
Automatic Shell Clustering Using a Metaheuristic Approach

Siddharth Pall, Anniruddha Basakl, Swagatam Das I,
Ajith Abraham2 and Yaclav Snasee

IDepartment of Electronics and Telecommunication Engineering, Jadavpur University, India
2 Machine Intelligence Resarch Labs (MIR Labs), USA. Email: ajith.abraham@ieee.org

3YSB Technical University Ostrava, Czech Republic. Email: vaclav.snasel@vsb.cz

Abstract-This paper proposes a simple, metaheuristic
clustering technique, inspired by the mountain clustering

method of Yager and Filev, for detecting general quadric shell

type clusters. The algorithm employs an ecologically inspired

metaheurisitc algorithm, called Invasive Weed Optimization

(IWO) to evolve a set of cluster prototypes in the shape of

curves/hyper-surfaces. The objective function is modeled using

the concept of the mountain function from Yager and Filev's

work. The metaheuristic approach can be extended to solid

clusters and various shell clusters like circular, elliptical,

rectangular etc. The proposed method is tested on several

synthetic datasets as well as real images to detect circular and

elliptical shell clusters and the results obtained are found to be
very promising.

Keywords - shell clustering, invasive weed optimization,

mountain and subtractive clustering, circle detection, shape

recognition.

I. INTRODUCTION

Traditional fuzzy clustering algorithms like Fuzzy C -
Means (FCM) [1] and Possibilistic C - Means (PCM) [2]
cannot detect clusters that lie in nonlinear subspaces of the
feature space because they use points (i.e. cluster centroids)
as prototypes. To find clusters in nonlinear subspaces that
resemble shells or patches of hyper-surfaces with no interior
points, prototypes like curves/hyper-surfaces have been
proposed. The shell clustering techniques provide an
effective means for solving the problem of fitting multiple
curves/hyper-surfaces to unlabeled, sparse, and scattered
data. Algorithms dedicated to detect shell type clusters have
also found applications in boundary detection, surface
approximation and similar computer-vision tasks [3 - 5]. A
few representative fuzzy shell clustering algorithms are
Adaptive Fuzzy C Shells (AFCS) algorithm [6], Fuzzy C
Quadric Shells (FCQS) and its variants [7, 8], Fuzzy C
Plano-Quadric Shells [9] etc. and they attempt to minimize
the weighted squared sum of distances of a feature point to a
prototype by updating the fuzzy membership and parameters
in an alternating fashion. Most of the shell-clustering
algorithms available in the literature are computationally
quite expensive since either they need to perform matrix
inversions or they solve some nonlinear equations iteratively.

978-1-4244-6588-0/10/$25.00 ©2010 IEEE

Usually for better results a series of algorithms need to be
applied on the data.

Yager and Filev proposed the Mountain Clustering
Method (MCM) [10], to estimate the cluster prototypes in a
simple way. MCM provides an approximate estimation of
the cluster centroids by constructing and destroying a
mountain function on the grid space. It is suitable for
applications where only an approximate set of cluster
centroids will serve the purpose. Nevertheless, the cluster
centroids found by MCM can be refined by other
complicated and more involved clustering algorithms, when
accuracy becomes the major requirement. MCM is less
sensitive to noise than other competing clustering
algorithms such as FCM [11]. To reduce the computational
complexity of mountain clustering, Chiu proposed a slightly
different variant known as the Subtractive Clustering Method
(SCM), where calculating the mountain function is done on
the data points rather than on the grid points [12].

Pal and Chakraborty [11] extended MCM for detecting
circular shell-shaped clusters and proposed the Mountain
Circular Shell (MCS) method. In this article we propose a
metaheuristic shell clustering method that exploits the idea of
mountain functions to evaluate the closeness of the data­
points to the cluster prototypes and employs a powerful
global optimization algorithm of current interest, called
Invasive Weed Optimization (IWO) [13] , to refine those
prototypes. Our method is capable of detecting general
quadric shell-shaped clusters and differs significantly from
[11].

