
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

2009 IEEE International Conference on Systems, Man, and Cybernetics
[Proceedings], pp. 4512-4517, 2009-10-11

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=6ca27520-5058-45dc-a85b-be314812f596

https://publications-cnrc.canada.ca/fra/voir/objet/?id=6ca27520-5058-45dc-a85b-be314812f596

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /
La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

A dynamic scheduling algorithm for time and resource-constrained

task networks
Hao, Q.; Xue, Y.; Wang, S.; Shen, W.

http://www.nrc-cnrc.gc.ca/irc

A dynamic scheduling algorithm for t ime and resource-constrained

task netw orks

 N R C C - 5 1 1 4 1

H a o , Q . ; X u e , Y . ; W a n g , S . ; S h e n , W .

O c t o b e r 2 0 0 9

A version of this document is published in / Une version de ce document se trouve dans:

IEEE International Conference on Systems, Man, and Cybernetics, San Antonio,
Tex. October 11-14, 2009), pp. 4512-4517.

The material in this document is covered by the provisions of the Copyright Act, by Canadian laws, policies, regulations and international
agreements. Such provisions serve to identify the information source and, in specific instances, to prohibit reproduction of materials without
written permission. For more information visit http://laws.justice.gc.ca/en/showtdm/cs/C-42

Les renseignements dans ce document sont protégés par la Loi sur le droit d'auteur, par les lois, les politiques et les règlements du Canada et
des accords internationaux. Ces dispositions permettent d'identifier la source de l'information et, dans certains cas, d'interdire la copie de
documents sans permission écrite. Pour obtenir de plus amples renseignements : http://lois.justice.gc.ca/fr/showtdm/cs/C-42

http://www.nrc-cnrc.gc.ca/irc
http://laws.justice.gc.ca/en/C-42/index.html
http://lois.justice.gc.ca/fr/showtdm/cs/C-42

1-4244-2384-2/08/$20.00 ©2008 IEEE SMC 2008

A Dynamic Scheduling Algorithm for
Time- and Resource-Constrained Task Networks

Qi Hao, Yunjiao Xue, Shuying Wang and Weiming Shen
Centre for Computer-assisted Construction Technologies

National Research Council Canada
London, Ontario, Canada

[qi.hao; yunjiao.xue; shuying.wang; weiming.shen]@nrc.gc.ca

Abstract—The resource-constrained project scheduling

problem (RCPSP) is an extensively explored area. The existing

RCPSP approaches tend to focus on single project scheduling

problems without practical support to address the multiple

project schedule coordination which involves constraints defined

across projects. This paper extends RCPSP by involving time and

resource constraints and proposes a practical dynamic task

network scheduling algorithm. This algorithm takes time

constraints, resource constraints, and particularly the dynamic

task execution status into consideration. Dynamic scheduling

through a partial task network is considered a unique feature of

this algorithm. The proposed algorithm is fully implemented and

tested in a web-based aircraft inspection maintenance

management system.

I. INTRODUCTION

Scheduling, as loosely defined by Sule [1], involves
defining priorities or arranging activities to meet certain
requirements, constraints, or objectives. Project scheduling is
less difficult if only precedence relationships constrain the
activity schedule [2]. However, in practice, activities do not get
completed on their own. Instead, they consume resources in the
process. Allocating scarce resources among competing
activities adds significant complexity to scheduling, which is
known as the resource-constrained project scheduling problem
(RCPSP) and is NP-hard in the strong sense [3].

Time constraints attached to tasks intentionally leave
further time lags between sequential tasks. For example, if a
task is defined to “start no earlier than” a certain time, the time
then becomes a hard constraint (front point barrier) that the task
cannot surpass. The time constraints as well as the resource
constraints extend the RCPSP to the problem of time- and
resource-constrained project scheduling (TRCPSP). TRCPSP is
“over-determined” or “over-constrained” when facing
conflicting time and resource constraints.

One example of TRCPSP is aircraft inspection and
maintenance. A regular schedule of maintenance services on an
aircraft is very important to ensure that the fleet can serve its
missions promptly, properly, and reliably within its designed
life cycle. In order to maintain an aircraft in a state of
“airworthiness”, regulations require various kinds of periodical
inspections [4]. In the periodical inspections and maintenance
practice, major “scheduled” inspection/repair tasks require
extensive expertise, constant re-assessment of changing
priorities, and frequent re-scheduling in response to changes in

personnel, skill sets, equipment availability, and most
specifically, to coordinate with the receiving schedule of parts-
in-order from the supply department and the repaired
components from the external machining shops.

