
  

Abstract—In the present study a Modified Differential 

Evolution (MDE) algorithm is proposed. This algorithm is 

different in three ways from basic DE. For initialization it 

utilizes opposition-based learning while in basic DE uniform 

random numbers serve this task secondly, in basic DE mutant 

individual is random while in MDE it is tournament best and 

finally MDE utilizes only one set of population as against two 

sets as used in basic DE. The performance of proposed 

algorithm is investigated and compared with basic differential 

evolution. The experiments conducted shows that proposed 

algorithm outperform the basic DE algorithm in all the 

benchmark problems and real life applications.  

Keywords:  differential evolution, mutation operator, opposition 

based learning.  

I. INTRODUCTION 

IFFERENTIAL evolution, proposed by Storn and Price 

in 1995 [1] is a relatively new optimization technique 

compared to evolutionary algorithms (EAs) such as 

Genetic Algorithms [2], Evolutionary Strategy [3], and 

Evolutionary Programming [4].  Within a short span of 

around thirteen years, DE has emerged as one of the most 

popular techniques for solving optimization problems. 

However, it has been observed that the convergence rate of 

DE do not meet the expectations in cases of highly 

multimodal problems. Several variants of DE have been 

proposed to improve its performance. Some of the recent 

versions include greedy random strategy [5], preferential 

mutation operator [6], self adaptive DE [7], Trigonometric 

DE [8], opposition based DE [9], neighborhood search DE 

[10], Parent Centric DE [11], modified differential evolution 

[12], differential evolution with random localization [13] etc. 

several recent versions of DE can be found in [14]. 

In all the above mentioned versions of DE, other than [9], 

modifications are done in mutation or in update processes. 

The proposed MDE algorithm is inspired by three ideas; (1) 

use of opposition based learning to generate the initial 

population (2) use of tournament best process to generate 

mutant vector to explore the region around the tournament 

best individual xtb (say) for each mutated point and finally 

(3) use of a single set population in contrast to the two set 

population as in basic DE. 
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The concept of opposition based learning (OBL) was first 

given in [9] to generate the initial population for a basic DE 

algorithm. The main idea behind OBL is the simultaneous 

consideration of an estimate and its corresponding opposite 

estimate in order to achieve a better approximation for the 

current candidate solution. In fact, a mathematical proof has 

been proposed to show that, in general, opposite numbers are 

more likely to be closer to the optimal solution than purely 

random one [15]. Use of a single set of population for DE 

was suggested in [12] where it was shown use of a single set 

population helps in reducing the computational time of the 

DE algorithm.  

Motivated by the successful implementation of the above 

mentioned modifications we decided to club these features 

together to develop a modified algorithm which we have 

named as modified DE or MDE. 

The remainder of the paper is structured as follows. 

Section II describes the basics Differential Evolution. 

Section III presents the proposed MDE. Experimental setting 

is given in Section IV. Benchmark problems and real life 

application problems are listed in Section V. Section VI 

provides comparisons of results. Finally the paper is 

concluded in section VII.      

II. DIFFERENTIAL EVOLUTION  

Throughout the present study we shall follow 

DE/rand/1/bin version of DE and shall refer to it as basic 

version. This particular scheme is briefly described as:  

DE starts with a population of NP candidate solutions: 

Xi,G, i = 1, . . . ,NP, where the index i denotes the population 

and G denotes the generation to which the population 

belongs. The three main operators of DE are mutation, 

crossover and selection. 

  Mutation: The mutation operation of DE applies the 

vector differentials between the existing population 

members for determining both the degree and direction of 

perturbation applied to the individual subject of the mutation 

operation. The mutation process at each generation begins 

by randomly selecting three individuals {r1, r2, r3} in the 

population set of (say) NP elements. The i
th 

perturbed 

individual, Vi,G+1, is generated based on the three chosen 

individuals as follows: 

           Vi,G+1 = Xr3,G + F * (Xr1,G − Xr2,G)                            (1)                                                          

Where, i = 1. . . NP, r1, r2, r3 ∈ {1. . . NP} are randomly 

selected such that  r1 ≠  r2  ≠  r3  ≠  i,  

F is the control parameter such that F ∈ [0, 1+]. 

 Crossover: once the mutant vector is generated, the 

perturbed individual, Vi,G+1 = (v1,i,G+1, . . . , vn,i,G+1), and the 

current population member, Xi,G = (x1,i,G, . . . , xn,i,G), are then 

A Modified Differential Evolution Algorithm and Its Application to 

Engineering Problems 

Musrrat Ali, Millie Pant and Ajith Abraham 

D



subject to the crossover operation, that finally generates the 

population of candidates, or “trial” vectors,Ui,G+1 = (u1,i,G+1, . 

