

Abstract—In the present study a Modified Differential

Evolution (MDE) algorithm is proposed. This algorithm is

different in three ways from basic DE. For initialization it

utilizes opposition-based learning while in basic DE uniform

random numbers serve this task secondly, in basic DE mutant

individual is random while in MDE it is tournament best and

finally MDE utilizes only one set of population as against two

sets as used in basic DE. The performance of proposed

algorithm is investigated and compared with basic differential

evolution. The experiments conducted shows that proposed

algorithm outperform the basic DE algorithm in all the

benchmark problems and real life applications.

Keywords: differential evolution, mutation operator, opposition

based learning.

I. INTRODUCTION

IFFERENTIAL evolution, proposed by Storn and Price

in 1995 [1] is a relatively new optimization technique

compared to evolutionary algorithms (EAs) such as

Genetic Algorithms [2], Evolutionary Strategy [3], and

Evolutionary Programming [4]. Within a short span of

around thirteen years, DE has emerged as one of the most

popular techniques for solving optimization problems.

However, it has been observed that the convergence rate of

DE do not meet the expectations in cases of highly

multimodal problems. Several variants of DE have been

proposed to improve its performance. Some of the recent

versions include greedy random strategy [5], preferential

mutation operator [6], self adaptive DE [7], Trigonometric

DE [8], opposition based DE [9], neighborhood search DE

[10], Parent Centric DE [11], modified differential evolution

[12], differential evolution with random localization [13] etc.

several recent versions of DE can be found in [14].

In all the above mentioned versions of DE, other than [9],

modifications are done in mutation or in update processes.

The proposed MDE algorithm is inspired by three ideas; (1)

use of opposition based learning to generate the initial

population (2) use of tournament best process to generate

mutant vector to explore the region around the tournament

best individual xtb (say) for each mutated point and finally

(3) use of a single set population in contrast to the two set

population as in basic DE.

M. Ali is with the Indian Institute of Technology Roorkee, Saharanpur –

247001, India (e-mail: musrrat.iitr@gmail.com)

 M. Pant is with the Indian Institute of Technology Roorkee, Saharanpur
- 247001, India (phone: +91-9759561464; e-mail: millifpt@iitr.ernet.in)

A. Abraham is with the Center of Excellence for Quantifiable Quality of

Service, Norwegian University of Science and Technology, Norway and
Machine Intelligence Research Labs -MIR Labs (e-mail:

ajith.abraham@ieee.org)

The concept of opposition based learning (OBL) was first

given in [9] to generate the initial population for a basic DE

algorithm. The main idea behind OBL is the simultaneous

consideration of an estimate and its corresponding opposite

estimate in order to achieve a better approximation for the

current candidate solution. In fact, a mathematical proof has

been proposed to show that, in general, opposite numbers are

more likely to be closer to the optimal solution than purely

random one [15]. Use of a single set of population for DE

was suggested in [12] where it was shown use of a single set

population helps in reducing the computational time of the

DE algorithm.

Motivated by the successful implementation of the above

mentioned modifications we decided to club these features

together to develop a modified algorithm which we have

named as modified DE or MDE.

The remainder of the paper is structured as follows.

Section II describes the basics Differential Evolution.

Section III presents the proposed MDE. Experimental setting

is given in Section IV. Benchmark problems and real life

application problems are listed in Section V. Section VI

provides comparisons of results. Finally the paper is

concluded in section VII.

II. DIFFERENTIAL EVOLUTION

Throughout the present study we shall follow

DE/rand/1/bin version of DE and shall refer to it as basic

version. This particular scheme is briefly described as:

DE starts with a population of NP candidate solutions:

Xi,G, i = 1, . . . ,NP, where the index i denotes the population

and G denotes the generation to which the population

belongs. The three main operators of DE are mutation,

crossover and selection.

 Mutation: The mutation operation of DE applies the

vector differentials between the existing population

members for determining both the degree and direction of

perturbation applied to the individual subject of the mutation

operation. The mutation process at each generation begins

by randomly selecting three individuals {r1, r2, r3} in the

population set of (say) NP elements. The i
th

perturbed

individual, Vi,G+1, is generated based on the three chosen

individuals as follows:

 Vi,G+1 = Xr3,G + F * (Xr1,G − Xr2,G) (1)

Where, i = 1. . . NP, r1, r2, r3 ∈ {1. . . NP} are randomly

selected such that r1 ≠ r2 ≠ r3 ≠ i,

F is the control parameter such that F ∈ [0, 1+].

