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Abstract-This paper proposes a simple, metaheuristic 
clustering technique, inspired by the mountain clustering 

method of Yager and Filev, for detecting general quadric shell 

type clusters. The algorithm employs an ecologically inspired 

metaheurisitc algorithm, called Invasive Weed Optimization 

(IWO) to evolve a set of cluster prototypes in the shape of 

curves/hyper-surfaces. The objective function is modeled using 

the concept of the mountain function from Yager and Filev's 

work. The metaheuristic approach can be extended to solid 

clusters and various shell clusters like circular, elliptical, 

rectangular etc. The proposed method is tested on several 

synthetic datasets as well as real images to detect circular and 

elliptical shell clusters and the results obtained are found to be 
very promising. 

Keywords - shell clustering, invasive weed optimization, 

mountain and subtractive clustering, circle detection, shape 

recognition. 

I. INTRODUCTION 

Traditional fuzzy clustering algorithms like Fuzzy C -
Means (FCM) [1] and Possibilistic C - Means (PCM) [2] 
cannot detect clusters that lie in nonlinear subspaces of the 
feature space because they use points (i.e. cluster centroids) 
as prototypes. To find clusters in nonlinear subspaces that 
resemble shells or patches of hyper-surfaces with no interior 
points, prototypes like curves/hyper-surfaces have been 
proposed. The shell clustering techniques provide an 
effective means for solving the problem of fitting multiple 
curves/hyper-surfaces to unlabeled, sparse, and scattered 
data. Algorithms dedicated to detect shell type clusters have 
also found applications in boundary detection, surface 
approximation and similar computer-vision tasks [3 - 5]. A 
few representative fuzzy shell clustering algorithms are 
Adaptive Fuzzy C Shells (AFCS) algorithm [6], Fuzzy C 
Quadric Shells (FCQS) and its variants [7, 8],  Fuzzy C 
Plano-Quadric Shells [9] etc. and they attempt to minimize 
the weighted squared sum of distances of a feature point to a 
prototype by updating the fuzzy membership and parameters 
in an alternating fashion. Most of the shell-clustering 
algorithms available in the literature are computationally 
quite expensive since either they need to perform matrix 
inversions or they solve some nonlinear equations iteratively. 
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Usually for better results a series of algorithms need to be 
applied on the data. 

Yager and Filev proposed the Mountain Clustering 
Method (MCM) [10], to estimate the cluster prototypes in a 
simple way. MCM provides an approximate estimation of 
the cluster centroids by constructing and destroying a 
mountain function on the grid space. It is suitable for 
applications where only an approximate set of cluster 
centroids will serve the purpose. Nevertheless, the cluster 
centroids found by MCM can be refined by other 
complicated and more involved clustering algorithms, when 
accuracy becomes the major requirement. MCM is less 
sensitive to noise than other competing clustering 
algorithms such as FCM [11]. To reduce the computational 
complexity of mountain clustering, Chiu proposed a slightly 
different variant known as the Subtractive Clustering Method 
(SCM), where calculating the mountain function is done on 
the data points rather than on the grid points [12]. 

Pal and Chakraborty [11] extended MCM for detecting 
circular shell-shaped clusters and proposed the Mountain 
Circular Shell (MCS) method. In this article we propose a 
metaheuristic shell clustering method that exploits the idea of 
mountain functions to evaluate the closeness of the data­
points to the cluster prototypes and employs a powerful 
global optimization algorithm of current interest, called 
Invasive Weed Optimization (IWO) [13 ] ,  to refine those 
prototypes. Our method is capable of detecting general 
quadric shell-shaped clusters and differs significantly from 
[11]. 