Another big challenge faced by aircraft maintenance
facilities is to effectively resolve conflicts caused by shared
resources among parallel maintenance projects or crews. The
multi-project schedule coordination issue has been specifically
addressed in a separate paper [5]. This paper will broadly
review the literature in RCPSP researches and applications. A
formal description of the TRCPSP is given in Section 3
following a problem specification originated from the aircraft
maintenance scheduling problem. We propose a practical
dynamic scheduling algorithm based on task network reasoning
and heuristics (in Section 4) which takes time constraints,
resource constraints and task execution status into
consideration. The proposed approach has been fully
implemented and tested in a web-based aircraft periodical
inspection and maintenance system. Implementation issues are
briefly presented in Section 5.

II. LITERATURE REVIEW

Project planning and scheduling has attracted ever growing
attention both from science and practice because of the broad
applications of the term “Project”. It is concerned with single-
item or make-to-order production where scarce resources have
to be met when scheduling dependent activities over time [6].

The RCPSP as a research domain has attracted intense
activity for several decades in mathematical modeling
(including integer programming, dynamic programming, and
branch-and-bound approaches), operations research, constraint
satisfaction, heuristics and meta-heuristics based computation
methods, for example, genetic algorithm [7], simulated
annealing [8], ant colony [9], and swarm theories [10].

Özdamar and Ulusoy [2] have summarized RCPSP
approaches according to their objectives, resource types,
constraint specifications, time-resource functions, single vs.
multiple projects, and optimization vs. heuristics. Brucher et al.
[6] conducted a comprehensive literature review on RCPSP
approaches and they believed that project scheduling was not
comparable to its counterpart of machine scheduling in a
common notation and classification scheme. Based on the
review and summary of 200 papers, they proposed a new
classification scheme to close the gap. Each classified area of
project scheduling under resource constraints has been

 SMC 2009

extensively surveyed since the 1960s. Herroelen et al. [11] has
directed readers to these early reviews in its references while
the survey itself focused on recent progress made with optimal
branch-and-bound procedures and their important extensions.
Özdamar and Ulusoy [2] looked after the heuristic approaches
that they thought were more practical and feasible in solving
real-world problems.

To the view of the problem size, only small-sized problem
instances with up to 60 activities can be solved exactly in a
satisfactory manner, at least for the KSD set [12]. Therefore,
heuristic solution procedures remain the only feasible method
of handling practical resource-constrained project scheduling
problems. Recent overviews of heuristic procedures for the
RCPSP can be found in Kolisch and Hartmann [13,14].

III. PROBLEM DESCRIPTION

A. Problem Specification

The real world time- and resource-constrained project
scheduling problem for aircraft inspections and maintenance is
very complex in that:

• A regular project contains thousands of tasks
depending on the size of the projects.

• Task precedent relationships define the sequence of
tasks. In some cases, a task is required to “pin” on a fixed
time on the calendar which is usually called “time
constraint”.

• Different tasks in parallel ongoing projects often claim
the use of shared and limited resources, which are defined
as “resource constraints”. The following are some examples
of resource constraints:

o Shared equipments and tools
o Shared staff with different qualifications
o Shared working spaces with limited access

capacity, for example, a cockpit

• Customizable exclusive constraints are implicitly
required by practice. Some tasks in aircraft inspection are
“exclusive” in nature so that they cannot proceed at the
same time. For example:

“when draining fuel from an aircraft, all
other scheduled tasks for the same aircraft
which require electricity must be suspended
until the draining is finished.”

• Several aircraft are served in the same maintenance
facility. In other words, schedule coordination of multiple
projects is required. For example, the impact of the above
draining fuel task can be extended to all tasks across the
whole facility, no matter they belong to the same project or
not.

• Dynamic re-scheduling needs to be carried out
frequently in order to bring project schedules up to date
corresponding to changing situations, for example:

o Tasks that are delayed
o Tasks that are finished ahead of schedule
o Shortage of staff in specialty trades
o Shortage of equipment or tools
o Delayed arrival of replacement or repaired parts

o In emergent situations, “exchange of parts” may
happen. For example, an aircraft (for example, Project
A) can borrow a part already installed on another
aircraft (for example, Project B) in order to expedite the
progress of Project A.