. . , un,i,G+1), as follows: 
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Where, j = 1. . . n, k ∈ {1, . . . , n} is a random parameter’s 

index, chosen once for each i. The crossover rate, Cr ∈ [0, 

1], is set by the user. 

  Selection: The selection scheme of DE also differs from 

that of other EAs. The population for the next generation is 

selected from the individual in current population and its 

corresponding trial vector according to the following rule: 

        

. 1 . 1 .

. 1

.

( ) ( )i G i G i G

i G

i G

U if f U f X
X

X otherwise

+ +

+

≤
= 



                   (3)                                                 

Thus, each individual of the temporary (trial) population 

is compared with its counterpart in the current population. 

The one with the lower objective function value will survive 

from the tournament selection to the population of the next 

generation. As a result, all the individuals of the next 

generation are as good as or better than their counterparts in 

the current generation. In DE trial vector is not compared 

against all the individuals in the current generation, but only 

against one individual, its counterpart, in the current 

generation. 

III. PROPOSED DE ALGORITHM 

In this section we describe the proposed MDE, which uses 

the concepts of opposition based learning, random 

localization and one population set. The basic operators of 

MDE are same as basic DE but still it is different from it 

three points: 

1. MDE differs from basic DE in the initialization phase 

where MDE utilizes opposition based learning 

method while DE uses uniform random numbers for 

initialization of population. 

2. In mutation step MDE uses best individual of three 

points as mutant individual while in DE it is random 

(there is an equal chance of all these three for being 

selected as mutant individual). 

3. MDE maintain one population set while DE 

maintains two population sets, one current population 

and second advanced population (for next 

generation). The population is updated as the better 

individual is found. Also the newly found individual 

can take part in generation of new individual in 

current generation.    

A point to point comparison of two algorithms is given in 

Table I.   

IV. EXPERIMENTAL SETUP 

In order to make a fair comparison of MDE and basic DE, 

we have used C++ rand ( ) function to generate initial 

population for both the algorithms. The number of 

individuals in the population is taken 10*n. Value scaling 

factor F is taken as 0.5 which is neither too high nor low and 

therefore maybe considered as a good initial choice. Very 

small values of crossover constant Cr makes the convergence 

very slow whereas large values of Cr may end up in 

premature convergence. In the present study we have taken 

Cr =0.5. All the algorithms are executed on a PIV PC, using 

DEV C++, thirty times for each problem. In every case, a 

run was terminated when the function values of all points in 

population S were identical to an accuracy of five decimal 

places, i.e., ����� − ����� ≤ 10−4or when the maximum 

number of function evaluations (NFE =10
6
) was reached. 

V. BENCHMARK PROBLEMS 

The performance of the proposed algorithm is tested on a set 

of ten benchmark and two application problems taken from 

literature [9]. First five functions fEP, fCB6, fGP, fH3 and  fCV are 

with fixed dimension while second five fRB, fACK, fSWF, fGW and  

fZA are scalable in nature. Scalable problems are tested for 

dimensions 10, 30 and 50. Real life application problem is 

taken from [16]. 

VI    NUMERICAL RESULTS AND COMPARISONS 

     A. Comparison between DE and MDE 

 

In this section we compare MDE with the basic DE 

algorithm in terms of average fitness of function values, 

standard deviation, and t- values for which the results are 

listed in Table II. For scalable problems the dimension is 

taken as n=30. Table III provides number of function 

evaluations (NFE), percentage improvement in terms of 

number of functions evaluations and average time taken for 

the execution of algorithms. As it is clear from the Table II 

that in term of fitness function value and standard deviation 

both the algorithms give more or less similar results 

although in some cases MDE performs slightly better than 

classical DE. On the basis of t-values, last column of the 

Table II, we can conclude that there is a significant 

difference between both the algorithms at 5% level of 

significance. The superior performance of the proposed 

MDE is more evident from Table III, which gives the 

average number of functions evaluations from which we can 

see that MDE takes less number of function evaluations to 

achieve the required fitness in comparison to the basic DE in 

all cases except for Rosenbrock function (fRB), in which both 

the algorithms approach to the maximum number of function 

evaluation (NFE=10
6
). In terms of improvement in number 

of function evaluation MDE reduces the number of function 

evaluation up to 44.5% for function fCB6. If we talk about 

overall reduction in number of function evaluation, it is 

more than of 29.99%. But for function fRB, in terms of 

function evaluation there is no improvement, both 

algorithms take maximum number of function evaluation. 