Pal and Chakraborty [11] considered circular shells 
where a shell prototype consists of two elements - centre of 
circle and radius of circle. The mountain function was 
calculated for various combinations of centres and radii. 
Then the derivative-based steepest ascent algorithm was 
applied to tune the obtained prototypes. After a circular shell 
was detected the mountain function was updated to negate 
the effect of previously detected shell prototypes. In this 
work, we do not divide the feature space into grids. Rather 
we evolve the shell cluster prototypes to fit them to the 
actual data-points by a metaheuristic algorithm. Our 
objective function that measures how much the distribution 
of the data-points deviate from the actual cluster prototype 
(which is a curve/hyper-surface) is based on the mountain 
function, which gives us the advantage of immunity to noise. 
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Our approach is free from the adjustments of the 
quantization step-size and other shortcomings of the steepest 
ascent algorithm (like trapping in a local optimum). The 
parameters of the cluster prototype are taken as search 
variables. In MCS method, the mountain function update 
strategy sometimes produces erroneous results where a 
previously detected prototype is detected once again because 
of imperfect discounting. We found this to happen when two 
cluster prototypes were quite close and one prototype 
contained significantly more number of points than the other. 
Thus when we are detecting a cluster prototype, we 
completely remove the corresponding data-points rather than 
update the mountain function. This produced a significant 
improvement in the clustering efficiency. 

We begin with a brief description of the mountain and 
subtractive clustering methods in Section 2. Next we outline 
the classical IWO and its modifications proposed by us for 
enhancing the optimization performance. The proposed shell 
clustering technique is presented in Section 4. We provide 
the experimental results on several synthetic datasets and 
real-life images in Section 5 and finally the paper is 
concluded in Section 6 with some discussions on the future 
research issues. 

II. MOUNTAIN AND SUBTRACTIVE CLUSTERING 

In MCM we discretize the p-dimensional bounded 
hyperspace into p-dimensional grids. This results in grid­
points. The grid-points so produced are treated as candidate 
cluster prototypes. Once a cluster centre is estimated, the 
mountain function is updated to eliminate the effects of the 
already detected centres. The Mountain function is defmed 
for each grid-point Vi as: 

n 

M(vJ = ·�.>-a.d(Xk>V;) 
k=l 

(1) 

where a is a positive constant, d(Xk' Vi) denotes the 

distance of Xk from the grid-point Vi .The mountain function 

can be viewed as a measure of the density of data-points in 
the neighbourhood of a grid-point. The mountain function in 
(1) had been defined to fmd centres of solid clusters. Yager 
and Filev suggested the update equation for the mountain 
function as follows 

M (v)=M (v)-M* e-P.d(v;-l>V;) k I k-l I k-l (2) 

In the abobe equation M k (Vi) is the new mountain 

function, Mk_1 (vJ is the previous mountain function and 

V;_l is the last detected center, and f3 is a positive constant. 

Using the discounted function given in equation (2) new 
cluster centres are detected until the level of the current 

maximum M;_l falls below a certain level compared to the 

original maximum M; . The process of finding new cluster 
centres is terminated when 

(3) 

where t5 is a positive constant less than 1. Thus the 
parameters of the algorithm are a ,f3 and t5 . 

The subtractive clustering technique is a variation of the 
mountain method which is computationally less expensive. 
Unlike the mountain method here each data-point is treated 
as a potential cluster centre. This method also takes the help 
of mountain function and subsequently discounts the 
mountain function, but does not use the concept of grids. 
Here only the data-points are tested as prospective cluster 
centres. Thus complexity of algorithm does not depend on 
the dimensionality or the spread of the data but on the 
number of data-points. The inherent problem with this 
method is that it will give good results only if the desired 
cluster centres is close to one of the data-points. 

III. INVASIVE WEED OPTIMIZATION (IWO) 

In recent past, the computational cost having been reduced 
almost dramatically, researchers all over the world are 
paying a considerable amount of attention towards bio­
inspiration and bio-mimicry, for solving computational 
problems and constructing intelligent systems like 
autonomous robots. Following this tradition, in 2006, 
Mehrabian and Lucas proposed the Invasive Weed 
Optimization (IWO) [13 ] ,  a derivative-free, metaheuristic 
algorithm, mimicking the ecological behavior of colonizing 
weeds. Since its inception, IWO has found successful 
applications in many practical optimization problems like 
optimization and tuning of a robust controller [13 ],  optimal 
positioning of piezoelectric actuators [14], developing a 
recommender system [15], antenna configuration 
optimization [16], design of E-shaped MIMO Antenna [17], 
design of encoding sequences for DNA computing [18], and 
design of compact U-array MIMO antenna design [19]. 

