
Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez
pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the
first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

2009 IEEE International Conference on Systems, Man, and Cybernetics
[Proceedings], pp. 4518-4523, 2009-10-11

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :
https://nrc-publications.canada.ca/eng/view/object/?id=21daa0f6-1be6-48b2-b395-cf7eb81c0c85

https://publications-cnrc.canada.ca/fra/voir/objet/?id=21daa0f6-1be6-48b2-b395-cf7eb81c0c85

NRC Publications Archive
Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. /
La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version
acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Bidding languages for auction-based distributed scheduling
Wang, C.; Ghenniwa, H.; Shen, W.

http://www.nrc-cnrc.gc.ca/irc

Bidding languages for auct ion-based distributed scheduling

 N R C C - 5 1 3 7 2

W a n g , C . ; G h e n n i w a , H . ; S h e n , W .

O c t o b e r 2 0 0 9

A version of this document is published in / Une version de ce document se trouve dans:

2009 IEEE International Conference on Systems, Man, and Cybernetics (Special
Session on Collaborative Manufacturing and Supply Chains), San Antonio,
Texas, October 11-14, 2009, pp. 4518-4523.

The material in this document is covered by the provisions of the Copyright Act, by Canadian laws, policies, regulations and international
agreements. Such provisions serve to identify the information source and, in specific instances, to prohibit reproduction of materials without
written permission. For more information visit http://laws.justice.gc.ca/en/showtdm/cs/C-42

Les renseignements dans ce document sont protégés par la Loi sur le droit d'auteur, par les lois, les politiques et les règlements du Canada et
des accords internationaux. Ces dispositions permettent d'identifier la source de l'information et, dans certains cas, d'interdire la copie de
documents sans permission écrite. Pour obtenir de plus amples renseignements : http://lois.justice.gc.ca/fr/showtdm/cs/C-42

http://www.nrc-cnrc.gc.ca/irc
http://laws.justice.gc.ca/en/C-42/index.html
http://lois.justice.gc.ca/fr/showtdm/cs/C-42

1

Bidding Languages for Auction-based Distributed Scheduling

Chun Wang, Member, IEEE, Hamada H. Ghenniwa, and Weiming Shen, Senior Member, IEEE

Abstract—The kind of bidding languages used in

combinatorial auctions contributes to various aspects of

computational complexities. General bidding languages use

bundles of distinct items as atomic propositions associated with

logical connectives. When applying these languages to

auction-based scheduling, the scheduling timeline needs to be

discretized into fixed time units. We show that this

discretization approach is computationally expensive in terms of

valuation, communication, and winner determination. We

present a requirement-based bidding language designed for

auction-based scheduling. In the language, bids are specified as

the requirements of scheduling a set of jobs, and prices are

attached to the job completion times. Without timeline

discretization, this language allows the expression of scheduling

valuation functions in a natural and concise way, such that

valuation and communication complexities are reduced. In

addition, it results in efficient winner determination problem

models. We have compared the winner determination models

formulated using the two types of languages in terms of solving

speed and scalability. Experimental results show that the

requirement-based language model exhibits superior

performance.

I. INTRODUCTION

In many combinatorial auctions (CAs), the goods to be sold
are the processing times of resources, e.g. landing timeslots of
airport runways [8], machine processing times of a
factory [13], computation and network accessing times of
internet resources [1], and the right to use railroad tracks for a
period of time [7]. In this class of CAs, agents have jobs that
need to be completed during specific time windows and they
compete with each other for the resources to schedule their
own jobs according to their respective objectives. We may
refer this type of CA as auction-based scheduling.

 As in other CAs, agents’ valuations in auction-based
scheduling often exhibit complementarities. For example, due
to scheduling constraints, an agent may need to obtain a set of
specific combinations of time periods on resources to process
its jobs. The complementarities of agents’ valuations present
particular challenges for the design of bidding languages in
terms of expressiveness, conciseness, and naturalness.
Logical languages have been proposed to address this

challenge [6]. These languages (denoted by) use bundles

of items with associated prices as atomic propositions and
combines them using logical connectives.