Also from Table III, it can be seen that MDE takes less run 

time in comparison to basic DE but in case of function fRB, 

where number of function evaluation is same, MDE takes 

more time than basic DE. Performance curves (convergence 

graphs) of few selected functions are given in Fig1(a) – 

Fig1(d). From these illustrations also it is evident that the 

convergence of proposed algorithm is faster than basic DE.  

 



B. Influence of Dimensionality. 

 

The performance of the proposed MDE is further 

compared with the basic DE for scalable problems of 

dimension 10, 30 and 50. The results obtained are 

summarized in Tables IV which gives the results of MDE 

and DE algorithms in terms of average fitness and average 

number of function evaluations. According to results 

obtained, MDE surpasses DE on 11 cases while DE 

outperforms MDE in 4 cases out of 15 cases in term of 

average fitness. If we talk in term of average number of 

function evaluation (NFE) it is less in all cases for MDE 

except for fRB and fSWF where it is same for both the 

algorithms. 

 

C. 6umerical results of Application problems 

In order to further validate the performance of MDE 

algorithm we used it for solving two real life problems; 

Transformer design [16] and transistor modeling [16]. Out of 

these problems, the first problem is constrained in nature, 

while the second is unconstrained. For handling constraints, 

we have used the method proposed by Deb [17].  

The numerical results of the real life problems are given in 

Table V. experimental settings for real life problems are 

same as that of benchmark problems. A run is terminated 

when an accuracy of 10
-04

 i.e. ���� − ���� ≤ 10�� is 

reached and then fitness standard deviation NFE and time is 

stored in Table V.  Once again from this Table we can 

observe the superior performance of the proposed MDE 

algorithm in terms of NFE and time which are quite less than 

the basic DE in all the cases 

VII    DISCUSSION AND CONCLUSIONS 

In this paper we proposed a modified version of basic DE 

called MDE. The simulation of results showed that the 

proposed algorithm is quite competent for solving problems 

of different dimensions in less time and less number of 

function evaluations without compromising with the quality 

of solution. The set of problems considered, though small 

and limited show the promising nature of MDE. Only for 

Rosenbrock function fRB MDE took more time than the basic 

DE, although the number of functions evaluations are same. 

However, the work is still in the preliminary stages and more 

modifications may be added to it to make it more robust.  

 
 

TABLE I. COMPARISON OF TWO ALGORITHMS. 
 

DE MDE 

Initialization: Construct an initial population S of NP 

individuals, dimension of each vector being n, using 

the following rule:  

Xi,j= Xmin,j + rand(0, 1)(Xmax,j-Xmin,j), 

 Where Xmin,j and Xmax are lower and upper bound for 

j
th

 component respectively and rand(0,1) is a uniform 

random number between 0 and 1. 

 

 

 

 

 

 

 

Mutation: Select randomly three distinct individuals 

Xr1, Xr2 and Xr3 from population S and perform 

mutation using formula: 

�� = ��� + � × (�� − ��!) 
Where individual Xr1 is random (i.e. it may be any one 

from these three individuals). 

 

Crossover: Perform crossover according to equation 

(2). 

 

Selection: Calculate the objective function value at 

new generated individual. Choose better of the two 

(function value at target and trial point) using equation 

(3) for next generation’s population. 

Initialization: Randomly construct a population P of 

NP individuals, dimension of each vector being n, 

using the following rule:  

Xi,j= Xmin,j + rand(0, 1)(Xmax,j-Xmin,j), 

 Where Xmin,j and Xmax are lower and upper bound for 

j
th

 component respectively and rand(0,1) is a uniform 

random number between 0 and 1. 

Construct another population OP of NP individuals 

using the following rule: 

#�,% = ����,% + ����,% − &�,% 
Where Pi,j are the points of population P. 

Construct initial population S taking NP best 

individuals from union of these two populations.  

 

Mutation: Select randomly three distinct individuals 

Xr1, Xr2 and Xr3 from population S and perform 

mutation using formula: 

�� = �'( + � × (�� − ��!) 
Where individual Xtb is best of these three individuals 

and Xr2, Xr3 are the remaining two. 

 

Crossover: Perform crossover according to equation 

(2). 

 

Selection: Calculate the objective function value at 

new generated individual. If it is better than target 

individual then replace target individual by this new 

individual in current population.  
 

 
 

 

 



TABLE II. MEAN FITNESS, STANDARD DEVIATION OF FUNCTIONS IN 30 RUNS AND T VALUE. 
 