The basic idea of IWO goes like this: flowering 
plants reproduce seeds, which spatially disperse over a 
certain area and grow to plants. When the population of the 
plants is excess to fit in that area, only the plants with better 
fitness can survive. This process continues generation after 
generation. Main steps of the algorithm have been 
summarized below. 

1. Initialization: 
A finite number of weeds are initialized randomly in the 

d-dimensional search space 

2. Reproduction: 
Each member of the population is allowed to produce 

seeds depending on its own, as well as the colony's lowest 
and highest fitness, such that, the number of seeds produced 
by a weed increases linearly from lowest possible seed for a 
weed with worst fitness to the maximum number of seeds 
for a plant with best fitness. The number of seeds generated 
by a plant is as follows: 
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3. Spatial distribution: 
(4) 

The generated seeds are randomly distributed on the 
search space according to normal distribution with zero 

mean and normalized standard deviation at . This is 

determined by the following equation: 

tJ, = (1 - -. _t_) n (tJinilial - tJ final )+ tJ {Inal , (5) 
lfer max 

. 

where itermax is maximum iterations, t is current iteration 

and n is the nonlinear modulation index. In the optimizing 
functions considered, the bounds differ from dimension to 
dimension. So we have introduced a concept of normalized 
standard deviation. This step ensures that the produced 
seeds will be generated around the parent weed, leading to a 
local search around each plant. However, the standard 

deviation at of the random function is made to decrease 

over the iterations. We associate a standard deviation for 

each dimension which in itself is dependant on at . 
ai,t = cxat X (UBi -LBJ (6) 

ai,t is the standard deviation pertaining to the i
th dimension. 

UBi and LBi are the upper and lower bounds for 

the i
th dimension. c is chosen as 0.25. This step ensures that 

the probability of dropping a seed in a distant area decreases 
nonlinearly with iterations, which results in grouping fitter 
plants and elimination of inappropriate plants 

4. Competitive Exclusion: 
There is a need of some kind of competition between 

plants for limiting maximum number of plants in a colony. 
Initially, the plants in a colony will reproduce fast and all the 
produced plants will be included in the colony, until the 
number of plants in the colony reaches a maximum 
value POPmax . However, it is expected that by this time the 

fitter plants have reproduced more than undesirable plants. 
From then on, only the fittest plants, among the existing ones 
and the reproduced ones; are taken in the colony and the 
steps 1 to 4 are repeated until the maximum number of 
iterations has been reached. 

In order to improve the performance of the 
classical IWO, in this article we have modified (5) as: 

CT, = (1--. _t -I n !coS(t)!(CT;nwal - CT final )+ CT final (7) 
lterma., 

The Icos(t � term adds a variation in standard deviation, 

which helps in exploring the better solutions quickly and 
prevents the new solutions from discarding an optimal 
solution when at is relatively large. Suppose we consider 

an optimization problem f(x) which needs to be minimized. 

In classical IWO the seeds are generated from a plant with a 
certain standard deviation at ' which is decreased as number 

of iteration increases. Thus the plants slowly undergo a 
behavioral transformation from an explorative nature to an 
exploitative one. This modification is proposed, such that if 
the weeds are near an optimal solution then it can exploit it 
quickly rather than wait for the standard deviation to 
decrease to a reasonable value which might be achieved near 
the end of the run. In our proposed strategy the standard 
deviation actually varies within an envelope, so lesser values 
of at are obtained much before the end of the run. This 

facilitates quicker detection of optimal solutions and better 
results as compared to classical IWO. 
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Figure 1. Comparison of the variations of standard deviation with 
iterations for the classical and modified IWO 

IV. THE PROPOSED SHELL CLUSTERING ALGORITHM 

In this Section, we outline the proposed shell clustering 
algorithm based on the concepts of the mountain function 
and modified IWO. Suppose each data-point is described by 

an n-dimensional feature vector like X = [Xpx2, ... xnf . 