BL

 languages target CAs in general. However, they cannot

be applied to scheduling problems directly because they are
designed for auctioning discrete goods. In scheduling
problems, processing time on resources exhibit continuity. In
order to apply , the scheduling timeline of resources needs

to be discretized into fixed time units and these units are
treated as distinct items in

BL

BL

BL [13] [3]. With timeline

discretization, agents can express their time related
scheduling requirements, such as release times, due dates,
indirectly by attaching values to various time units
combinations. It will be shown in Section III, that
determining the value for a time unit’s combination could be
a NP-hard optimization problem in certain auction-based
scheduling settings. In addition, this timeline discretization
approach can generate a large number of items to be sold in
the auction if the time windows in question are not small. For
example, a one week time window on 10 resources can be
discretized into more than 100,000 time units if the time
accuracy we need is in minutes (which is a practical
requirement in many scheduling domains). Generally
speaking, in combinatorial auctions the number of bids is
exponential in the number of the items to be sold. A large
number of items can inflict heavy burdens on the auction in
terms of bids evaluation, communication, and winner
determination.

 An alternative to the timeline discretization approach is
to design languages which allow agents to directly express
their time requirements and the values associated. We refer to
this type of language as requirement-based language (denoted
by). languages enable agents to explicitly express

their time-related requirements without specifying the values
on the combinations of resource time units. For example, in a
train scheduling auction setting

RL RL

[7], Parkes and Ungar
designed a requirement-based language which allows train
agents to specify the accessing and leaving time on a rail road
track in their bids. Comparing with , languages do not

require agents to compute the values on the combinations of
resource time units. However, this does not mean that the
computation used to determine the values of time units’
combinations has been eliminated by using . Instead, it is

migrated to the auctioneer’s winner determination (will be
explained in detail in Section 3). How this migration
approach will affect the computational complexity of
auctioneer’s winner determination is an important question
that will be answered by the comparative study.

BL RL

RL

 This paper investigates the complexity issues of using
 and in auction-based scheduling. While we focus

only on bidding languages, we assume agents’ strategic
behavior and, therefore, auctions are a suitable mechanism
for the scheduling problems. Kalagnanam and Parkes

BL RL

[2]
reviewed four areas of computational constraints, which
restrict the space of feasible combinatorial auction
mechanisms, including, strategic complexity, communication
complexity, valuation complexity and winner determination
complexity. Since strategic complexity is not affected by

2

languages [6], we study the other three in the context of
auction-based scheduling. For valuation and communication
complexities, we compare the two types of languages
analytically; for the winner determination complexity, we
compare them experimentally. Our main results are (1) in
auction-based scheduling, languages have reduced

complexities in agents’ valuation and system’s
communication; (2) although languages migrate agents’

valuation complexity to the auctioneer’s winner
determination, this type of language enables scheduling
specific modeling techniques to be incorporated into the
winner determination problem formulation, which results in a
more efficient model than the traditional one formulated by

 in terms of solving speed and scalability.

RL

RL

L

Ng ∈

BL

RL

Figure 1 Example of the Scheduling Auction Model

The rest of the paper is organized as follows: Section II

formulates the scheduling auction model and specifies the

 language used in this paper; Sections III and IV, analyze

the valuation and communication complexities of and

and in Section V, we conduct a computational study to

compare the performance of the winner determination

problem models formulated using and . We conclude

the paper in Section VI.

BL RL

RL BL

II. THE AUCTION FOR SCHEDULING PROBLEMS

Wellman et al. [13] modeled a factory scheduling problem as
a CA problem. In the model, a factory conducts an auction for
time slots on a single resource. Time slots are treated as
distinct items that can be allocated for the production of
customer orders. Each customer (modeled as an agent) has
one single-operation job to be completed. An agent’s job is
defined by its duration, its release time, its deadline, and the
price the agent places on the job. To complete its job, the
agent must acquire a number of slots no less than the length,
within its feasible time window. In this paper, we expand the
model from Wellman et al. to accommodate multiple
resources and multi-operational jobs. We use this general
model as the base for comparing various types of
complexities related to and . We refer to this general

model as the scheduling auction.

BL R

The scheduling auction consists of a set of agents,

denoted by . Each agent has a set of jobs . Each

job requires the processing of a sequence of

operations

N

g

kjo ,

gJ

j JJ ∈

()jnk ,...,1=

kjp ,

. An operation has a specified

processing time , and its execution requires the exclusive

use of a designated resource for the duration of its processing.

is constrained by a release time

kjo ,

gJ gr by which the jobs are

available for processing, and a deadline by which all jobs

must be completed. There are precedence constraints among
the operations of a job And o precedence constraints among

jobs. An allocation of all jobs in , on the resources over

time, form a schedule for agent

gd

gJ

g , denoted by . Let gS

()gSCmax denote the completion time of the last job in gS (

()gSCmax he makespan of gS in machin scheduling).