 Crossover: once the mutant vector is generated, the

perturbed individual, Vi,G+1 = (v1,i,G+1, . . . , vn,i,G+1), and the

current population member, Xi,G = (x1,i,G, . . . , xn,i,G), are then

A Modified Differential Evolution Algorithm and Its Application to

Engineering Problems

Musrrat Ali, Millie Pant and Ajith Abraham

D

subject to the crossover operation, that finally generates the

population of candidates, or “trial” vectors,Ui,G+1 = (u1,i,G+1, .

. . , un,i,G+1), as follows:

, . 1

, . 1

, .

j i G j r

j i G

j i G

v if rand C j k
u

x otherwise

+

+

≤ ∨ =
=

 (2)

Where, j = 1. . . n, k ∈ {1, . . . , n} is a random parameter’s

index, chosen once for each i. The crossover rate, Cr ∈ [0,

1], is set by the user.

 Selection: The selection scheme of DE also differs from

that of other EAs. The population for the next generation is

selected from the individual in current population and its

corresponding trial vector according to the following rule:

. 1 . 1 .

. 1

.

() ()i G i G i G

i G

i G

U if f U f X
X

X otherwise

+ +

+

≤
=

 (3)

Thus, each individual of the temporary (trial) population

is compared with its counterpart in the current population.

The one with the lower objective function value will survive

from the tournament selection to the population of the next

generation. As a result, all the individuals of the next

generation are as good as or better than their counterparts in

the current generation. In DE trial vector is not compared

against all the individuals in the current generation, but only

against one individual, its counterpart, in the current

generation.

III. PROPOSED DE ALGORITHM

In this section we describe the proposed MDE, which uses

the concepts of opposition based learning, random

localization and one population set. The basic operators of

MDE are same as basic DE but still it is different from it

three points:

1. MDE differs from basic DE in the initialization phase

where MDE utilizes opposition based learning

method while DE uses uniform random numbers for

initialization of population.

2. In mutation step MDE uses best individual of three

points as mutant individual while in DE it is random

(there is an equal chance of all these three for being

selected as mutant individual).

3. MDE maintain one population set while DE

maintains two population sets, one current population

and second advanced population (for next

generation). The population is updated as the better

individual is found. Also the newly found individual

can take part in generation of new individual in

current generation.

A point to point comparison of two algorithms is given in

Table I.

IV. EXPERIMENTAL SETUP

In order to make a fair comparison of MDE and basic DE,

we have used C++ rand () function to generate initial

population for both the algorithms. The number of

individuals in the population is taken 10*n. Value scaling

factor F is taken as 0.5 which is neither too high nor low and

therefore maybe considered as a good initial choice. Very

small values of crossover constant Cr makes the convergence

very slow whereas large values of Cr may end up in

premature convergence. In the present study we have taken

Cr =0.5. All the algorithms are executed on a PIV PC, using

DEV C++, thirty times for each problem. In every case, a

run was terminated when the function values of all points in

population S were identical to an accuracy of five decimal

places, i.e., ����� − ����� ≤ 10−4or when the maximum

number of function evaluations (NFE =10
6
) was reached.

V. BENCHMARK PROBLEMS

The performance of the proposed algorithm is tested on a set

of ten benchmark and two application problems taken from

literature [9]. First five functions fEP, fCB6, fGP, fH3 and fCV are

with fixed dimension while second five fRB, fACK, fSWF, fGW and

fZA are scalable in nature. Scalable problems are tested for

dimensions 10, 30 and 50. Real life application problem is

taken from [16].