Pal and Chakraborty [11] considered circular shells
where a shell prototype consists of two elements - centre of
circle and radius of circle. The mountain function was
calculated for various combinations of centres and radii.
Then the derivative-based steepest ascent algorithm was
applied to tune the obtained prototypes. After a circular shell
was detected the mountain function was updated to negate
the effect of previously detected shell prototypes. In this
work, we do not divide the feature space into grids. Rather
we evolve the shell cluster prototypes to fit them to the
actual data-points by a metaheuristic algorithm. Our
objective function that measures how much the distribution
of the data-points deviate from the actual cluster prototype
(which is a curve/hyper-surface) is based on the mountain
function, which gives us the advantage of immunity to noise.

2579

Our approach is free from the adjustments of the
quantization step-size and other shortcomings of the steepest
ascent algorithm (like trapping in a local optimum). The
parameters of the cluster prototype are taken as search
variables. In MCS method, the mountain function update
strategy sometimes produces erroneous results where a
previously detected prototype is detected once again because
of imperfect discounting. We found this to happen when two
cluster prototypes were quite close and one prototype
contained significantly more number of points than the other.
Thus when we are detecting a cluster prototype, we
completely remove the corresponding data-points rather than
update the mountain function. This produced a significant
improvement in the clustering efficiency.

We begin with a brief description of the mountain and
subtractive clustering methods in Section 2. Next we outline
the classical IWO and its modifications proposed by us for
enhancing the optimization performance. The proposed shell
clustering technique is presented in Section 4. We provide
the experimental results on several synthetic datasets and
real-life images in Section 5 and finally the paper is
concluded in Section 6 with some discussions on the future
research issues.

II. MOUNTAIN AND SUBTRACTIVE CLUSTERING

In MCM we discretize the p-dimensional bounded
hyperspace into p-dimensional grids. This results in grid­
points. The grid-points so produced are treated as candidate
cluster prototypes. Once a cluster centre is estimated, the
mountain function is updated to eliminate the effects of the
already detected centres. The Mountain function is defmed
for each grid-point Vi as:

n

M(vJ = ·�.>-a.d(Xk>V;)
k=l

(1)

where a is a positive constant, d(Xk' Vi) denotes the

distance of Xk from the grid-point Vi .The mountain function

can be viewed as a measure of the density of data-points in
the neighbourhood of a grid-point. The mountain function in
(1) had been defined to fmd centres of solid clusters. Yager
and Filev suggested the update equation for the mountain
function as follows

M (v)=M (v)-M* e-P.d(v;-l>V;) k I k-l I k-l (2)

In the abobe equation M k (Vi) is the new mountain

function, Mk_1 (vJ is the previous mountain function and

V;_l is the last detected center, and f3 is a positive constant.

Using the discounted function given in equation (2) new
cluster centres are detected until the level of the current

maximum M;_l falls below a certain level compared to the

original maximum M; . The process of finding new cluster
centres is terminated when

(3)

where t5 is a positive constant less than 1. Thus the
parameters of the algorithm are a ,f3 and t5 .

The subtractive clustering technique is a variation of the
mountain method which is computationally less expensive.
Unlike the mountain method here each data-point is treated
as a potential cluster centre. This method also takes the help
of mountain function and subsequently discounts the
mountain function, but does not use the concept of grids.
Here only the data-points are tested as prospective cluster
centres. Thus complexity of algorithm does not depend on
the dimensionality or the spread of the data but on the
number of data-points. The inherent problem with this
method is that it will give good results only if the desired
cluster centres is close to one of the data-points.

