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Bidding Languages for Auction-based Distributed Scheduling 

Chun Wang, Member, IEEE, Hamada H. Ghenniwa, and Weiming Shen, Senior Member, IEEE 

  

Abstract—The kind of bidding languages used in 

combinatorial auctions contributes to various aspects of 

computational complexities. General bidding languages use 

bundles of distinct items as atomic propositions associated with 

logical connectives.  When applying these languages to 

auction-based scheduling, the scheduling timeline needs to be 

discretized into fixed time units. We show that this 

discretization approach is computationally expensive in terms of 

valuation, communication, and winner determination. We 

present a requirement-based bidding language designed for 

auction-based scheduling. In the language, bids are specified as 

the requirements of scheduling a set of jobs, and prices are 

attached to the job completion times. Without timeline 

discretization, this language allows the expression of scheduling 

valuation functions in a natural and concise way, such that 

valuation and communication complexities are reduced. In 

addition, it results in efficient winner determination problem 

models. We have compared the winner determination models 

formulated using the two types of languages in terms of solving 

speed and scalability. Experimental results show that the 

requirement-based language model exhibits superior 

performance.  

I. INTRODUCTION 

In many combinatorial auctions (CAs), the goods to be sold 
are the processing times of resources, e.g. landing timeslots of 
airport runways [8], machine processing times of a 
factory [13], computation and network accessing times of 
internet resources [1], and the right to use railroad tracks for a 
period of time [7]. In this class of CAs, agents have jobs that 
need to be completed during specific time windows and they 
compete with each other for the resources to schedule their 
own jobs according to their respective objectives. We may 
refer this type of CA as auction-based scheduling.  

 As in other CAs, agents’ valuations in auction-based 
scheduling often exhibit complementarities. For example, due 
to scheduling constraints, an agent may need to obtain a set of 
specific combinations of time periods on resources to process 
its jobs. The complementarities of agents’ valuations present 
particular challenges for the design of bidding languages in 
terms of expressiveness, conciseness, and naturalness. 
Logical languages have been proposed to address this 

challenge [6]. These languages (denoted by ) use bundles 

of items with associated prices as atomic propositions and 
combines them using logical connectives.  

BL

  languages target CAs in general. However, they cannot 

be applied to scheduling problems directly because they are 
designed for auctioning discrete goods. In scheduling 
problems, processing time on resources exhibit continuity. In 
order to apply , the scheduling timeline of resources needs 

to be discretized into fixed time units and these units are 
treated as distinct items in

BL

BL

 
 

BL [13] [3]. With timeline 

discretization, agents can express their time related 
scheduling requirements, such as release times, due dates, 
indirectly by attaching values to various time units 
combinations. It will be shown in Section III, that 
determining the value for a time unit’s combination could be 
a NP-hard optimization problem in certain auction-based 
scheduling settings. In addition, this timeline discretization 
approach can generate a large number of items to be sold in 
the auction if the time windows in question are not small.  For 
example, a one week time window on 10 resources can be 
discretized into more than 100,000 time units if the time 
accuracy we need is in minutes (which is a practical 
requirement in many scheduling domains). Generally 
speaking, in combinatorial auctions the number of bids is 
exponential in the number of the items to be sold. A large 
number of items can inflict heavy burdens on the auction in 
terms of bids evaluation, communication, and winner 
determination.  

 An alternative to the timeline discretization approach is 
to design languages which allow agents to directly express 
their time requirements and the values associated. We refer to 
this type of language as requirement-based language (denoted 
by ).   languages enable agents to explicitly express 

their time-related requirements without specifying the values 
on the combinations of resource time units. For example, in a 
train scheduling auction setting 

RL RL

[7], Parkes and Ungar 
designed a requirement-based language which allows train 
agents to specify the accessing and leaving time on a rail road 
track in their bids. Comparing with ,  languages do not 

require agents to compute the values on the combinations of 
resource time units. However, this does not mean that the 
computation used to determine the values of time units’ 
combinations has been eliminated by using . Instead, it is 

migrated to the auctioneer’s winner determination (will be 
explained in detail in Section 3). How this migration 
approach will affect the computational complexity of 
auctioneer’s winner determination is an important question 
that will be answered by the comparative study.  