VI NUMERICAL RESULTS AND COMPARISONS

 A. Comparison between DE and MDE

In this section we compare MDE with the basic DE

algorithm in terms of average fitness of function values,

standard deviation, and t- values for which the results are

listed in Table II. For scalable problems the dimension is

taken as n=30. Table III provides number of function

evaluations (NFE), percentage improvement in terms of

number of functions evaluations and average time taken for

the execution of algorithms. As it is clear from the Table II

that in term of fitness function value and standard deviation

both the algorithms give more or less similar results

although in some cases MDE performs slightly better than

classical DE. On the basis of t-values, last column of the

Table II, we can conclude that there is a significant

difference between both the algorithms at 5% level of

significance. The superior performance of the proposed

MDE is more evident from Table III, which gives the

average number of functions evaluations from which we can

see that MDE takes less number of function evaluations to

achieve the required fitness in comparison to the basic DE in

all cases except for Rosenbrock function (fRB), in which both

the algorithms approach to the maximum number of function

evaluation (NFE=10
6
). In terms of improvement in number

of function evaluation MDE reduces the number of function

evaluation up to 44.5% for function fCB6. If we talk about

overall reduction in number of function evaluation, it is

more than of 29.99%. But for function fRB, in terms of

function evaluation there is no improvement, both

algorithms take maximum number of function evaluation.

Also from Table III, it can be seen that MDE takes less run

time in comparison to basic DE but in case of function fRB,

where number of function evaluation is same, MDE takes

more time than basic DE. Performance curves (convergence

graphs) of few selected functions are given in Fig1(a) –

Fig1(d). From these illustrations also it is evident that the

convergence of proposed algorithm is faster than basic DE.

B. Influence of Dimensionality.

The performance of the proposed MDE is further

compared with the basic DE for scalable problems of

dimension 10, 30 and 50. The results obtained are

summarized in Tables IV which gives the results of MDE

and DE algorithms in terms of average fitness and average

number of function evaluations. According to results

obtained, MDE surpasses DE on 11 cases while DE

outperforms MDE in 4 cases out of 15 cases in term of

average fitness. If we talk in term of average number of

function evaluation (NFE) it is less in all cases for MDE

except for fRB and fSWF where it is same for both the

algorithms.

C. 6umerical results of Application problems

In order to further validate the performance of MDE

algorithm we used it for solving two real life problems;

Transformer design [16] and transistor modeling [16]. Out of

these problems, the first problem is constrained in nature,

while the second is unconstrained. For handling constraints,

we have used the method proposed by Deb [17].

The numerical results of the real life problems are given in

Table V. experimental settings for real life problems are

same as that of benchmark problems. A run is terminated

when an accuracy of 10
-04

 i.e. ���� − ���� ≤ 10�� is

reached and then fitness standard deviation NFE and time is

stored in Table V. Once again from this Table we can

observe the superior performance of the proposed MDE

algorithm in terms of NFE and time which are quite less than

the basic DE in all the cases

VII DISCUSSION AND CONCLUSIONS

In this paper we proposed a modified version of basic DE

called MDE. The simulation of results showed that the

proposed algorithm is quite competent for solving problems

of different dimensions in less time and less number of

function evaluations without compromising with the quality

of solution. The set of problems considered, though small

and limited show the promising nature of MDE. Only for

Rosenbrock function fRB MDE took more time than the basic

DE, although the number of functions evaluations are same.

However, the work is still in the preliminary stages and more

modifications may be added to it to make it more robust.

TABLE I. COMPARISON OF TWO ALGORITHMS.

DE MDE

Initialization: Construct an initial population S of NP

individuals, dimension of each vector being n, using

the following rule:

Xi,j= Xmin,j + rand(0, 1)(Xmax,j-Xmin,j),

 Where Xmin,j and Xmax are lower and upper bound for

j
th

 component respectively and rand(0,1) is a uniform

random number between 0 and 1.

Mutation: Select randomly three distinct individuals

Xr1, Xr2 and Xr3 from population S and perform

mutation using formula:

�� = ��� + � × (�� − ��!)
Where individual Xr1 is random (i.e. it may be any one

from these three individuals).

Crossover: Perform crossover according to equation

(2).

Selection: Calculate the objective function value at

new generated individual. Choose better of the two

(function value at target and trial point) using equation

(3) for next generation’s population.

Initialization: Randomly construct a population P of

NP individuals, dimension of each vector being n,

using the following rule:

Xi,j= Xmin,j + rand(0, 1)(Xmax,j-Xmin,j),

 Where Xmin,j and Xmax are lower and upper bound for

j
th

 component respectively and rand(0,1) is a uniform

random number between 0 and 1.