III. INVASIVE WEED OPTIMIZATION (IWO)

In recent past, the computational cost having been reduced
almost dramatically, researchers all over the world are
paying a considerable amount of attention towards bio­
inspiration and bio-mimicry, for solving computational
problems and constructing intelligent systems like
autonomous robots. Following this tradition, in 2006,
Mehrabian and Lucas proposed the Invasive Weed
Optimization (IWO) [13] , a derivative-free, metaheuristic
algorithm, mimicking the ecological behavior of colonizing
weeds. Since its inception, IWO has found successful
applications in many practical optimization problems like
optimization and tuning of a robust controller [13], optimal
positioning of piezoelectric actuators [14], developing a
recommender system [15], antenna configuration
optimization [16], design of E-shaped MIMO Antenna [17],
design of encoding sequences for DNA computing [18], and
design of compact U-array MIMO antenna design [19].

The basic idea of IWO goes like this: flowering
plants reproduce seeds, which spatially disperse over a
certain area and grow to plants. When the population of the
plants is excess to fit in that area, only the plants with better
fitness can survive. This process continues generation after
generation. Main steps of the algorithm have been
summarized below.

1. Initialization:
A finite number of weeds are initialized randomly in the

d-dimensional search space

2. Reproduction:
Each member of the population is allowed to produce

seeds depending on its own, as well as the colony's lowest
and highest fitness, such that, the number of seeds produced
by a weed increases linearly from lowest possible seed for a
weed with worst fitness to the maximum number of seeds
for a plant with best fitness. The number of seeds generated
by a plant is as follows:

2580

[{
(worst fitness - plantfi,ness

J
}]

seeds'" max floor max seed x
fi fi

' 1 -
worst Ilness _ best

,'ness

3. Spatial distribution:
(4)

The generated seeds are randomly distributed on the
search space according to normal distribution with zero

mean and normalized standard deviation at . This is

determined by the following equation:

tJ, = (1 - -. _t_) n (tJinilial - tJ final)+ tJ {Inal , (5)
lfer max

.

where itermax is maximum iterations, t is current iteration

and n is the nonlinear modulation index. In the optimizing
functions considered, the bounds differ from dimension to
dimension. So we have introduced a concept of normalized
standard deviation. This step ensures that the produced
seeds will be generated around the parent weed, leading to a
local search around each plant. However, the standard

deviation at of the random function is made to decrease

over the iterations. We associate a standard deviation for

each dimension which in itself is dependant on at .
ai,t = cxat X (UBi -LBJ (6)

ai,t is the standard deviation pertaining to the i
th dimension.

UBi and LBi are the upper and lower bounds for

the i
th dimension. c is chosen as 0.25. This step ensures that

the probability of dropping a seed in a distant area decreases
nonlinearly with iterations, which results in grouping fitter
plants and elimination of inappropriate plants

4. Competitive Exclusion:
There is a need of some kind of competition between

plants for limiting maximum number of plants in a colony.
Initially, the plants in a colony will reproduce fast and all the
produced plants will be included in the colony, until the
number of plants in the colony reaches a maximum
value POPmax . However, it is expected that by this time the

fitter plants have reproduced more than undesirable plants.
From then on, only the fittest plants, among the existing ones
and the reproduced ones; are taken in the colony and the
steps 1 to 4 are repeated until the maximum number of
iterations has been reached.

In order to improve the performance of the
classical IWO, in this article we have modified (5) as:

CT, = (1--. _t -I n !coS(t)!(CT;nwal - CT final)+ CT final (7)
lterma.,

The Icos(t � term adds a variation in standard deviation,

which helps in exploring the better solutions quickly and
prevents the new solutions from discarding an optimal
solution when at is relatively large. Suppose we consider

an optimization problem f(x) which needs to be minimized.

In classical IWO the seeds are generated from a plant with a
certain standard deviation at ' which is decreased as number

of iteration increases. Thus the plants slowly undergo a
behavioral transformation from an explorative nature to an
exploitative one. This modification is proposed, such that if
the weeds are near an optimal solution then it can exploit it
quickly rather than wait for the standard deviation to
decrease to a reasonable value which might be achieved near
the end of the run. In our proposed strategy the standard
deviation actually varies within an envelope, so lesser values
of at are obtained much before the end of the run. This

facilitates quicker detection of optimal solutions and better
results as compared to classical IWO.