Fun 

Fitness 

 
Standard deviation 

t-value 

DE MDE DE MDE 

fEP -0.99999 -0.99999 6.98197e-07 6.21603e-07 0.00 

fCB6 -1.03163 -1.03163 8.17617e-07 6.71679e-07 0.00 

fGP 3.00000 3.00000 1.07046e-06 5.40168e-07 0.00 

fH3 -3.86230 -3.86230 1.46942e-06 8.85213e-07 0.00 

fCV 1.65825e-06 2.51160e-06 1.86572e-06 2.61837e-06 1.45 

fRB 13.83440 6.91061 8.55350e-02 6.24724e-02 358.03 

fACK 1.42800e-04 1.35818e-04 1.79218e-05 1.24837e-05 1.75 

fSWF 7.28960e-04 7.30199e-04 3.85744e-06 8.73741e-06 0.71 

fGW 4.62272e-05 4.71135e-05 9.03396e-06 8.84722e-06 0.38 

fZA 4.50199e-05 4.15536e-05 7.48947e-06 1.09776e-05 1.42 

 
                TABLE III. NUMBER OF FUNCTIONS EVALUATION, % IMPROVEMETS   AND AVERAGE TIME IN SECONDS 
 

Fun 
NFE 

% Impr- 
Time 

DE MDE DE MDE 

fEP 833 568 31.812 0.10 0.10 

fCB6 1020 566 44.509 0.11 0.10 

fGP 970 630 35.051 0.11 0.10 

fH3 1170 843 27.948 0.10 0.10 

fCV 12716 8844 30.449 0.2 0.10 

fRB 1000000 1000000 0.000 33.12 34.23 

fACK 259410 176670 31.895 18.90 14.70 

fSWF 366570 249720 31.876 5.20 4.30 

fGW 224910 150480 33.093 17.10 12.50 

fZA 214890 143220 33.351 44.10 28.30 

 
TABLE IV. MEAN FITNESS AND AVERAGE OF FUNCTION EVALUATIONS IN 30 RUNS FOR FUNCTIONS. 

 

Fun 
Fitness and NFE(n=10) Fitness and NFE(n=30) Fitness and NFE(n=50) 

DE MDE DE MDE DE MDE 

fRB 

1.88258e-02 

843100 

3.27520e-06 

162810 

1.38344e+01 

1000000 

6.91061e+00 

1000000 

4.28553e+01 

1000000 

3.92105e+01 

1000000 

fACK 
5.72106e-05 

25910 

8.96282e-05 

16500 

1.42800e-04 

259410 

1.35818e-04 

176670 

2.09244e-04 

917750 

1.97978e-04 

629800 

fSWF 
2.42898e-04 

26170 

2.38916e-04 

18130 

7.28960e-04 

366570 

7.30199e-04 

249720 

4.50132e+03 

1000000 

4.68756e-03 

1000000 

fGW 

1.20440e-05 

96790 

1.36853e-05 

62840 

4.62272e-05 

224910 

4.71135e-05 

150480 

8.04424e-05 

764150 

7.64880e-05 

519200 

fZA 

1.52691e-05 

17170 

1.37965e-05 

11400 

4.50199e-05 

214890 

4.15536e-05 

143220 

8.57237e-05 

851000 

7.83553e-05 

580900 

 

 
TABLE V. NUMERICAL RESULTS OF REAL LIFE APPLICATION PROBLEMS.  

 

 Solutions found of transformer design problem 

 DE MDE NFE Time 

x1 5.23203 5.23257 

DE=344292 

MDE=225090 

DE=3.1 

MDE=2.0 

x2 4.72749 4.7292 

x3 10.0924 10.0906 

x4 13.618 13.6168 

x5 0.827257 0.827318 

x6 0.736074 0.73587 



g1 -3.77599e

g2 9.97301e

f(X) 86.6225

Solutions found of transistor modeling problem

 

x1 0.901341

x2 0.891174

x3 3.87757

x4 3.94643

x5 5.32623

x6 10.6239

x7 

x8 1.08914

x9 0.705575

f(X) 0.0543713

 

 

                  
 
                              Fig 1(a): performance curves of 

  

 

Fig 1(b): performance curves of 

 

 

 

 

 

 

3.77599e-05 8.05321e-05 

9.97301e-05 9.99378e-05 

86.6225 86.6225 

Solutions found of transistor modeling problem 

DE MDE NFE Time

0.901341 0.901336 

DE=780768 

MDE=458388 

DE=17.3

MDE=9.9

0.891174 0.891053 

3.87757 3.87933 

3.94643 3.94662 

5.32623 5.32509 

10.6239 10.6162 

0.0 0.0 

1.08914 1.08881 

0.705575 0.706727 

0.0543713 0.0543658 

 

of Ackley function. 

 

): performance curves of schwefel function. 

 

 

 
Fig 1(c): performance curves of Griewenk  function

 

 

Fig 1(d): performance curves of Zakharov function
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Griewenk  function. 

 

Zakharov function. 
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