For each agent Ng

,called t e

∈ , its value fo dule gS isr a sche ()gg Sv . An

agent pre s a ule with a shorter makespan, that is, for

two schedules gS and

fer sched
gS , if () ()gCm

g SSC axmax ≤ ,

() ()g . In tg S h contextgg vS ≥

of

v e ng BL , with a little

abuse notation, gS can also be seen as set of time units

allocated to agent

 of usi

a

g . The overall objective of e auction is to

maximize the sum of all the agents’ values.
Figure 1 sh

prob

 th

du

 line

 m

ANGUA

ow

 3

ce cons

THE RE

in

s an e

xampl n

ction can ny

e of t

jo

it

be see

-BASE

he sche ling auctio

 2

h solid

n as a odel of ma

D L GE

 valu

lem with three resources (1R , 2R , 3R) and four jobs. Job1

has 3 operations (12,11,1 ,, OOO); b has 2 operations (

2,21,2 ,OO); job 3 has (3,32,31,3 ,, OOO); job 4 has 2

o (2,41,4 ,OO). The arcs (w s) represent

the preceden traints between operations; and, arcs
(with dotted line) link operations to their designated
processing resources.

The scheduling au

3,

ionsoperat

perations

real

II

ba

world scheduling problems. In manufacturing, for
example, customers have jobs with different release times and
deadline requirements to be processed in the factory. The
factory tries to allocate the limited resources to the customers
who value them the most. Similar scenarios can also be found
in other domains such as transportation and grid computing.
While there are many scheduling models and algorithms in
classical scheduling theory, the scheduling auction modeled
here assumes that agents are self-interested and they behave
strategically.

I. QUIREMENT

es

In the scheduling auction models, agents derive

sed on the levels that their objectives have been satisfied. In

this section, we present a requirement-based bidding

language RL , in which the atomic propositions attach prices

to require ents of processing jobs rather than bundles of

items (as in BL). The purpose here is to design a language that

captures the trinsic structure of the scheduling problem,

such that agents’ valuations can be expressed naturally and

concisely using the language.

m

3

A. General Structure of Atomic Propositions in RL

As depicted in Figure 2, an Atomic Proposition of consists

of the Requirement of completing a set of Jobs according to a
Performance requirement and the Price that the agent is
willing to pay given the Performance requirement is satisfied.
The Performance is defined by a Measure and its Level.
Formally, an Atomic Proposition can be represented by a

4-tuple

RL

iceLevelMeasureJobs Pr,,, .
Figure 2 Structure of Atomic Proposition in
Requirement-Based Language Jobs represent the set of jobs from an agent that needs to be

processed. For each job, the associated operations, constraints
over the operations, and eligibility constraints over resources
need to be specified. The actual content language used to
describe Jobs can be domain specific. We do not discuss it in
this paper.
Measure is a criterion based on which the quality of a
schedule for Jobs is evaluated. Some typical criteria include
total-production-time (makespan), mean flow-time,
maximum tardiness, and weighted tardiness.
Level is the value achieved by a schedule in terms of the
objective function specified in the Measure. For example, if
the Measure is makespan and the Level is 20, the semantic
interpretation of the Performance is to require the jobs to be
scheduled with a makespan no larger than 20.
Price is the amount of money that the agent is willing to pay
given that the Jobs are scheduled at a specific level based on
the measure. For example, the Atomic Proposition

100$,20,, MakespanJobs means if the Jobs are scheduled

to be completed with a makespan of 20, the agent is willing to
pay $100.
As the Performance (Measure and Level) can be defined by
the job agents, the Atomic Proposition structure is general
enough to capture job agents’ requirements regarding the
processing of their jobs. However, for a specific application
domain, it is normal that only a small portion of the measures
is of importance to agents. For example, in eMarket
environments, the common performance measure that a client
will require is the delivery date of his/her order, which is the
makespan in terms of scheduling. We will specify a type of

RL which uses makespan as the measure in the following

subsection.