Construct another population OP of NP individuals

using the following rule:

#�,% = ����,% + ����,% − &�,%
Where Pi,j are the points of population P.

Construct initial population S taking NP best

individuals from union of these two populations.

Mutation: Select randomly three distinct individuals

Xr1, Xr2 and Xr3 from population S and perform

mutation using formula:

�� = �'(+ � × (�� − ��!)
Where individual Xtb is best of these three individuals

and Xr2, Xr3 are the remaining two.

Crossover: Perform crossover according to equation

(2).

Selection: Calculate the objective function value at

new generated individual. If it is better than target

individual then replace target individual by this new

individual in current population.

TABLE II. MEAN FITNESS, STANDARD DEVIATION OF FUNCTIONS IN 30 RUNS AND T VALUE.

Fun

Fitness

Standard deviation

t-value

DE MDE DE MDE

fEP -0.99999 -0.99999 6.98197e-07 6.21603e-07 0.00

fCB6 -1.03163 -1.03163 8.17617e-07 6.71679e-07 0.00

fGP 3.00000 3.00000 1.07046e-06 5.40168e-07 0.00

fH3 -3.86230 -3.86230 1.46942e-06 8.85213e-07 0.00

fCV 1.65825e-06 2.51160e-06 1.86572e-06 2.61837e-06 1.45

fRB 13.83440 6.91061 8.55350e-02 6.24724e-02 358.03

fACK 1.42800e-04 1.35818e-04 1.79218e-05 1.24837e-05 1.75

fSWF 7.28960e-04 7.30199e-04 3.85744e-06 8.73741e-06 0.71

fGW 4.62272e-05 4.71135e-05 9.03396e-06 8.84722e-06 0.38

fZA 4.50199e-05 4.15536e-05 7.48947e-06 1.09776e-05 1.42

 TABLE III. NUMBER OF FUNCTIONS EVALUATION, % IMPROVEMETS AND AVERAGE TIME IN SECONDS

Fun
NFE

% Impr-
Time

DE MDE DE MDE

fEP 833 568 31.812 0.10 0.10

fCB6 1020 566 44.509 0.11 0.10

fGP 970 630 35.051 0.11 0.10

fH3 1170 843 27.948 0.10 0.10

fCV 12716 8844 30.449 0.2 0.10

fRB 1000000 1000000 0.000 33.12 34.23

fACK 259410 176670 31.895 18.90 14.70

fSWF 366570 249720 31.876 5.20 4.30

fGW 224910 150480 33.093 17.10 12.50

fZA 214890 143220 33.351 44.10 28.30

TABLE IV. MEAN FITNESS AND AVERAGE OF FUNCTION EVALUATIONS IN 30 RUNS FOR FUNCTIONS.

Fun
Fitness and NFE(n=10) Fitness and NFE(n=30) Fitness and NFE(n=50)

DE MDE DE MDE DE MDE

fRB

1.88258e-02

843100

3.27520e-06

162810

1.38344e+01

1000000

6.91061e+00

1000000

4.28553e+01

1000000

3.92105e+01

1000000

fACK
5.72106e-05

25910

8.96282e-05

16500

1.42800e-04

259410

1.35818e-04

176670

2.09244e-04

917750

1.97978e-04

629800

fSWF
2.42898e-04

26170

2.38916e-04

18130

7.28960e-04

366570

7.30199e-04

249720

4.50132e+03

1000000

4.68756e-03

1000000

fGW

1.20440e-05

96790

1.36853e-05

62840

4.62272e-05

224910

4.71135e-05

150480

8.04424e-05

764150

7.64880e-05

519200

fZA

1.52691e-05

17170

1.37965e-05

11400

4.50199e-05

214890

4.15536e-05

143220

8.57237e-05

851000

7.83553e-05

580900

TABLE V. NUMERICAL RESULTS OF REAL LIFE APPLICATION PROBLEMS.