2.5 r---,-----,----,r=======1l
c 2

.9
c;; .� 1.5
"0
10
'"

"0
C
�
en 0.5

-- classicallWO
-- modified IWO

O L------L--����==�------�----�
o 20 40 60 80 100

Iterations .. >

Figure 1. Comparison of the variations of standard deviation with
iterations for the classical and modified IWO

IV. THE PROPOSED SHELL CLUSTERING ALGORITHM

In this Section, we outline the proposed shell clustering
algorithm based on the concepts of the mountain function
and modified IWO. Suppose each data-point is described by

an n-dimensional feature vector like X = [Xpx2, ... xnf .

The prototypes consist of parameter vectors Ai that define

the equations of the hyperquadric surface. Once the
parameter vector is determined we can detect whether a
certain datapoint lies on the surface or not. The general
equation of a hyperquadric surface is given as

-T -Ai B = 0 (8)

where,
-T Ai = [ail' ai 2 , • • • • • • • ain, ai(n+')'····aiP] - 2 2 2 B = [Xl 'X2 , Xn 'X'X 2' Xn_IXn'XI , xn,l]
ail � ain represents the coefficients of Xi2

ai(n+l) � ai(n2/2+n/2) represents the coefficients of XiX}

a � a () represents the coefficients i(n2/2+n/2+1) i n2/2+3n/2
of Xi

2581

aip represents the constant term coefficient with

p = n2 /2+3n/2+ 1.
Since our objective is to fit the hyperquadric

surfaces to the data-points, we encode the parameters of a
number of such candidate hyperquadric surfaces as the
population members or search-agents which are initialised
randomly and then gradually evolved with the modified
IWO to fit to the actual distribution of the data-points. The
mountain function for the i-th hyperquadric surface is
defined as:

(9)
k=l

Here n is the number of data-points in the set. The quantity

IAiT .Bk l will be minimized for the k'h data-point when it

lies on the hyperquadric surface defined by parameter vector

Ai. Thus the contribution of the k'h data-point to the

mountain function will be close to 1 if it lies on the
candidate hyperquadric surface. If the parameter vector of

the i'h agent Ai represent a hyperquadric surface present in

the dataset then the mountain function will be maximized
for that agent. Thus, the objective function to be minimized
for the i-th search agent is given as:

1; = -M(AJ (10)

For detecting circular shells, the hyperquadric surface can
be simplified to:

1; = -i::e -al(x1 _a)2 + (X2 _b)2 -RI (11)
k=l

In this case a population member of IWO will contain the
centre and radius of the candidate circular shell. Once a
parameter vector with best fitted circular shell is found, we
classify the data-points depending whether they fall in the
present circular shell or not.

-aIA;'Bk I Ih If e � p
then we say that the k data-point lies on

the circular shell described by Ai . We have chosen
p = 0.95 for all the datasets that we have considered.

Suppose the present set of data-points is denoted by 'I' . Let
us define a set,

(= { k E 'l'le -aIA;'Bk I � p} (12)

Initialize population

Apply M-lwO and Update
Population

Determine Mountain function

for each agent

no

Update datapoints by removing
cI ustered points

Display cluster centres and
datapoints belonging to each

cluster

yes

yes

Remove clustered points
and redefine dataset

no

Figure 2. Flowchart illustrating the Automatic Shell Clustering
Algorithm

The set of data-points (are said to be clustered in a shell

described by parameter vector Ai . These clustered points are

removed from the original set. The new set of data-points is
defined as,

'I"={kE'I'lkE(} (13)

To facilitate automatic detection we need to have a
terminating condition for the optimization algorithm. The
terminating condition occurs when number of runs is equal
to max runs. We also want the clustering process to

2582

terminate when all the shell clusters have been detected. We
can introduce a terminating condition as in equation 10.

where
n(�) < N min' (14)

n() denotes the cardinal number of the set

N min is the minimum number of points required to be in a
shell.