,

B. The Completion Time-Based RL

The atomic proposition of the time-based consists of a

requirement of scheduling a set of jobs, the completion time

before which the jobs need to be completed, and the price that

the agent is willing to pay given the completion time is

satisfied. We refer this atomic proposition as CBid

(Completion time-based bid).

RL

 CBid is a 4-tuple plftCJ gg ,,, max where is a set that

contains the descriptions of the jobs and constraints;

defines that the measure being used is makespan; lft is the

latest finishing time and is the price that the agent is willing

to pay for . CBids can also be connected by logical

connectives. For example, if an agent is willing to pay $100
for the guarantee of completing its jobs before 4:00PM or $60

for completing its job before 6:00PM, it can express this
valuation by submitting an XOR-CBid:

gJ

gCmax

p

lftC g ≤max

60,$00:6,,100,$00:4,, maxCJ gg

cessing
requirements (job descriptions). However, it does not require

e agent to reveal its true valuation information (lft and p).

This is quite reasonable in many real world situa ns. r
example, a customer may benefit from lying about the true
value and due date of manufacturing a part, however, there is
no need to lie about the processing requirements of the part
because the part will eventually be processed based on the
requirements.

max PMCJXORPM gg . Note

that CBid requires an agent to reveal its true pro

IV. VALUATION AND COMMUNICATION COMP IT

 costly when usin r

auc a

 bundle in th g

th

tio

LEX

g L

 settin

Fo

IES

 fo

 h

. Let

A. Valuation Complexity

Valuation is usually B

tion-based scheduling because agents need to solve ard
optimization problem in order to determine the value of a
bundle. In this section, we analyze the computational
complexity of agent valuation.

We first define the value of a e BL

gS be a schedule that contains jobs of agent g . For a bundle

B of time units, if BS g ⊆ , we say gS is covered by B . In

many cases, a bundle can several fea ble schedules for
an agent. We define the value of a bundle to an agent as the
value of the best schedule (with the shortest makespan) the
bundle covers.

 cover si

Figure 3 In auctions using requirement-based b
languages, agents’ valuation complexity is migrated
the auctioneer’s winner determination. In addition to
determining winning bids, the auctioneer needs to
schedule jobs at the same time.

idding
to

4

Definition 1: Let Γ he set of schedules of agentbe t g

covere byd B . The va ation of agent lu g on bundle B i

hat

s

e

 set

to be th value of the best schedule Γ∈g
S* , such t

any Γ∈g
S ,

for

() ()ggg .g SSv * v≥

 If we assume that, for any , Γ∈g
S ()gSgv has been given

to agent g , according to Definition 1, the valuation problem

for a bundle of time units in the BL model can be described

as: given a set of jobs of an agent to be allocated to a bundle of
time units of various resources, what is the shortest possible
makespan that a feasible schedule can have? Answering this
question is equivalent to solving a job shop scheduling
problem with availability constraints (JSPAC), which is
NP-hard [5]. This proves:

Proposition 1: In the scheduling auction model using B ,

an agent’s valuation problem for a bundle of time units is

NP-hard.

L

 While agents’ valuation problems in models are

NP-hard, they become trivial in models. In models,

agents do not deal with bundles of time units. In other words,

they do not spend their computational time on finding

appropriate time units combinations on resources to schedule

their job requirements. Instead, they just send their

requirements (jobs and required completion times) and

associated values as bids to the auctioneer. Since we have

assumed that, for any ,

BL

RL RL

RL

S Γ∈g ()gSgv is a given, the task of

finding the value for a schedule is trivial for agents using RL

bids. T erefore, from the agents’ point of view, the RL model

 the advantage of avoiding the NP-hard problem of solving

the JSPACs. However, this does not mean agents’ valuation

complexity has been eliminated in RL models. In fact, this

putational burden is shifted to the auctioneer’s winner

determination because, in RL WDP, the auctioneer has to

determine the winning bids and, at the same time, schedule

jobs on resources. This idea is illustrated in Figure 3.