 Solutions found of transformer design problem

 DE MDE NFE Time

x1 5.23203 5.23257

DE=344292

MDE=225090

DE=3.1

MDE=2.0

x2 4.72749 4.7292

x3 10.0924 10.0906

x4 13.618 13.6168

x5 0.827257 0.827318

x6 0.736074 0.73587

g1 -3.77599e

g2 9.97301e

f(X) 86.6225

Solutions found of transistor modeling problem

x1 0.901341

x2 0.891174

x3 3.87757

x4 3.94643

x5 5.32623

x6 10.6239

x7

x8 1.08914

x9 0.705575

f(X) 0.0543713

 Fig 1(a): performance curves of

Fig 1(b): performance curves of

3.77599e-05 8.05321e-05

9.97301e-05 9.99378e-05

86.6225 86.6225

Solutions found of transistor modeling problem

DE MDE NFE Time

0.901341 0.901336

DE=780768

MDE=458388

DE=17.3

MDE=9.9

0.891174 0.891053

3.87757 3.87933

3.94643 3.94662

5.32623 5.32509

10.6239 10.6162

0.0 0.0

1.08914 1.08881

0.705575 0.706727

0.0543713 0.0543658

of Ackley function.

): performance curves of schwefel function.

Fig 1(c): performance curves of Griewenk function

Fig 1(d): performance curves of Zakharov function

Time

DE=17.3

MDE=9.9

Griewenk function.

Zakharov function.

REFERENCES

[1] R. Storn and K. Price, Differential evolution – a simple and
efficient adaptive scheme for global optimization over
continuous spaces, Technical Report TR-95-012, Berkeley, CA,

1995.

[2] D. Goldberg, Genetic Algorithms in Search Optimization and
Machine Learning. Addison-Wesley. 1989.

[3] T.Back, F. Hoffmeister, H.Schwefel, A survey of evolution

strategies. In: Proceedings of the Fourth International
Conference on Genetic Algorithms and their Applications,

1991.pp. 2–9.

[4] L.Fogel, Evolutionary programming in perspective: The top-
down view. In: Zurada, J.M., Marks, R. Jr., Robinson, C. (Eds.),

Computational Intelligence: Imitating Life. IEEE Press,
Piscataway, NJ, USA. 1994.

[5] Paul K. Bergey, Cliff Ragsdale, Modified differential evolution:

a greedy random strategy for genetic recombination, Omega The
International Journal of Management Science 33, 2005, pp 255-

265.

[6] M.M.Ali, Differential evolution with preferential crossover,
European Journal of Operation Research 181, 2007 pp.1137-

1147.

[7] A.Salman, A.P.Engelbrecht, M.G.H.Omran, “Empirical analysis
of self adaptive differential evolution”, European Journal of

operational research 183, 2007 pp 785-804.
[8] Hui-Yuan Fan, Jouni Lampinen, “A Trigonometric Mutation

Operation to Differential Evolution,” Journal of Global

Optimization 2003, 27:105-129.

[9] Shahryar Rahnamayan, H.R. Tizhoosh, M.M.A.Salama,
opposition based differential evolution, IEEE transactions on

evolutionary computation, 2007 pp 1-16.

[10] Z. Yang, J. He, and X. Yao, Making a Difference to Differential
Evolution, in Advances in Metaheuristics for Hard Optimization,

Z. Michalewicz and P. Siarry (eds.), pp 415-432, Springer, 2007.

[11] Millie Pant, Musrrat Ali and V.P. Singh, “Differential Evolution
with Parent Centric Crossover”, Second UKSIM European

Symposium on Computer Modeling and Simulation 2008, 141 –

146.
[12] B.V.Babu and R.Angira, modified differential evolution (MDE)

for optimization of non-linear chemical processes, computer and

chemical engineering 30, 2006, 989-1002.
[13] P.Kaelo and M.M.Ali, a numerical study of some modified

differential evolution algorithms, European journal of

operational research 169, 2006, 1176-1184.
[14] U. K. Chakraborty (Ed.) Advances in Differential Evolution,

Springer-Verlag, Heidelberg, 2008.

[15] Shahryar Rahnamayan, H.R. Tizhoosh, M.M.A.Salama,
opposition versus randomness in soft computing techniques,

Applied soft computing, 2006.

[16] W.L.Price, global optimization by controlled random search,
journal of optimization theory and applications 40(3), 333-348,
1983.

[17] K. Deb, an efficient constraint handling method for genetic
algorithm, computer method in applied mechanics and

engineering, 186(2/4), pp 311-338, 2000.