BL RL

RL

 This paper investigates the complexity issues of using 
 and  in auction-based scheduling. While we focus 

only on bidding languages, we assume agents’ strategic 
behavior and, therefore, auctions are a suitable mechanism 
for the scheduling problems. Kalagnanam and Parkes 

BL RL

[2] 
reviewed four areas of computational constraints, which 
restrict the space of feasible combinatorial auction 
mechanisms, including, strategic complexity, communication 
complexity, valuation complexity and winner determination 
complexity. Since strategic complexity is not affected by 
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languages [6], we study the other three in the context of 
auction-based scheduling. For valuation and communication 
complexities, we compare the two types of languages 
analytically; for the winner determination complexity, we 
compare them experimentally. Our main results are (1) in 
auction-based scheduling,  languages have reduced 

complexities in agents’ valuation and system’s 
communication; (2) although  languages migrate agents’ 

valuation complexity to the auctioneer’s winner 
determination, this type of language enables scheduling 
specific modeling techniques to be incorporated into the 
winner determination problem formulation, which results in a 
more efficient model than the traditional one formulated by 

 in terms of solving speed and scalability. 

RL

RL

L

Ng ∈

BL

RL

Figure 1 Example of the Scheduling Auction Model 

The rest of the paper is organized as follows: Section II 

formulates the scheduling auction model and specifies the 

 language used in this paper; Sections III and IV, analyze 

the valuation and communication complexities of  and  

and in Section V, we conduct a computational study to 

compare the performance of the winner determination 

problem models formulated using  and . We conclude 

the paper in Section VI. 

BL RL

RL BL

II. THE AUCTION FOR SCHEDULING PROBLEMS 

Wellman et al. [13] modeled a factory scheduling problem as 
a CA problem. In the model, a factory conducts an auction for 
time slots on a single resource. Time slots are treated as 
distinct items that can be allocated for the production of 
customer orders. Each customer (modeled as an agent) has 
one single-operation job to be completed. An agent’s job is 
defined by its duration, its release time, its deadline, and the 
price the agent places on the job. To complete its job, the 
agent must acquire a number of slots no less than the length, 
within its feasible time window. In this paper, we expand the 
model from Wellman et al. to accommodate multiple 
resources and multi-operational jobs. We use this general 
model as the base for comparing various types of 
complexities related to and . We refer to this general 

model as the scheduling auction. 

BL R

The scheduling auction consists of a set of agents, 

denoted by . Each agent has a set of jobs . Each 

job requires the processing of a sequence of 

operations

N

g

kjo ,

gJ

j JJ ∈

( )jnk ,...,1=

kjp ,

. An operation  has a specified 

processing time , and its execution requires the exclusive 

use of a designated resource for the duration of its processing. 

is constrained by a release time 

kjo ,

gJ gr by which the jobs are 

available for processing, and a deadline by which all jobs 

must be completed. There are precedence constraints among 
the operations of a job And o precedence constraints among 

jobs. An allocation of all jobs in , on the resources over 

time, form a schedule for agent

gd

gJ

g , denoted by . Let gS

( )gSCmax denote the completion time of the last job in gS (

( )gSCmax he makespan of gS in machin scheduling). 

For each agent Ng

,called t e 

∈ , its value fo dule gS isr a sche ( )gg Sv . An 

agent pre s a ule with a shorter makespan, that is, for 

two schedules gS and

fer  sched
gS , if ( ) ( )gCm

g SSC axmax ≤ , 

( ) ( )g . In tg S h contextgg vS ≥

of 

v e ng BL , with a little 

abuse notation, gS can also be seen as set of time units 

allocated to agent

 of usi

a 

g . The overall objective of e auction is to 

maximize the sum of all the agents’ values. 
Figure 1 sh
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lem with three resources ( 1R , 2R , 3R ) and four jobs. Job1 

has 3 operations ( 12,11,1 ,, OOO ); b  has 2 operations (

2,21,2 ,OO ); job 3 has  ( 3,32,31,3 ,, OOO ); job 4 has 2 

o  ( 2,41,4 ,OO ). The arcs (w s) represent 

the preceden traints between operations; and, arcs 
(with dotted line) link operations to their designated 
processing resources. 