Above specifications for aircraft inspection and
maintenance require a special algorithm that can generate new
coordinated project plans considering all within- or cross-
project constraints and changing conditions. Due to the harsh
requirements on project size, time constraints, resource
constraints, and unknown numbers of exclusive constraints, the
heuristic approach remains the only feasible method of
handling this real-world TRCPSP problem. All approaches in
literature have been tested at a small set of activities and
constraints, which is not comparable to the scale of the
TRCPSP problem specified in this paper. The scope of this
paper is dynamic scheduling and allocating conflict resources
within ONE aircraft inspection project.

B. Problem Formalization

We base our work on the concept of task network. A
traditional task network N = (T, P) is composed of a set T of
tasks and a set P of precedence relationships between tasks. T
= {t1, t2, …, tn}, where n is the number of tasks and each ti is a
task, 1 ≤ i ≤ n. Among them, t1 and tn stand for two dummy
tasks which are the beginning and the finish of the project. A
dummy task requires no actual work and it helps construct the
project hierarchy. The definition of a task network must be
COMPLETE. A complete network has no loops, no redundant
precedence relationships, and no isolated tasks (a task that has
neither preceding tasks nor subsequent tasks).

A task t∈Τ can be represented as 6-tuple (ID, D, EST, LST,
EFT, LFT) where ID - an unique identifier; D - duration; EST -
earliest start time; LST - latest start time; EFT - earliest finish
time; and LFT - latest finish time of the task. We use t.D, t.EST,
t.LST, t.EFT and t.LFT to refer to individual elements. Each
task is executed without interruption, which means that the
duration of a task cannot be split or leveled. In a traditional task
network, EST and LST are generally used to determine whether
a task is on the critical path. For a task t∈Τ, if t.EST = t.LST,
we say the task is “critical” because its delay will cause the
delay of the entire project. The paths composed of critical tasks
are called “critical paths”. People may also be concerned with
EFT and LFT in a task network; however, in most cases, they
can be ignored.

The following paragraphs define the constraints in task
networks with further details.

• Precedence constraints - P

For pt, st∈Τ, (pt, st)∈P means that pt is a preceding task of
st and st is a subsequent task of pt, i.e., st cannot start if pt
is not finished. Given a task network N = (T, P) and a task
t∈Τ, we use Pre(t) and Sub(t) to denote all direct preceding
tasks and direct subsequent tasks of t in N. Formally, we
have

pt∈Pre(t)⇒∃pt∈Τ: ∃(pt, t)∈P, and
st∈Sub(t)⇒∃st∈Τ: ∃(t, st)∈P.

 SMC 2009

There is no time lag between the tasks in a traditional task
network. That is, for any task

t∈Τ, t.EST = max(pt.EFT), pt∈ Pre(t) (1)
Equation (1) expresses the precedence constraints on task t
which require that t can only start when all the predecessor
tasks pt∈Pre(t) are completed.

• Time constraints - TC

There are four types of time constraints that can be
attached to a task t. They are:

- START-NO-EARLIER-THAN: TtTCtsnet ∈∈ ,),(

- START-NO-LATER-THAN: TtTCtsnlt ∈∈ ,),(

- FINISH-NO-EARLIER-THAN: TtTCtfnet ∈∈ ,),(

- FINISH-NO-LATER-THAN: TtTCtfnlt ∈∈ ,),(

The time constraints require that the following conditions
must be satisfied:

. .t EST t tsne≥ ; tsnltLSTt .. ≤ ;

tfnetEFTt .. ≥ ; tfnltLFTt .. ≤ (2)

Considering the precedence relationship () Pstt ∈, , the

four time constraints attached to t in (2) can be reduced to
two time constraints attached to t and st as in (3). Fig. 1
illustrates the formulation procedure of the time
constraints.

tsnetESTt .. ≥ ; tsnltLSTt .. ≤ ;

tfnetESTst .. ≥ ; tfnltLSTst .. ≤ (3)

• Resource constraints - RC

The resources constraints described in III.A are to be
extracted to “renewable resources”. Suppose that there are
K types of renewable resource and the resource constraints
applied to a task t can be represented as:

(), , ,1k tkt r RC k Kδ ∈ ≤ ≤ , where rk is a type of

resource and δk is the capacity that is required by task t on
rk. A type of resource rk is available with a limited capacity
ak. The constraint that rk puts on the whole project is that at
any time, the number of rk required by all tasks should be
within its maximum capacity/availability ak.

