new project, the system requires the 
project manager to provide a planned start time. This given 
time will be used to create the first plan for the project. Then, 
the user can request to re-plan a project whenever it is 
necessary. In practice, re-planning is done repeatedly on a 
regular basis, for example, the beginning of each day or each 
week. If a new task is inserted into the project, re-planning 
will be automatically done by the system to maintain a 
consistent schedule for all affected tasks. Fig. 4 shows a Gantt 
chart view of a project schedule.  

VI. CONCLUSION 

In project management, more complicated constraints must 
be addressed when facing real-world problems. Coping with 
the complexity of TRCPSP is a theoretical challenge although 
part of this problem (the RCPSP problem) has been an active 
research topic for several decades. Based on the traditional 
task network, we proposed the concept of an extended task 
network and partial network, and a practical dynamic 
scheduling algorithm for time- and resource-constrained task 
networks, in which time constraints, resource constraints, 
exclusive constraints, and particularly the changing project 
execution conditions are all resolved. In response to emergent 
events (e.g., absence of maintenance staff and delayed arrival 
of components), a project schedule can be re-calculated at any 
time based on the transient partial task networks (PTN) and 
heuristics. The development of the algorithm uses a bottom-up 
strategy and a practice-oriented attitude that is very different 
from those developed from purely academic researches. 

The proposed approach is fully implemented and applied 
to build an aircraft inspection maintenance management 
system featured with effective decision supports for project 
dynamic scheduling and conflicts resolution for multiple 
projects. Currently the developed prototype system is ready for 
field testing and deployment. Though originally targeting for 
aircraft inspection and maintenance, our approach can be 
applied to scheduling problems in a wider area of applications, 

for example project management and facility maintenance 
management in industries.  

 

REFERENCES 

[1] Sule, D.R. (1997) Industrial Scheduling. PWS Publishing Company, 
Boston, MA. 

[2] Özdamar, L. and Ulusoy, G. (1995) A survey on the resource-
constrainted project scheduling problem. IIE Transactions 27(5):574-
586. 

[3] Blazewicz, J., Lenstra, J.K., and Rinnooy Kan, A.H.G. (1983) 
Scheduling subject to resource constraints: classification and 
complexity. Discrete Applied Mathematics 5:11-24. 

[4] Flight Department Essentials: Helping Your Business Take Flight, 
Section 11. URL: http://web.nbaa.org/public/ops/adm/fde/#contents 

[5] Hao, Q., Wang, S., Xue, Y, Shen, W. (2009) An interactive decision 
support method for multi-project schedule coordination. CSCE 2009 

Construction Specialty Conference. May 27-30, St. John ’ s, 
Newfoundland & Labrador. 

[6] Brucker, P., Drexl, A., Möhring, R., Neumann, K. and Pesch, E. 
(1999) Resource constrainted project scheduling: notation, 
classification, models and methods. European Journal of Operational 

Research 112:3-41. 
[7] Vallas, V., Hallestin, F. and Quintanilla, S.A. (2008) A hybrid genetic 

algorithm for the resource-constrained project scheduling problem. 
European Journal of Operational Research 185(2):495-508. 

[8] Safaei, N., Saidi Mehrabad, M. and Jabal-Ameli, M.S. (2008) A 
hybrid simulated annealing for solving an extended model of dynamic 
cellular manufacturing system. European Journal of Operational 

Research 185(2):563-592. 
[9] Merkle, D., Middendorf, M. and Schmeck, H. (2002) Ant colony 

optimization for resource-constrained project scheduling. IEEE 

Transaction on Evolutionary Computation 6(4): 333-346. 
[10] Zhang, H., Li H. and Tam C.M. (2006) Particle swarm optimization 

for resource-constrained project scheduling. International Journal of 

Project Management 24(1): 83-92. 
[11] Herroelen, W., De Reyck, B. and Demeulemeester, E. (1998) 

Resource-constrained project scheduling: a survey of recent 
developments. Computers and Operations Research 25(4): 279–302. 

[12] Kolisch, R., Sprecher, A., Drexl, A. (1995) Characterization and 
generation of a general class of resource-constrained project 
scheduling problems. Management Science 41, 1693-1703. 

[13] Hartmann, S. and Kolisch, R. (2000) Experimental evaluation of 
state-of-the-art heuristics for the resource-constrained project 
scheduling problem. European Journal of Operational Research 
127(2):394-407. 

[14] Kolisch, R. and Hartmann, S. (2006) Experimental evaluation of 
heuristics for the resource-constrained project scheduling: an update. 

Figure 4: Gantt chart of a small project 

http://web.nbaa.org/public/ops/adm/fde/#contents�


       SMC 2009 

European Journal of Operational Research 127(2):394-407. 

 