The scheduling au
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real 

II

ba

world scheduling problems. In manufacturing, for 
example, customers have jobs with different release times and 
deadline requirements to be processed in the factory. The 
factory tries to allocate the limited resources to the customers 
who value them the most. Similar scenarios can also be found 
in other domains such as transportation and grid computing. 
While there are many scheduling models and algorithms in 
classical scheduling theory, the scheduling auction modeled 
here assumes that agents are self-interested and they behave 
strategically. 

I. QUIREMENT

es 

 

In the scheduling auction models, agents derive

sed on the levels that their objectives have been satisfied. In 

this section, we present a requirement-based bidding 

language RL , in which the atomic propositions attach prices 

to require ents of processing jobs rather than bundles of 

items (as in BL ). The purpose here is to design a language that 

captures the trinsic structure of the scheduling problem, 

such that agents’ valuations can be expressed naturally and 

concisely using the language.  

m
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A. General Structure of Atomic Propositions in  RL

As depicted in Figure 2, an Atomic Proposition of consists 

of the Requirement of completing a set of Jobs according to a 
Performance requirement and the Price that the agent is 
willing to pay given the Performance requirement is satisfied. 
The Performance is defined by a Measure and its Level. 
Formally, an Atomic Proposition can be represented by a 

4-tuple

RL

iceLevelMeasureJobs Pr,,, . 
Figure 2 Structure of Atomic Proposition in 
Requirement-Based Language Jobs represent the set of jobs from an agent that needs to be 

processed. For each job, the associated operations, constraints 
over the operations, and eligibility constraints over resources 
need to be specified. The actual content language used to 
describe Jobs can be domain specific. We do not discuss it in 
this paper.  
Measure is a criterion based on which the quality of a 
schedule for Jobs is evaluated. Some typical criteria include 
total-production-time (makespan), mean flow-time, 
maximum tardiness, and weighted tardiness.  
Level is the value achieved by a schedule in terms of the 
objective function specified in the Measure. For example, if 
the Measure is makespan and the  Level is 20, the semantic 
interpretation of the Performance is to require the jobs to be 
scheduled with a makespan no larger than 20. 
Price is the amount of money that the agent is willing to pay 
given that the Jobs are scheduled at a specific level based on 
the measure. For example, the Atomic Proposition 

100$,20,, MakespanJobs  means if the Jobs are scheduled 

to be completed with a makespan of 20, the agent is willing to 
pay $100.  
As the Performance (Measure and Level) can be defined by 
the job agents, the Atomic Proposition structure is general 
enough to capture job agents’ requirements regarding the 
processing of their jobs. However, for a specific application 
domain, it is normal that only a small portion of the measures 
is of importance to agents. For example, in eMarket 
environments, the common performance measure that a client 
will require is the delivery date of his/her order, which is the 
makespan in terms of scheduling. We will specify a type of

RL which uses makespan as the measure in the following 

subsection. 

, 

B. The Completion Time-Based  RL

The atomic proposition of the time-based consists of a 

requirement of scheduling a set of jobs, the completion time 

before which the jobs need to be completed, and the price that 

the agent is willing to pay given the completion time is 

satisfied. We refer this atomic proposition as CBid 

(Completion time-based bid). 

RL

 CBid is a 4-tuple plftCJ gg ,,, max where is a set that 

contains the descriptions of the jobs and constraints;  

defines that the measure being used is makespan; lft is the 

latest finishing time and is the price that the agent is willing 

to pay for . CBids can also be connected by logical 

connectives. For example, if an agent is willing to pay $100 
for the guarantee of completing its jobs before 4:00PM or $60 

for completing its job before 6:00PM, it can express this 
valuation by submitting an XOR-CBid:

gJ

gCmax

p

lftC g ≤max

60,$00:6,,100,$00:4,, maxCJ gg

cessing 
requirements (job descriptions). However, it does not require 

e agent to reveal its true valuation information ( lft and p ). 

This is quite reasonable in many real world situa ns. r 
example, a customer may benefit from lying about the true 
value and due date of manufacturing a part, however, there is 
no need to lie about the processing requirements of the part 
because the part will eventually be processed based on the 
requirements. 

max PMCJXORPM gg . Note 

that CBid requires an agent to reveal its true pro

IV. VALUATION AND COMMUNICATION COMP IT
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A. Valuation Complexity 

Valuation is usually B

tion-based scheduling because agents need to solve ard 
optimization problem in order to determine the value of a 
bundle. In this section, we analyze the computational 
complexity of agent valuation.  