For our purpose we have chosen Nmin as n(qs)/20 .Here

qs denotes the set of all data-points.

Figure 2 shows flow-chart of the complete clustering
process.

In previous works on mountain or subtractive clustering the
mountain function was either evaluated for all the datapoints
or the parameter hyperspace was divided into grids and the
mountain function was calculated for the grid points. In [8]
the refinement of cluster centres was carried out by a
steepest ascent method. Evidently in this article we differ
considerably from such approach.

Moreover most of the works on subtractive
clustering have used a discount function to update the
mountain function. However in our approach after a certain
shell has been detected we change the dataset by removing
the clustered points rather than updating the mountain
function. Merely updating the mountain function and
keeping the original set of points leads to a fitness function
which doesn't yield correct results. This is because exact
discounting can never take place. We cannot nullify the
effect of a neighbouring cluster completely. If a cluster has
been detected with many points and in the next iteration we
are supposed to detect a cluster with far less points then it
may happen that the previous cluster is once again detected
because the mountain function value corresponding to the
earlier shell still dominates the smaller shell even after
discounting. Even with a judicious choice of discounting
function the problem hyperspace because more complicated
and the efficiency of the overall algorithm tend to decrease.
Thus for regular shell cluster we do not need to use the
method of discounting. We simply remove the previous
detected clusters. However while dealing with solid clusters
we need to take help of the method of discounting.

V. EXPERIMENTAL RESULTS

The proposed algorithm is tested with seven synthetic
datasets and two images with varying degrees of complexity.
On the images, the primary objective was to detect the
circular boundaries automatically, which stand as an
important problem in vision. Characteristics of the seven
synthetic datasets have been listed in Table 1.

Table 1: Description of Datasets

Dataset Comments
No.

I Two shell clusters overlap. This does not cause any
problem to the algorithm as in the parameter space they

are widely separated.

2 Here the two circular shells are concentric.

3 This dataset contains two semicircular shells. This tests

the algorithm if it can detect incomplete circular shells.

4 This dataset consists of two circular shells and a
semicircular shell inside a large circular shell.

5 This dataset consists of 8 circular shells. It tests the
algorithm's capacity to correctly detect multiple

intersecting shells.

6 This dataset consists of two thick semi-elliptical shells.

7 This dataset contains two intersecting ellipses.

We considered two-dimensional datasets consisting of
elliptical and spherical shell clusters for the ease of
visualization. The modified IWO-based proposed algorithm
was run with the following parametric setup - maximum
number of iterations iter max = 60, initial normalized

standard deviation (J'initial = 1, final normalized standard

deviation (J' final =.00 1 ,maximum number of seeds

max _seeds=5 and maximum number of plants

POPmax = 100 . The upper and lower bounds UBi and

LBi were determined from the ranges of the dataset. The

various parameters pertaining to the mountain clustering
module were set as - a = lO,p = 0.95. However for thick

clusters such as in dataset 6 a low value of p = 0.2 had to
be chosen

We present the final result in the form of an image
which clearly depicts the clustered shells. For the sake of
space economy in Figures 4 to lOwe show the clustered
datasets 1 to 7 as obtained with the proposed algorithm.
Since IWO is a stochastic optimization algorithm, results of
two repeated runs on the same problem may not match
completely. Hence we took 25 independent runs of the
proposed algorithm on each of the datasets. In table 2 we
provide the number of successful runs for the proposed
algorithm and the clustering efficiency, defined as the
percentage of successful runs over each problem. We also
provide the average CPU time (in seconds) taken by the
algorithm per run on each dataset.