Kknia
Tt

kkt

i

i
,...,2,1;,...,2,1, ==≤∑

∈

δ (4)

• Exclusive Constraint

Suppose that there are K types of exclusive requirements,
an exclusive constraint applied to a task t can be

represented as (), ,1kt e EC k K∈ ≤ ≤ , where ek is an

exclusive constraint. It must be satisfied that for the whole
project, if a task t has an exclusive constraint ek defined on
it, then for ∀t'∈T and t'≠t:

).)'.().'.((

)).'().'.((

LFTtLSTtLSTtLFTt

EFTtESTtESTtEFTt

≥∪≤
∩≥∪≤

 (5)

Ideally, the objective of a TRCPSP problem is to minimize
the project duration (the finishing time of the unique dummy
task tn), subject to all constraints listed above. However, in
practical situations, the objective is to find a feasible rather than
optimal solution within a reasonable computation time frame.
We have developed a heuristic-based dynamic task network
scheduling algorithm to achieve this goal.

IV. A DYNAMIC SCHEDULING ALGOTHM
FOR TASK NETWORKS

The planning of a project estimates the start time and finish
time of each task before the tasks are actually executed.
However, projects often do not progress as scheduled. Firstly,
task duration is just an estimate so a task may finish earlier or
later than expected. Secondly, tasks may be dynamically
inserted into, or removed from the project, resulting in changes
to the schedule. Thirdly, conflicting task arrangements make
the schedule obsolete any time they arise. Therefore, the plan
should be dynamically adjusted during the execution of the
project.

A. Planning of a Traditional Task Network

Before a network (which represents a project) is planned
for the first time, the network will be initialized by creating
tasks, creating precedence relationships, and setting all
corresponding ESTs, LSRs, EFTs, and LFTs to null.

The algorithm for calculating the EST and LST of each task
uses a two-round reasoning process. In the first round, the
algorithm starts from the very beginning of the network (t1:
START_OF_THE_PROJECT), setting both the EST and LST
of t1 to the given start time of the project. Then, it traverses the
network until it reaches the last task (tn:
FINISH_OF_THE_PROJECT). For each task t and its
subsequent task st∈Sub(t), st.EST is calculated in the
following way:

. . , if .
.

max(. , . .), if .

t D t EST st EST null
st EST

st EST t D t EST st EST null

+ =⎧
= ⎨ + ≠⎩

In the second round, the algorithm starts from the last task tn,
set tn.LST= tn.EST ; and then, it traverses the entire network

Figure 1: Time constraints

 SMC 2009

until reaching the first task t1. For each task t and its preceding
task pt∈Pre(t), pt.LST is calculated as:

. . , if .
.

min(. , . .), if .

t LST pt D pt LST null
pt LST

pt LST t LST pt D pt LST null

− =⎧
= ⎨ − ≠⎩

The traditional task network planning has several limitations:

• The planning of a traditional task network requires a
single entry node in the network, which is always t1 -
START_OF_THE_PROJECT. If the project has already
started, i.e., some tasks are “finished” or “ongoing”, the
traditional task network does not support the re-scheduling
of the rest of planned tasks. However, in many cases, a
project is required to be re-scheduled at any time when
necessary, especially when the project is already in
progress.

• It only considers the precedence relationships between
tasks. It does not support the facts that tasks compete for
shared resources, or they may in fact be exclusive to each
other. Resolving resource or exclusive conflicts means
sequencing parallel tasks by prioritizing them.

• A traditional task network does not include intended
time lags (or gaps) between tasks. It is supposed that a task
will start right after all its preceding tasks are finished
without any delay. However, in reality, intended gaps may
be applied between tasks in terms of time constraints or
other reasons.

To address the above limitations of a traditional task
network, we propose the concepts of Extended Task Network,
Partial Task Network and a dynamic scheduling algorithm
based on the partial task network. In the proposed algorithm, a
project can be dynamically re-planned based on a given “plan
time” and the planning process will only affect the tasks that
are not started yet. The planning does not always start from the
very beginning of the project; instead, it can start from
multiple entry points of a dynamically constructed partial task
network. Also, more constraints other than the precedence
relationship are resolved in our algorithm.