B. Commu

h

has

com

nication Complexity

 of an auction considers the
siz

c uc

The communication complexity

e of messages that must be sent between the agents and the
auctioneer. A simple measure of the size of messages could
be the number of bids needed to implement the outcome of an
auction. In general CAs, the number of bids for an agent is

12 −m , where m is the number of items to be sold. However,

in t heduling a tion model, the number of feasible bids
can be restricted by the scheduling constraints. Formally,
consider an agent

he s

g has a job jJ with jn operations to be

processed in a time window with release time gr and deadline

. Let gg rdW −= be the size of the time window, which is

the nu ber of time u ease time and the
deadline. For each operation ko (since we only consider one

job for the time being, we drop the job subscript

gd

to

ed

 simplify

the notations), a processing time kp is given. To schedule the

set of operations inW , three constraints have to be satisfi :

jkkk nkforSpS ≤<≤+ −− 111 (1)

grS ≥ 1 (2)

jn
g p− (3)

jn dS ≤

where is the ng time of an

n co

By relaxing c aint (1) a

kS

o
g t

starting time of ko . The starti

ntoperati uld vary in differe feasible schedules. By
countin he number of all comb ations of feasible starting
times of operations, we can calculate the number of feasible
schedules in a time window W by the following formula:

∑ ∑ ∑
−− −− −

jn jn jnpppW pppW pW... ...21 32

1.. (4)

in

=
jnj

p

nd set

= + −− jnnS SS SS01 12 11

...

+= p1

onstr 11 ...2 ===
jnp

) jn
jnW 1+− . Sinc

pp , an

up

ble sch

per bound of (4) can be obtained as (e an

agent cab, at most, attach one value to a feasi edule, the
following proposition holds:

Proposition 2 For an agent with one job J , the number of j

bids in W is bounded by () jn
jnW 1+− .

Although Proposition th

that an a ent needs to su ot g

2 shows that

es n

e number of bids

g bmit do row exponen n

nd

u

ge

 BL

tially i
W , it still increases drastically when W increases. In real

world applications, to maintain time accuracy, the time
wi ow size W cannot be too small, whi often results in a

large number of bids. If an agent has multiple jobs, the
number of m lti-job bids will grow even more quickly
because of the combinations of single-job bids.

 In the RL model, a CBid represents the value that an

agent has over the completion time of its jobs. W

ch

ithout loss of

nerality, we assume the completion times are of integer

values. If an agent has a set of jobs gJ with a release time gr

and a deadline gd , the number of bids that the agent needs to

submit is bounded by gg rdW −= . For any problem instance

th operations’ pr essing times bigger than 2, in terms of

the communication comp BL upper bound

wi

e

oc

lexity, th

() jn

jnW 1+− is greater than the RL upper bound W

DETERMINATION COMPLEXITY

.

V. W

onduc at onal udy to
winner

INNER

In this section we c t put i st
experimentally evaluate the complexities of

 a com

determination problems formulated using BL and RL . We

use a commercial optimization package CPLEX 10.1 as the
winner determination algorithm. For BL inner

determination problem formulation we use the one presented

in

the w

ed i[12]. For the RL formulation we use that presen n t [14].

m nits between the rel

j

5

A. Experimental Setup

Common combinatorial auction benchmarks distributions,
such as those presented in [10], are designed for general CAs.
They are not for scheduling problems. In [4] Leyton-Brown et
al. presented a set of scheduling benchmark distributions
generated, based on the factory scheduling economy from
Wellman et al. [13]. These scheduling distributions are
single-resource, single-operation problems, which are special
cases of our scheduling auction model. Sandholm et al. have
reported in [11] that CPLEX 8.0 is slightly faster than
CABOB on the set of single-resource, single-operations
scheduling distributions. We design our scheduling test
problems based on a suite of job shop CSP benchmark
problems developed in [9]. While the job shop CSP
benchmark problems are constraint satisfaction problems, we
have added a price parameter P to construct the scheduling
auction problem set. The price of job is randomly drawn

from a uniform distribution on

j

()jPduduPduU +

jdu

j , , where

is the average duration of all jobs, and is the duration

of job . By considering different sizes of problems

(determined by the number of jobs in a problem and number
of operations in a job), a problem set was randomly
generated. In these problems the number of operations ranges
from 2 to 6; the number of jobs ranges from 2 to 7; and, in
each problem instance, the number of resources is equal to the
number of operations.

du

j

The experiments were conducted on a 2.8 GHz Pentium
PC. For a problem instance, we first convert it to WDP

and WDP. Then we solve the two WDPs using CPLEX

10.1, respectively. Each point in each plot is the mean run
time for 10 problem instances with the same numbers of jobs
and same numbers of operations in each instance.