We first define the value of a e BL

gS be a schedule that contains jobs of agent g . For a bundle

B of time units, if BS g ⊆ , we say gS is covered by B . In 

many cases, a bundle can several fea ble schedules for 
an agent. We define the value of a bundle to an agent as the 
value of the best schedule (with the shortest makespan) the 
bundle covers. 

 cover si

Figure 3 In auctions using requirement-based b
languages, agents’ valuation complexity is migrated 
the auctioneer’s winner determination. In addition to 
determining winning bids, the auctioneer needs to 
schedule jobs at the same time. 

idding
to
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Definition 1: Let Γ he set of schedules of agentbe t g

covere byd B . The va ation of agent lu g  on bundle B i

hat

s

e  

 set 

to be th  value of the best schedule Γ∈g
S* , such t  

any Γ∈g
S , 

for

( ) ( )ggg .g SSv * v≥  

 If we assume that, for any , Γ∈g
S ( )gSgv  has been given 

to agent g , according to Definition 1, the valuation problem 

for a bundle of time units in the BL  model can be described 

as: given a set of jobs of an agent to be allocated to a bundle of 
time units of various resources, what is the shortest possible 
makespan that a feasible schedule can have?  Answering this 
question is equivalent to solving a job shop scheduling 
problem with availability constraints (JSPAC), which is 
NP-hard [5]. This proves:   

Proposition 1: In the scheduling auction model using B , 

an agent’s valuation problem for a bundle of time units is 

NP-hard. 

L

 While agents’ valuation problems in  models are 

NP-hard, they become trivial in  models. In  models, 

agents do not deal with bundles of time units. In other words, 

they do not spend their computational time on finding 

appropriate time units combinations on resources to schedule 

their job requirements. Instead, they just send their 

requirements (jobs and required completion times) and 

associated values as bids to the auctioneer. Since we have 

assumed that, for any , 

BL

RL RL

RL

S Γ∈g ( )gSgv  is a given, the task of 

finding the value for a schedule is trivial for agents using RL

bids. T erefore, from the agents’ point of view, the RL  model 

 the advantage of avoiding the NP-hard problem of solving 

the JSPACs. However, this does not mean agents’ valuation 

complexity has been eliminated in RL models. In fact, this 

putational burden is shifted to the auctioneer’s winner 

determination because, in RL  WDP, the auctioneer has to 

determine the winning bids and, at the same time, schedule 

jobs on resources. This idea is illustrated in Figure 3.  

B. Commu

h

has

com

nication Complexity 

 of an auction considers the 
siz

c uc

The communication complexity

e of messages that must be sent between the agents and the 
auctioneer. A simple measure of the size of messages could 
be the number of bids needed to implement the outcome of an 
auction. In general CAs, the number of bids for an agent is

12 −m , where m is the number of items to be sold. However, 

in t heduling a tion model, the number of feasible bids 
can be restricted by the scheduling constraints. Formally, 
consider an agent 

he s

g  has a job jJ  with jn operations to be 

processed in a time window with release time gr and deadline

. Let gg rdW −= be the size of the time window, which is 

the nu ber of time u ease time and the 
deadline. For each operation ko (since we only consider one 

job for the time being, we drop the job subscript

gd

to

ed

 simplify 

the notations), a processing time kp is given. To schedule the 

set of operations inW , three constraints have to be satisfi :  

jkkk nkforSpS ≤<≤+ −− 111    (1) 

grS ≥            1   (2) 

jn
g p−           (3)  

jn dS ≤

where is the ng time of an 

n co

By relaxing c aint (1) a

kS

o
g t

starting time of ko .  The starti

ntoperati uld vary in differe  feasible schedules. By 
countin he number of all comb ations of feasible starting 
times of operations, we can calculate the number of feasible 
schedules in a time window W by the following formula: 

∑ ∑ ∑
−− −− −

jn jn jnpppW pppW pW... ...21 32

1..   (4) 

in

=
jnj

p

nd set

= + −− jnnS SS SS01 12 11

...