A trial is said to be feasible if all the shell
clusters were correctly identified. A trial is said to be
successful if all the data-points were correctly clustered. Till
now we have tested our algorithm on various datasets with
varying degree of complexity. Here we would also like to
apply our algorithm on various images for circular and
elliptical shape detection. Prior to applying the evolutionary
shell clustering technique, we need to convert the image into
a binary edge image.

2583

45

40

35
P

30

25P
0

20

15

10
35

80

70

60

50

40

30

20

10

0
20

60

40

o 0

o 0
0 I Cluster 1 I Cluster 2 L-_____ --'

o '" 0 o 0
o o

o o
o o

45 50 55 60 65 70 75
Figure 4: Clustered Result(Dataset 1)

30 40 50 60

I CLUSTERI I o J CLUSTER2
"-----;;----�,------J

70 80 90 100
Figure 5: Clustered Result(Dataset 2) 00 00 00 00

I Cluster 1 I Cluster 2
0 0 0 0 0

55 0 0 0 P
50

45

40
30

160

140 0
120 0 0

0 0 0 0 0 0 0

40 50

o

60 70

o o o o o o o o 00 ,000
80

Figure 6: Clustered Result (Dataset 3)

0 0 0 Cluster 1 0 0 0 0 Cluster 2 0 0 Cluster 3 0 Cluster 4 0
100 0 0 0

80

60

40
o

0 0 0 0 0 0
20 40

\0 l oOOoocooaoooc:P 0 0
60 80

0 0
100

Figure 7: Clustered Result(Dataset 4)

0 0 0

120

25 0
20

o
15 � • 0
10

5 • • •

o 0 00 0° o 0 0 . . · o···.··g··· .. ··i··· .. ··: ··· •• o . o .
o • -.°0• eo o. ·0

o� .� :� .e :� � o . 0 • 0 •
o 00 .- De eP •• °0000 • 0

• 0
o 0 0 .0 0 0 0 0 c: 0 0 0 0 r: 0 0 0 � 0 0 • • • . .

10

.
.

• • • • • .

20

• . . .' . .
30

.
.

• .
40

Figure 8: Clustered Result (Dataset 5)

. •
50

100 ����0���0-0�0�� -0--.- ---.- --r------
C
-

I
-
us

-
t

-
e r
-;

1 cP "'b'&i'� 6'6'0 00 o � � 0 Cluster2

o

qp CO> '-------------1 o 0 '\,0

Figure 9: Clustered Result (Dataset 6)

0% 00
8'8% '"

8 00

00 0

100

90 �--�--�-��--�====�====0
+* '\ I -+- Cluster1 1

80

70

60

-+- -+- -+-
-+--+- -+-

;(-+--+- -+- -+- -+- -+-

50

40

30

20

10

o

-+- -+- -+- Cluster2 1-
-+- -+-
-+-

-+-
-+-

-+-
t -+- -+--+--+-
-+-

-+-
-+-
t -+- -+--+--+-

-+-
-+-

-+-
-+-

-+--+-
-+- -+-
-+- -+-

-+- -+- -+- -+- -+--+-):
-+- -+- -+- -+--+-

-+-

-+- .die-+-
-10 L---�-----'--���-�---�---J

-20 0 20 40 60 80 100
Figure 10: Clustered Result (Dataset 7)

The images shown in Figures 11 and 12 were first converted
to binary images by simple thresholding function using
MA TLAB. The 151 Test image has a circle and other line
segments intersecting the circle in various regions. The
algorithm detects the circle correctly in all the runs as
shown in Figure 11. In the 2nd test image we have a similar
image but with added salt and pepper noise.