B. Extended Task Network

An extended task network N = (T, P, C) is composed of a
set T of tasks, a set P of precedence relationships between
tasks, and a set C of constraints. In an extended task network,
a precedence relationship p∈P is defined as a 3-tuple p = (pt,
st, vd), where pt is the preceding task, st is the subsequent task,
and vd is a virtual duration (or an intended time gap) on the
link between pt and st. Therefore, for a task st∈T, st.EST =
max(pt.EST + pt.D + vd), where pt∈ Pre(t). A constraint c∈C
is either a time constraint, a resource constraint, or an
exclusive constraint.

C. Partial Task Network (PTN)

Besides making an initial plan for the entire project, it is
required to plan just a portion of the project and make sure that
the schedule of the planned portion will fit in the entire
schedule. A partial task network NP = (TP, PP, CP) as a part of
a full extended task network N = (T, P, C) is composed of a set
TP of tasks, a set PP of precedence relationship, and a set CP of

constraints, where TP ⊆ T, PP ⊆ P, and CP ⊆ C. For pt, st ∈ TP,
(pt, st) ∈ PP means that pt is a preceding task of st. A partial
network satisfies the following closure rule:

pt ∈ TP→¬∃st ∈ TP: (pt, st) ∈ P ∧ (pt, st) ∉ PP (7)

Equation (7) means that if one task is in a partial task
network, then all of its direct and indirect subsequent tasks
should also be included in the partial task network as well. A
partial task network reflects a portion of a full task network
and the portion itself must be complete.

The partial network is used to calculate the ESTs and LSTs
of a set of planned tasks while other preceding tasks outside
the partial network are not affected. Given a task t in the full
task network, its original EST and LST are set as t.ESTO and
t.LSTO. If the new EST and LST values of a partial network are
denoted as t.ESTP and t.LSTP, then:

t.EST = max(t.ESTP, max(pt.ESTO + pt.D + vd(pt, t))),
where pt is a preceding task of t in terms of the full task
network (not the partial task network) and vd(pt, t) means
the virtual duration on the link between pt and t.

Similarly,
t.LST = max(t.LSTP, max(pt.LSTO + pt.D + vd(pt, t))).

D. Dynamic Scheduling Algorithm for the Partial Task

Network

The process of creating and planning a partial task network
includes five major steps as described below.

STEP 1: Finding the heads of the partial network.

To perform a re-planning, the first step is to find the
“heads” of the partial network, and build a partial network
based on the heads. A head is a task that has no preceding task
that should be included in the partial network.

For dynamic planning based on a given plan time ι, there
are three ways to deal with the tasks:

(1) Finished or ongoing tasks should be discarded;
(2) The tasks that were planned to start later than ι can be
moved forward to start from ι if all its preceding tasks are
already finished;
(3) The tasks that were planned to start earlier than ι but
actually not started yet should be postponed to start from ι.

Fig. 2 shows a scenario when a project needs to be re-
planned at time ι. In this scenario task t1 is finished, task t2 has
started but not finished (ongoing) and all others tasks (t3, t4, t5
and t6) are planned (not started). The solid or dashed lines
between tasks represent the precedence relationships.

At time ι, an observation from rule (3) is that task t3 and t5
should be postponed to time ι since their original ESTs are
earlier than ι; and from rule (2), task t4 and t6 should be moved
forward (or expedited) since their original ESTs are later than
ι. However, t5 is not a head since t5 has a preceding task t3; t3
is a head and should be postponed to time ι. t4 is another head
and should be pushed forward to time ι because its direct
proceeding task t1 is not included in the partial network
according to rule (1). Since t6 has an ongoing task t2 that is
expected to be finished later than ι, t6 actually cannot be

 SMC 2009

pushed forward to ι. However, since t6 has no preceding tasks
that should be included in the partial network, it is also a head.
In Fig. 2, the yellow circles indicate that t3, t4, and t6 will be
used as heads in the planning process.

The ESTs of the head tasks need to be determined before
the next step. Basically the EST of each head task can be set as
the given time ι. The exceptional cases are:

(1) A head task to be pushed forward is preceded with
ongoing tasks. If the maximum EFT of a head task
ht’s proceeding tasks is denoted as EFTmaxp and
EFTmaxp ≥ ι, ht.EST should be set as EFTmaxp.

(2) If there is a START-NO-EARLIER-THAN time
constraint attached to a head task ht and the
constrained time is ιc, then ht.EST should be the
maximum of ESTmaxp and ιc.

For re-planning based on a specific set of given tasks,
simply take them as the heads of the partial network. However,
only the independent tasks should be taken as heads. All
dependent tasks that have direct or indirect proceeding tasks in
the given set should be eliminated first.