+= p1

onstr 11 ...2 ===
jnp

) jn
jnW 1+− . Sinc

pp , an 

up

ble sch

per bound of (4) can be obtained as ( e an 

agent cab, at most, attach one value to a feasi edule, the 
following proposition holds: 

Proposition 2 For an agent with one job J , the number of j

bids in W is bounded by ( ) jn
jnW 1+− .  

Although Proposition  th

that an a ent needs to su ot g

2 shows that

es n

e number of bids 

g bmit do row exponen n

nd

u

ge

 BL

tially i
W , it still increases drastically when W increases. In real 

world applications, to maintain time accuracy, the time 
wi ow size W cannot be too small, whi  often results in a 

large number of bids. If an agent has multiple jobs, the 
number of m lti-job bids will grow even more quickly 
because of the combinations of single-job bids. 

 In the RL model, a CBid represents the value that an 

agent has over the completion time of its jobs. W

ch

ithout loss of 

nerality, we assume the completion times are of integer 

values. If an agent has a set of jobs gJ with a release time gr

and a deadline gd , the number of bids that the agent needs to 

submit is bounded by gg rdW −= . For any problem instance 

th operations’ pr essing times bigger than 2, in terms of 

the communication comp  BL upper bound

wi

e

oc

lexity, th

( ) jn

jnW 1+−  is greater than the RL upper bound W  

DETERMINATION COMPLEXITY 

.

V. W

onduc at onal udy to 
winner 

INNER 

In this section we c t put i  st
experimentally evaluate the complexities of 

 a com

determination problems formulated using BL  and RL . We 

use a commercial optimization package CPLEX 10.1 as the 
winner determination algorithm. For  BL inner 

determination problem formulation we use the one presented 

in 

the w

ed i[12]. For the RL  formulation we use that presen n t [14].  

m nits between the rel

j
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A. Experimental Setup 

Common combinatorial auction benchmarks distributions, 
such as those presented in [10], are designed for general CAs. 
They are not for scheduling problems. In [4] Leyton-Brown et 
al. presented a set of scheduling benchmark distributions 
generated, based on the factory scheduling economy from 
Wellman et al. [13]. These scheduling distributions are 
single-resource, single-operation problems, which are special 
cases of our scheduling auction model. Sandholm et al. have 
reported in [11] that CPLEX 8.0 is slightly faster than 
CABOB on the set of single-resource, single-operations 
scheduling distributions. We design our scheduling test 
problems based on a suite of job shop CSP benchmark 
problems developed in [9].  While the job shop CSP 
benchmark problems are constraint satisfaction problems, we 
have added a price parameter P to construct the scheduling 
auction problem set. The price of job  is randomly drawn 

from a uniform distribution on

j

( )jPduduPduU +

jdu

j , , where 

is the average duration of all jobs, and is the duration 

of job . By considering different sizes of problems 

(determined by the number of jobs in a problem and number 
of operations in a job), a problem set was randomly 
generated. In these problems the number of operations ranges 
from 2 to 6; the number of jobs ranges from 2 to 7; and, in 
each problem instance, the number of resources is equal to the 
number of operations.  

du

j

The experiments were conducted on a 2.8 GHz Pentium 
PC. For a problem instance, we first convert it to WDP 

and WDP. Then we solve the two WDPs using CPLEX 

10.1, respectively. Each point in each plot is the mean run 
time for 10 problem instances with the same numbers of jobs 
and same numbers of operations in each instance.   

BL

RL

B. Experimental Results 

Since we intended to compare the performance of WDP 

and WDP in terms of solving speed and scalability, we 

present the experimental results from two perspectives: (1) 
given a fixed number of operations in the problems, how run 
times change when the number of jobs increases (Figure 4); 
(2) given a fixed number of jobs, how run times change when 
the number of operations increases (Figure 5).  

BL

RL

As shown in Figure 4, for the first two groups of problems 
(operation number=2 and operation number=3), the running 

times of WDP and WDP are, initially, close. When the 

number of jobs increases, the differences increase quickly. 
For the rest of the two groups of problems (operation 

number=4 and operation number=5), WDP is more than 

10 times faster than WDP even at the size of 2 jobs. It is 

observed that, WDP does not scale well. WDP can be 

100 to 1000 times slower when the number of jobs reaches 7.  