The prototypes consist of parameter vectors Ai that define 

the equations of the hyperquadric surface. Once the 
parameter vector is determined we can detect whether a 
certain datapoint lies on the surface or not. The general 
equation of a hyperquadric surface is given as 

-T -Ai B = 0 (8) 

where, 
-T Ai = [ ail' ai 2 , • • • • • • •  ain, ai(n+')'····aiP] - 2 2 2 B = [Xl 'X2 , ......... Xn 'X'X 2' ...... Xn_IXn'XI , .... xn,l] 
ail � ain represents the coefficients of Xi2 

ai(n+l) � ai(n2/2+n/2) represents the coefficients of XiX} 

a � a ( ) represents the coefficients i(n2/2+n/2+1) i n2/2+3n/2 
of Xi 
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aip represents the constant term coefficient with 

p = n2 /2+3n/2+ 1. 
Since our objective is to fit the hyperquadric 

surfaces to the data-points, we encode the parameters of a 
number of such candidate hyperquadric surfaces as the 
population members or search-agents which are initialised 
randomly and then gradually evolved with the modified 
IWO to fit to the actual distribution of the data-points. The 
mountain function for the i-th hyperquadric surface is 
defined as: 

(9) 
k=l 

Here n is the number of data-points in the set. The quantity 

IAiT .Bk l will be minimized for the k'h data-point when it 

lies on the hyperquadric surface defined by parameter vector 

Ai. Thus the contribution of the k'h data-point to the 

mountain function will be close to 1 if it lies on the 
candidate hyperquadric surface. If the parameter vector of 

the i'h agent Ai represent a hyperquadric surface present in 

the dataset then the mountain function will be maximized 
for that agent. Thus, the objective function to be minimized 
for the i-th search agent is given as: 

1; = -M(AJ (10) 

For detecting circular shells, the hyperquadric surface can 
be simplified to: 

1; = -i::e -al(x1 _a )2 + (X2 _b )2 -RI (11) 
k=l 

In this case a population member of IWO will contain the 
centre and radius of the candidate circular shell. Once a 
parameter vector with best fitted circular shell is found, we 
classify the data-points depending whether they fall in the 
present circular shell or not. 

-aIA;'Bk I Ih If e � p 
then we say that the k data-point lies on 

the circular shell described by Ai . We have chosen 
p = 0.95 for all the datasets that we have considered. 

Suppose the present set of data-points is denoted by 'I' . Let 
us define a set, 

( = { k E 'l'le -aIA;'Bk I � p} (12) 

Initialize population 

Apply M-lwO and Update 
Population 

Determine Mountain function 

for each agent 

no 

Update datapoints by removing 
cI ustered points 

Display cluster centres and 
datapoints belonging to each 

cluster 

yes 

yes 

Remove clustered points 
and redefine dataset 

no 

Figure 2. Flowchart illustrating the Automatic Shell Clustering 
Algorithm 

The set of data-points ( are said to be clustered in a shell 

described by parameter vector Ai . These clustered points are 

removed from the original set. The new set of data-points is 
defined as, 

'I"={kE'I'lkE(} (13 ) 

To facilitate automatic detection we need to have a 
terminating condition for the optimization algorithm. The 
terminating condition occurs when number of runs is equal 
to max runs. We also want the clustering process to 
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terminate when all the shell clusters have been detected. We 
can introduce a terminating condition as in equation 10. 

where 
n(�) < N min' (14) 

n( )  denotes the cardinal number of the set 

N min is the minimum number of points required to be in a 
shell. 