2584

Table 2: Statistical Results

Dataset No. of No. of Clustering Avg. C.P.U Time per
No. feasible successful Efficiency run (in Seconds)

runs runs
I 25 25 100% 15.24
2 25 25 100% 12.12
3 25 25 100% 18.48
4 25 25 100% 28.40
5 25 25 100% 30.20
6 22 21 84% 17.72
7 25 23 92% 15.80

The added noise doesn't hamper the performance of the
algorithm in any fashion. This is by virtue of the mountain
function that we are using which is quite immune to added
noise. The detected image is shown in Figure 12.

25°1--,---------,------0;:======::;1
200

150

100
Fgurernr:Tr��������neClTcm
50

1��-����-,��-,-�======�=-_,
140

120

100

80

�
'.

O L-----���--L-��-L------�----�
o 50 100 150 200 250

Figure 12: Image 2 with detection of the circular shape

Next we test our algorithm on two more real world images
featuring an electric bulb and two coins. The objective is to
identify the circular boundaries of the real-life objects from
the edge image, which in these two cases were generated by
using the Sobel edge-detector [20]. In Figures 13 (a), (b),
and (c) we show the actual bulb image, its corresponding
edge image and the detected circular boundaries by our
proposed algorithm and the MCS method as obtained from
[II]. For MCS we used the best parametric setup as

specified by the authors in [11]. Figures 14 (a) - (c) exactly
correspond to Figures 13 (a) - (c) but for the coin image.

(a) Image of a bulb (b) Sobel Edge Image of (a)

(c) Image showing detection of circular

part of a bulb
Fig ure 13: Testing the proposed algorithm on a bulb image

(a) Image of two coins (b) Sobel Edge Image of (a)

Our simulation results indicate that the proposed modified
IWO based shell clustering technique can efficiently detect
circular and spherical shell clusters from a given dataset and
it can correctly detect the number of clusters on the run. As
is evident from the high clustering efficiency, the algorithm
is fairly robust against different orientations of the shells
(separable, non-separable, intersecting etc.) and also to the
presence of noise, as can be perceived from Figure 12.

2585

-- Coin1 (Proposed Algorithm)
-- Coin 2(Proposed Algorilhm)
-- Coin1 (MCS)
-- Coin2(MCS)

(c) Image showing detection of the circular boundaries of the coins

Figure 14: Testing the proposed algorithm on the image of two
coins

Figures 13 and 14 and also the complete results on a variety
of synthetic datasets (that we did not show here for the
shortage of space) indicate that the proposed algorithm
yields a better fit to the circular shapes as compared to the
MCS method.

VI. CONCLUSIONS

In this article we proposed a metaheuristic shell clustering
technique that uses a mountain function as the objective
function to be minimized with a modified Invasive Weed
optimization (TWO) algorithm. Our method shows
considerably good performance in extracting a variety of
hyperquadric shell clusters with acceptable computation
time (ranging from 15 to 30 seconds on average per run).
Also it provides an efficient means to detect boundaries
from edge images generated from real-life images. Our
preliminary studies indicate that our method can yield more
accurate prototype to fit the data-points distributed along
circular shells as compared to the MCS algorithm that uses a
steepest ascent algorithm. Our future research will focus on
extending the concept of metaheuristic mountain clustering
for the detection of other irregular shaped boundaries in
two-dimensional pictures and surfaces in three-dimensional
pictures.

ACKNOWLEDGEMENT

This work was supported by the Czech Science Foundation
under the grant no. 102/09/1494.

REFERENCES

1. lC. Bezdek, Pattern Recognition with Fuzzy Objective
Function Algorithms, New York, Plenum, 198 1.

2. R. Krishnapuram and 1 Keller, "The possibilistic c-means
algorithm: insights and recommendations", IEEE Trans. on
Fuzzy Systems, 4, 1996,385-393.

3. R.N. Dave, "Generalized Fuzzy c-Shell clustering and
detection of circular and elliptical boundaries", Pattern
Recognition, Vol. 25 (7), pp.7 13-72I, 1992.