BL RL

BL

RL

BL BL

Figure 4 presents the results from a different angle. Again, 
we see that WDP does not scale well when the number of 

operations increases. On the contrary, the running times of 

WDP are virtually unaffected when the number of 

BL

RL
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operations increases from 2 to 5 in all four groups of 

problems. The scalability characteristics of WDP are 

further illustrated in Figure 6 and Figure 7. It is shown in 

Figure 6 that the scalability WDP remains good when the 

number of jobs is smaller than 5. When the number of jobs 

goes beyond 5, the scalability of WDP decreases with a 

higher rate. Figure 7 shows that WDP’s scale very well 

along the number of operations at all job number levels.  

RL

RL

RL
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[5] Mauguière, P., Billaut, J., and Bouquard, J. 2005. New Single 
Machine and Job-Shop Scheduling Problems with Availability 
Constraints. J. of Scheduling 8, 3, pp.211-231.  

[6] Nisan, N., 2006. Bidding languages for combinatorial auctions. 
Combinatorial Auctions, Cramton, Shoham, and Steinberg, eds., MIT 
Press. 

[7] Parkes, D. C. and Ungar, L. An Auction-Based Method for 
Decentralized Train Scheduling. In Proceedings of 5th International 

Conference on Autonomous Agents (AGENTS-01), Montreal, Quebec, 
Canada, 2001, 43-50. 

[8] Rassenti, S. J., Smith V. L., and Bulfin, R. L. A Combinatorial 
Auction Mechanism for Airport Time Slot Allocation. Bell Journal of 

Economics, vol. 13, no. 2, pp. 402-417, 1982. 
VI. CONCLUSION 

[9] Sadeh, N., and Fox, M., Variable and value ordering heuristics for the 
job shop scheduling constraint satisfaction problem. Artificial 

Intelligence, 86, 1996, 1-41. 

As bidding languages have an impact on various aspects of 
the computational complexities of an auction, the 
understanding of the complexity implications of various 
languages, in the context of the auction-based scheduling, is 
of practical interest in the design of auctions for scheduling 
problems. We have compared the general bidding languages 
and the requirement-based bidding languages in terms of their 
implications to the valuation, communication, and winner 
determination complexities in auction-based scheduling. We 
show that the requirement-based language provides concise, 
natural representations of agents’ valuations and reduces 
agents’ valuation complexity and system’s communication 
complexity. An interesting finding is, although the auctioneer 
has to solve winner determination and scheduling problems 
concurrently, when allowing the requirement-based bidding 

language, a WDP formulated by incorporating scheduling 

specific modeling techniques can be far more efficient than 
the standard WDP in terms of solving speed and 

scalability. This computational efficiency and reduced 
valuation and communication complexity makes the 
requirement-based bidding language a suitable choice for 
auction-based scheduling. 

RL

LB

[10] Sandholm, T. Algorithm for optimal winner determination in 
combinatorial auctions. Artificial Intelligence, 135, 2002, 1-54.  

[11] Sandholm, T., Suri, S., Gilpin, A. and Levine, D. CABOB: A Fast 
Optimal Algorithm for Winner Determination in Combinatorial 
Auctions. Management Science, 51, 3, 2005, 374-390.  

[12] de Vries, S., Vohra, R.V. Combinatorial Auctions: A Survey. 
INFORMS journal on Computing, 15, 3, 2003, 284-309. 

[13] Wellman, M. P., Walsh, E., Wurman, P. R., and MacKie-Mason, J. K. 
Auction Protocols for Decentralized Scheduling.  Games and 

Economic Behavior, 35(1-2), 2001, 271-303. 

[14] Wang, C., Ghenniwa, H., Shen, W., "Constraint-Based Winner 
Determination for Auction-Based Scheduling," IEEE Transactions on 
Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 39, 
No. 3, pp. 609-618, 2009. 

Another key benefit that the requirement-based bidding 
languages can offer is that it preserves natural scheduling constraints 
in the WDP formulation, which enables the design of effective 
winner determination algorithms by leveraging the wealth of 
scheduling research in the past several decades. The general 
optimization package we have used in this paper has produced good 
results. It is reasonable to predict that the design of scheduling 
specific winner determined algorithms is a promising direction 
worth exploring. 
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