BL

RL

B. Experimental Results

Since we intended to compare the performance of WDP

and WDP in terms of solving speed and scalability, we

present the experimental results from two perspectives: (1)
given a fixed number of operations in the problems, how run
times change when the number of jobs increases (Figure 4);
(2) given a fixed number of jobs, how run times change when
the number of operations increases (Figure 5).

BL

RL

As shown in Figure 4, for the first two groups of problems
(operation number=2 and operation number=3), the running

times of WDP and WDP are, initially, close. When the

number of jobs increases, the differences increase quickly.
For the rest of the two groups of problems (operation

number=4 and operation number=5), WDP is more than

10 times faster than WDP even at the size of 2 jobs. It is

observed that, WDP does not scale well. WDP can be

100 to 1000 times slower when the number of jobs reaches 7.

BL RL

BL

RL

BL BL

Figure 4 presents the results from a different angle. Again,
we see that WDP does not scale well when the number of

operations increases. On the contrary, the running times of

WDP are virtually unaffected when the number of

BL

RL

Operation number= 2

0.1

1

10

100

T
im

e
 (

s
)

2 3 4 5 6 7

Number of jobs

LR

LB

Operation Number=3

0.1

1

10

100

1000

10000

T
im

e
 (

s
)

2 3 4 5 6 7

Number of jobs

LR

LB

Operation Number=4

0.1

1

10

100

1000

10000

2 3 4 5 6 7

Number of jobs

T
im

e
 (

s
)

LR

LB

Operation number=5

0.1

10

1000

2 3 4 5 6 7

Number of jobs

T
im

e
 (

s
)

LR

LB

Operation number= 2

0.1

1

10

100

T
im

e
 (

s
)

2 3 4 5 6 7

Number of jobs

LR

LB

Operation Number=3

0.1

1

10

100

1000

10000

T
im

e
 (

s
)

LR

LB

2 3 4 5 6 7

Number of jobs

Operation Number=4

0.1

1

10

100

1000

10000

2 3 4 5 6 7

Number of jobs

T
im

e
 (

s
)

LR

LB

Operation number=5

0.1

10

1000

2 3 4 5 6 7

Number of jobs

T
im

e
 (

s
)

LR

LB

Figure 4 Run times of L WDP and L WDP over joB R bs

Job number=2

0.1

1

10

2 3 4 5 6

T
im

e
(s

)
Number of operations

LR

LB

Job number=3

0.1

1

10

100

1000

10000

T
im

e
 (

s
)

2 3 4 5 6

Number of operations

LR

LB

Job number=4

0.1

1

10

100

1000

10000

2 3 4 5

Number of operations

T
im

e
 (

s
)

LR

LB

Job number=5

0.1

1

10

100

1000

10000

2 3 4 5

Number of operations
T

im
e

 (
s

) LR

LB

Job number=2

0.1

1

10

2 3 4 5 6

T
im

e
(s

)

Job number=3

0.1

1

10

100

1000

10000

T
im

e
 (

s
)

LR
LR

LB
LB

2 3 4 5 6

Number of operations
Number of operations

Job number=4

0.1

1

10

100

1000

10000

2 3 4 5

Number of operations

T
im

e
 (

s
)

LR

LB

Job number=5

0.1

1

10

100

1000

10000

2 3 4 5

Number of operations
T

im
e

 (
s

) LR

LB

Figure 5 Run times of L WDP and L WDP oB R ver

operations

10

100

T
im

e
 (
s
)

Op# = 2

Op# = 3

Op# = 4

Op# = 5

0.1

1

2 3 4 5 6 7

Number of jobs

Figure 6 L WDP scalability over jobs R

0.1

1

10

100

2 3 4 5

Number of operations

T
im

e
 (

s
)

Job# = 2

Job# = 3

Job# = 4

Job# = 5

Job# = 6

Job# = 7

Figure 7 L scalability over operations R

6

operations increases from 2 to 5 in all four groups of

problems. The scalability characteristics of WDP are

further illustrated in Figure 6 and Figure 7. It is shown in

Figure 6 that the scalability WDP remains good when the

number of jobs is smaller than 5. When the number of jobs

goes beyond 5, the scalability of WDP decreases with a

higher rate. Figure 7 shows that WDP’s scale very well

along the number of operations at all job number levels.