STEP 2: Creating a partial task network.

After the heads (denoted as a set H) are discovered, a
virtual starting task vt is created and connected to each head
task. The duration of the virtual task is set as 0. As the virtual
entry node of the network, vt.EST = vt.LST =ι. For any ht ∈ H,
a link (vt, ht) is created and added into PP. For each link (vt,
ht), a virtual duration is calculated as vt.EST – ht.EST.

A complete PTN is then constructed by finding the closure
of the head tasks. A closure is composed by all the tasks that
have direct or indirect precedence relationships with the head
task. The PTN created from Fig. 2 is drawn in Fig. 3. The span
of ι is enlarged to clearly illustrate how vt is connected to the
head tasks.

STEP 3: Calculating the ESTs of the tasks in the PTN

The algorithm of calculating the ESTs of all tasks in the
PTN will start from the virtual task node vt. When calculating
the EST of a subsequent task st of the current task t, st.EST =
t.EST + t.D+ vd, where vd is the virtual duration on the link
between t and st.

After st.EST is calculated, the algorithm validates whether
any time constraints attached to st is violated. If a task st has a
START-NO-EARLIER-THAN time constraint defined and the
constrained time is ιc, the algorithm checks the just calculated
st.EST. If st.EST is earlier than ιc, the task should actually be
forced to start at ιc, i.e., set the virtual duration between st and
the current task t to ιc – st.EST and then update st.EST to ιc.

If st has START-NO-LATER-THEN time constraint
defined and the constrained time is ιc, but the calculated st.EST
is later than ιc, then an irresolvable conflict has occurred. The
algorithm has to terminate. Either the time constraints on st or
the network definition should be modified to avoid such a
conflict.

STEP 4. Resolving other conflicts between tasks

For the current task t, if t has an exclusive constraint
defined, or if t needs to use a limited resource, then other tasks
that are affected by the exclusive constraint or that require the
same resource actually cannot be scheduled simultaneously
with t, even though they do not have precedence relationships.
Therefore, when resolving the conflicts, some tasks should be
moved to a later time and the virtual durations on links should
be updated accordingly.

If task t and t' overlap in terms of time schedule but t and t'
cannot be executed at the same time, the algorithm applies
heuristic rules to determine the priorities of t and t'. The one
with a lower priority should be moved to a later time.
Assuming that t is to be moved, then t.EST is set as t'.EFT.
Then, for each preceding task pt of t, the virtual duration vd of
pt and t is set as |pt.EST-t.EST|. This process is repeated until
there is no more conflict remaining.

STEP 5. Calculating LSTs of tasks

In the final step, the LSTs of tasks are calculated
backwards using the formulation described in the extended
task network which considers virtual durations on task links.

V. IMPLEMENTATION AND CASE STUDY

Based on the proposed partial task network and dynamic
scheduling algorithm, we have developed a web-based system
to manage multiple aircraft inspection projects. The system
has a three-layer architecture: the presentation layer, which
contains a set of JSP pages; the application layer, which is
composed of a set of Java classes that implement the system
functionalities, execute task network scheduling algorithms, Figure 3: Creating a PTN at time ι

t4

ι

t3

t5

t6

tn

vt

Time

Figure 2: Finding heads for PTN at time ι

Finished Task

t4

ι

t1

t2

t3

Ongoing Task Planned Task

t5

t6 tn

Time

Heads

 SMC 2009

and provide information to the presentation layer;
and, the persistence layer, which is built as a MySQL
database, providing fundamental data query and
persistent storage to the application layer.

The hierarchy of aircraft inspection projects is
built in four layers: Project Phases Areas
Cards. Again, we involve more pairs of dummy tasks
at different levels to help represent the hierarchy. A
regular task MUST belong to a “stage” in a project;
and it may further belong to a group defined under the
stage (“Area” or “Area and Cards”).

The system supports creating new projects from
pre-defined templates. The inspection tasks included
in the templates are usually routine inspection tasks
that must be applied to every aircraft under
inspection. A sample template contains 700~800
routine inspection tasks and 600~700 dummy tasks
for marking the boundaries of 12 stages and roughly
300 groups in the project hierarchy. Users can
dynamically add new inspection tasks during any stage of a
project.