For our purpose we have chosen Nmin as n(qs)/20 .Here 

qs denotes the set of all data-points. 

Figure 2 shows flow-chart of the complete clustering 
process. 

In previous works on mountain or subtractive clustering the 
mountain function was either evaluated for all the datapoints 
or the parameter hyperspace was divided into grids and the 
mountain function was calculated for the grid points. In [8] 
the refinement of cluster centres was carried out by a 
steepest ascent method. Evidently in this article we differ 
considerably from such approach. 

Moreover most of the works on subtractive 
clustering have used a discount function to update the 
mountain function. However in our approach after a certain 
shell has been detected we change the dataset by removing 
the clustered points rather than updating the mountain 
function. Merely updating the mountain function and 
keeping the original set of points leads to a fitness function 
which doesn't yield correct results. This is because exact 
discounting can never take place. We cannot nullify the 
effect of a neighbouring cluster completely. If a cluster has 
been detected with many points and in the next iteration we 
are supposed to detect a cluster with far less points then it 
may happen that the previous cluster is once again detected 
because the mountain function value corresponding to the 
earlier shell still dominates the smaller shell even after 
discounting. Even with a judicious choice of discounting 
function the problem hyperspace because more complicated 
and the efficiency of the overall algorithm tend to decrease. 
Thus for regular shell cluster we do not need to use the 
method of discounting. We simply remove the previous 
detected clusters. However while dealing with solid clusters 
we need to take help of the method of discounting. 

V. EXPERIMENTAL RESULTS 

The proposed algorithm is tested with seven synthetic 
datasets and two images with varying degrees of complexity. 
On the images, the primary objective was to detect the 
circular boundaries automatically, which stand as an 
important problem in vision. Characteristics of the seven 
synthetic datasets have been listed in Table 1. 

Table 1: Description of Datasets 

Dataset Comments 
No. 

I Two shell clusters overlap. This does not cause any 
problem to the algorithm as in the parameter space they 

are widely separated. 

2 Here the two circular shells are concentric. 

3 This dataset contains two semicircular shells. This tests 

the algorithm if it can detect incomplete circular shells. 

4 This dataset consists of two circular shells and a 
semicircular shell inside a large circular shell. 

5 This dataset consists of 8 circular shells. It tests the 
algorithm's capacity to correctly detect multiple 

intersecting shells. 

6 This dataset consists of two thick semi-elliptical shells. 

7 This dataset contains two intersecting ellipses. 

We considered two-dimensional datasets consisting of 
elliptical and spherical shell clusters for the ease of 
visualization. The modified IWO-based proposed algorithm 
was run with the following parametric setup - maximum 
number of iterations iter max = 60, initial normalized 

standard deviation (J'initial = 1, final normalized standard 

deviation (J' final =.00 1 ,maximum number of seeds 

max _seeds=5 and maximum number of plants 

POPmax = 100 . The upper and lower bounds UBi and 

LBi were determined from the ranges of the dataset. The 

various parameters pertaining to the mountain clustering 
module were set as - a = lO,p = 0.95. However for thick 

clusters such as in dataset 6 a low value of p = 0.2 had to 
be chosen 

We present the final result in the form of an image 
which clearly depicts the clustered shells. For the sake of 
space economy in Figures 4 to lOwe show the clustered 
datasets 1 to 7 as obtained with the proposed algorithm. 
Since IWO is a stochastic optimization algorithm, results of 
two repeated runs on the same problem may not match 
completely. Hence we took 25 independent runs of the 
proposed algorithm on each of the datasets. In table 2 we 
provide the number of successful runs for the proposed 
algorithm and the clustering efficiency, defined as the 
percentage of successful runs over each problem. We also 
provide the average CPU time (in seconds) taken by the 
algorithm per run on each dataset. 