4. T.Balakumaran, ILA.Vennila, and C.Gowri Shankar,
"Detection of microcalcification in mammograms using
wavelet transform and fuzzy shell clustering", International
Journal of Computer Science and Information Security, Vol.
7, No. 1,2010.

5. M.Barni, A.Mecocci and G.Perugini, "Application of
possibilistic shell-clustering to the detection of craters in real­
world imagery", Proceedings of the IEEE for Geoscience and
Remote Sensing Symposium, vol.l, pp. 168- 170, 2000.

6. R. N. Dave and K. Bhaswan, "Adaptive fuzzy C shells
clustering and detection of ellipses," IEEE Trans. Neural
Networks, vol. 3, pp. 643-662, Sept. 1992.

7. R. Krishnapuram, H. Frigui, and O. Nasraoui, "New fuzzy
shell clustering algorithms for boundary detection and pattern
recognition," in Proc. SPIE Con! Intel!. Robots Comput.
Vision X: Algorithms Techniq., Boston, Nov. 199 1, pp. 458-
465.

8. R. Krishnapuram, H. Frigui, and O. Nasraoui, "Quadratic
shell clustering algorithms and their applications", Pattern
Recog. Lett., vol. 14, no. 7, pp. 545-552, July 1993.

9. R. Krishnapuram, H. Frigui, and O. Nasraoui, "Fuzzy and
possibilistic shell clustering algorithms and their application
to boundary detection and surface approximation: Parts I and
II," IEEE Trans. Fuzzy Syst., vol. 3, pp. 44-60, Feb. 1995.

10. R. R. Yager and D. P. Filev, "Approximate clustering via the
mountain method", IEEE Trans. Systems, Man, Cybernet. 24
(8), 1279- 1284, 1994.

1 1. N. R. Pal and D. Chakraborty, "Mountain and subtractive
c1usteing method: improvements and generalization",
Internat. J Intel!. Systems, 15,329-34 1,2000.

12. S. L. Chiu, "Extracting fuzzy rules for pattern classification

by cluster estimation. In: The 6th Internat. Fuzzy Systems
Association World Congress, p. 1-4, 1995.

13. A. R. Mehrabian and C. Lucas, "A novel numerical
optimization algorithm inspired from weed colonization,"
Ecological Informatics, vol. I, pp. 355-366,2006.

14. A. R. Mehrabian, A. Yousefi-Koma, "Optimal positioning of
piezoelectric actuators on a smart fin using bio-inspired
algorithms", Aerospace Science and Technology, 2007, vol.
II, pp. 174- 182.

15. H. Sepehri Rad, C. Lucas, "A recommender system based on
invasive weed optimization algorithm", IEEE Congress on
Evolutionary Computation, CEC 2007, Sept. 2007, pp. 4297-
4304.

16. A. R. Mallahzadeh, H. Oraizi, and Z. Davoodi-Rad,
"Application of the Invasive Weed Optimization Technique
For Antenna Configurations", Progress In Electromagnetics
Research PIER 79, 137- 150,2008.

17. A. R. Mallahzadeh, S. Es'haghi, and A. Alipour, "Design of
an E-Shaped Mimo Antenna Using IWO Algorithm for
Wireless Application at 5.8 GHz", Progress In
Electromagnetics Research, PIER 90, 187 - 203, 2009.

18. X. Zhang, Y. Wang, G. Cui, Y. Niu, and J. Xu, "Application
of a novel IWO to the design of encoding sequences for DNA
computing", Comput. Math. Appl. 57, pp. 200 1-2008, 2009.

19. A. R. Mallahzadeh, S. Es'haghi, and H. R. Hassani, Compact
U-array MIMO antenna designs using IWO algorithm,
International Journal of RF and Microwave Computer-Aided
Engineering, Wiley-InterS science, 001:
10. 1002/mmce.20379, Jul, 2009.

20. R. Gonzalez and R. Woods, Digital image processing (2nd
ed.). Prentice-Hall Inc. 567-612,2002.

2586