When creating a new project, the system requires the
project manager to provide a planned start time. This given
time will be used to create the first plan for the project. Then,
the user can request to re-plan a project whenever it is
necessary. In practice, re-planning is done repeatedly on a
regular basis, for example, the beginning of each day or each
week. If a new task is inserted into the project, re-planning
will be automatically done by the system to maintain a
consistent schedule for all affected tasks. Fig. 4 shows a Gantt
chart view of a project schedule.

VI. CONCLUSION

In project management, more complicated constraints must
be addressed when facing real-world problems. Coping with
the complexity of TRCPSP is a theoretical challenge although
part of this problem (the RCPSP problem) has been an active
research topic for several decades. Based on the traditional
task network, we proposed the concept of an extended task
network and partial network, and a practical dynamic
scheduling algorithm for time- and resource-constrained task
networks, in which time constraints, resource constraints,
exclusive constraints, and particularly the changing project
execution conditions are all resolved. In response to emergent
events (e.g., absence of maintenance staff and delayed arrival
of components), a project schedule can be re-calculated at any
time based on the transient partial task networks (PTN) and
heuristics. The development of the algorithm uses a bottom-up
strategy and a practice-oriented attitude that is very different
from those developed from purely academic researches.

The proposed approach is fully implemented and applied
to build an aircraft inspection maintenance management
system featured with effective decision supports for project
dynamic scheduling and conflicts resolution for multiple
projects. Currently the developed prototype system is ready for
field testing and deployment. Though originally targeting for
aircraft inspection and maintenance, our approach can be
applied to scheduling problems in a wider area of applications,

for example project management and facility maintenance
management in industries.

REFERENCES

[1] Sule, D.R. (1997) Industrial Scheduling. PWS Publishing Company,
Boston, MA.

[2] Özdamar, L. and Ulusoy, G. (1995) A survey on the resource-
constrainted project scheduling problem. IIE Transactions 27(5):574-
586.

[3] Blazewicz, J., Lenstra, J.K., and Rinnooy Kan, A.H.G. (1983)
Scheduling subject to resource constraints: classification and
complexity. Discrete Applied Mathematics 5:11-24.

[4] Flight Department Essentials: Helping Your Business Take Flight,
Section 11. URL: http://web.nbaa.org/public/ops/adm/fde/#contents

[5] Hao, Q., Wang, S., Xue, Y, Shen, W. (2009) An interactive decision
support method for multi-project schedule coordination. CSCE 2009

Construction Specialty Conference. May 27-30, St. John ’ s,
Newfoundland & Labrador.

[6] Brucker, P., Drexl, A., Möhring, R., Neumann, K. and Pesch, E.
(1999) Resource constrainted project scheduling: notation,
classification, models and methods. European Journal of Operational

Research 112:3-41.
[7] Vallas, V., Hallestin, F. and Quintanilla, S.A. (2008) A hybrid genetic

algorithm for the resource-constrained project scheduling problem.
European Journal of Operational Research 185(2):495-508.

[8] Safaei, N., Saidi Mehrabad, M. and Jabal-Ameli, M.S. (2008) A
hybrid simulated annealing for solving an extended model of dynamic
cellular manufacturing system. European Journal of Operational

Research 185(2):563-592.
[9] Merkle, D., Middendorf, M. and Schmeck, H. (2002) Ant colony

optimization for resource-constrained project scheduling. IEEE

Transaction on Evolutionary Computation 6(4): 333-346.
[10] Zhang, H., Li H. and Tam C.M. (2006) Particle swarm optimization

for resource-constrained project scheduling. International Journal of

Project Management 24(1): 83-92.
[11] Herroelen, W., De Reyck, B. and Demeulemeester, E. (1998)

Resource-constrained project scheduling: a survey of recent
developments. Computers and Operations Research 25(4): 279–302.

[12] Kolisch, R., Sprecher, A., Drexl, A. (1995) Characterization and
generation of a general class of resource-constrained project
scheduling problems. Management Science 41, 1693-1703.

[13] Hartmann, S. and Kolisch, R. (2000) Experimental evaluation of
state-of-the-art heuristics for the resource-constrained project
scheduling problem. European Journal of Operational Research
127(2):394-407.

[14] Kolisch, R. and Hartmann, S. (2006) Experimental evaluation of
heuristics for the resource-constrained project scheduling: an update.

Figure 4: Gantt chart of a small project

http://web.nbaa.org/public/ops/adm/fde/#contents�

 SMC 2009

European Journal of Operational Research 127(2):394-407.