A trial is said to be feasible if all the shell 
clusters were correctly identified. A trial is said to be 
successful if all the data-points were correctly clustered. Till 
now we have tested our algorithm on various datasets with 
varying degree of complexity. Here we would also like to 
apply our algorithm on various images for circular and 
elliptical shape detection. Prior to applying the evolutionary 
shell clustering technique, we need to convert the image into 
a binary edge image. 
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The images shown in Figures 11 and 12 were first converted 
to binary images by simple thresholding function using 
MA TLAB. The 151 Test image has a circle and other line 
segments intersecting the circle in various regions. The 
algorithm detects the circle correctly in all the runs as 
shown in Figure 11. In the 2nd test image we have a similar 
image but with added salt and pepper noise. 
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Table 2: Statistical Results 

Dataset No. of No. of Clustering Avg. C.P.U Time per 
No. feasible successful Efficiency run (in Seconds) 

runs runs 
I 25 25 100% 15.24 
2 25 25 100% 12.12 
3 25 25 100% 18.48 
4 25 25 100% 28.40 
5 25 25 100% 30.20 
6 22 21 84% 17.72 
7 25 23 92% 15.80 

The added noise doesn't hamper the performance of the 
algorithm in any fashion. This is by virtue of the mountain 
function that we are using which is quite immune to added 
noise. The detected image is shown in Figure 12. 
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Figure 12: Image 2 with detection of the circular shape 

Next we test our algorithm on two more real world images 
featuring an electric bulb and two coins. The objective is to 
identify the circular boundaries of the real-life objects from 
the edge image, which in these two cases were generated by 
using the Sobel edge-detector [20]. In Figures 13 (a), (b), 
and (c) we show the actual bulb image, its corresponding 
edge image and the detected circular boundaries by our 
proposed algorithm and the MCS method as obtained from 
[II]. For MCS we used the best parametric setup as 

specified by the authors in [11]. Figures 14 (a) - (c) exactly 
correspond to Figures 13 (a) - (c) but for the coin image. 

(a) Image of a bulb (b) Sobel Edge Image of (a) 

(c) Image showing detection of circular 

part of a bulb 
Fig ure 13: Testing the proposed algorithm on a bulb image 

(a) Image of two coins (b) Sobel Edge Image of (a) 

Our simulation results indicate that the proposed modified 
IWO based shell clustering technique can efficiently detect 
circular and spherical shell clusters from a given dataset and 
it can correctly detect the number of clusters on the run. As 
is evident from the high clustering efficiency, the algorithm 
is fairly robust against different orientations of the shells 
(separable, non-separable, intersecting etc.) and also to the 
presence of noise, as can be perceived from Figure 12. 
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-- Coin1 (Proposed Algorithm) 
-- Coin 2(Proposed Algorilhm) 
-- Coin1 (MCS) 
-- Coin2(MCS) 

(c) Image showing detection of the circular boundaries of the coins 

Figure 14: Testing the proposed algorithm on the image of two 
coins 

Figures 13 and 14 and also the complete results on a variety 
of synthetic datasets (that we did not show here for the 
shortage of space) indicate that the proposed algorithm 
yields a better fit to the circular shapes as compared to the 
MCS method. 

VI. CONCLUSIONS 

In this article we proposed a metaheuristic shell clustering 
technique that uses a mountain function as the objective 
function to be minimized with a modified Invasive Weed 
optimization (TWO) algorithm. Our method shows 
considerably good performance in extracting a variety of 
hyperquadric shell clusters with acceptable computation 
time (ranging from 15 to 30 seconds on average per run). 
Also it provides an efficient means to detect boundaries 
from edge images generated from real-life images. Our 
preliminary studies indicate that our method can yield more 
accurate prototype to fit the data-points distributed along 
circular shells as compared to the MCS algorithm that uses a 
steepest ascent algorithm. Our future research will focus on 
extending the concept of metaheuristic mountain clustering 
for the detection of other irregular shaped boundaries in 
two-dimensional pictures and surfaces in three-dimensional 
pictures. 
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