RL

RL

RL

RL

[5] Mauguière, P., Billaut, J., and Bouquard, J. 2005. New Single
Machine and Job-Shop Scheduling Problems with Availability
Constraints. J. of Scheduling 8, 3, pp.211-231.

[6] Nisan, N., 2006. Bidding languages for combinatorial auctions.
Combinatorial Auctions, Cramton, Shoham, and Steinberg, eds., MIT
Press.

[7] Parkes, D. C. and Ungar, L. An Auction-Based Method for
Decentralized Train Scheduling. In Proceedings of 5th International

Conference on Autonomous Agents (AGENTS-01), Montreal, Quebec,
Canada, 2001, 43-50.

[8] Rassenti, S. J., Smith V. L., and Bulfin, R. L. A Combinatorial
Auction Mechanism for Airport Time Slot Allocation. Bell Journal of

Economics, vol. 13, no. 2, pp. 402-417, 1982.
VI. CONCLUSION

[9] Sadeh, N., and Fox, M., Variable and value ordering heuristics for the
job shop scheduling constraint satisfaction problem. Artificial

Intelligence, 86, 1996, 1-41.

As bidding languages have an impact on various aspects of
the computational complexities of an auction, the
understanding of the complexity implications of various
languages, in the context of the auction-based scheduling, is
of practical interest in the design of auctions for scheduling
problems. We have compared the general bidding languages
and the requirement-based bidding languages in terms of their
implications to the valuation, communication, and winner
determination complexities in auction-based scheduling. We
show that the requirement-based language provides concise,
natural representations of agents’ valuations and reduces
agents’ valuation complexity and system’s communication
complexity. An interesting finding is, although the auctioneer
has to solve winner determination and scheduling problems
concurrently, when allowing the requirement-based bidding

language, a WDP formulated by incorporating scheduling

specific modeling techniques can be far more efficient than
the standard WDP in terms of solving speed and

scalability. This computational efficiency and reduced
valuation and communication complexity makes the
requirement-based bidding language a suitable choice for
auction-based scheduling.

RL

LB

[10] Sandholm, T. Algorithm for optimal winner determination in
combinatorial auctions. Artificial Intelligence, 135, 2002, 1-54.

[11] Sandholm, T., Suri, S., Gilpin, A. and Levine, D. CABOB: A Fast
Optimal Algorithm for Winner Determination in Combinatorial
Auctions. Management Science, 51, 3, 2005, 374-390.

[12] de Vries, S., Vohra, R.V. Combinatorial Auctions: A Survey.
INFORMS journal on Computing, 15, 3, 2003, 284-309.

[13] Wellman, M. P., Walsh, E., Wurman, P. R., and MacKie-Mason, J. K.
Auction Protocols for Decentralized Scheduling. Games and

Economic Behavior, 35(1-2), 2001, 271-303.

[14] Wang, C., Ghenniwa, H., Shen, W., "Constraint-Based Winner
Determination for Auction-Based Scheduling," IEEE Transactions on
Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 39,
No. 3, pp. 609-618, 2009.

Another key benefit that the requirement-based bidding
languages can offer is that it preserves natural scheduling constraints
in the WDP formulation, which enables the design of effective
winner determination algorithms by leveraging the wealth of
scheduling research in the past several decades. The general
optimization package we have used in this paper has produced good
results. It is reasonable to predict that the design of scheduling
specific winner determined algorithms is a promising direction
worth exploring.

REFERENCES

[1] Buyya, R., “Economic Paradigm for Distributed Resource
Management and Scheduling for Service Oriented Grid Computing,”
Ph. D thesis, Monash University, April 12, 2002

[2] Kalagnanam, J. and D. C. Parkes, 2004, Auctions, bidding and
exchange design, David Simchi-Levi, S. David Wu, and Z. Max Shen
(Eds.) Handbook of Quantitative Supply Chain Analysis: Modeling in

the E-Business Era, Kluwer Academic Publishers.

[3] Kutanoglu, E., Wu, S. D. On combinatorial auction and Lagrangean
relaxation for distributed resource scheduling. IIE Trans., 31, 9 (Sept.
1999), 813-826.

[4] Leyton-Brown, K., Pearson, M., Shoham, Y. Towards a universal test
suite for combinatorial auction algorithms. In Proc. ACM Conf.

Electronic Commerce (ACM-EC), Minneapolis, MN. ACM, New

York, 2000, 66–76.

