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Wearable Computing Laboratory
ETH Zürich
Switzerland

Abstract—Human activity recognition is a thriving research
field. There are lots of studies in different sub-areas of activity
recognition proposing different methods. However, unlike other
applications, there is lack of established benchmarking problems
for activity recognition. Typically, each research group tests
and reports the performance of their algorithms on their own
datasets using experimental setups specially conceived for that
specific purpose. In this work, we introduce a versatile human
activity dataset conceived to fill that void. We illustrate its
use by presenting comparative results of different classification
techniques, and discuss about several metrics that can be used
to assess their performance. Being an initial benchmarking,
we expect that the possibility to replicate and outperform the
presented results will contribute to further advances in state-of-
the-art methods.

Index Terms—Human activity recognition, Benchmark , Body
sensors networks, Opportunity dataset,.

I. INTRODUCTION

Recently, there has been an increasing attention towards
human activity recognition –using on-body, object-placed or
ambient sensors– fostered by applications in health care [1],
[2], assistive technologies [3], manufacturing [4], or gam-
ing (e.g. Microsoft Kinect or [5]). These applications apply
machine learning techniques to classify signals gathered by
different types of sensors. Indeed, this field typically requires
to deal with high-dimensional, multimodal streams of data that
are characterized by a large variability (e.g. due to changes
in the user’s behavior or as a result of noise). Therefore,
several challenges arise at the different processing stages from
the feature selection and classification [6], [7], to sensor and
decision fusion [8], as well as fault-tolerance [9], [10], [11].
Moreover, real-life deployments are required to detect when no
relevant action is performed (i.e. null class). Therefore, there is
a need for methods able to spot the specific time points when
relevant actions are being executed [4], [12].

However, unlike other applications, there is lack of estab-
lished benchmarking problems for activity recognition. Typi-
cally, each research group tests and reports the performance
of their algorithms on their own datasets using experimental
setups specially conceived for that purpose. For this reason, it
is difficult to compare the performance of different methods
or to assess how a particular technique will perform if the
experimental conditions change (e.g. in case of sensor failure
or changes in sensor location). We argue that there is a need

for common databases that allow the comparison of different
machine learning algorithms on the very same conditions. Such
database would enable the replication of the testing procedures
for different approaches, and should capture the variability that
characterizes real-world activity recognition tasks. Moreover,
it should be flexible enough to emulate different experimental
setups and recording modalities [13].

The Opportunity dataset is intended to address these issues
by providing a large recording of realistic daily life activities
in a sensor rich environment [14], [15]. Moreover a subset
of this dataset is the basis of the activity recognition chal-
lenge (http://www.opportunity-project.eu/challenge) aimed at
comparing different systems –developed by several research
groups– addressing the recognition of gestures and modes of
locomotion using body-worn sensors. This paper illustrates the
use of the dataset for comparing different techniques by pre-
senting a benchmarking study of four well-known classification
techniques, namely k-NN, NCC as well as Gaussian classifiers
(LDA and QDA). Moreover, in order to assess the robustness
of these methods, we also report classification performance on
data where rotational noise has been added.

II. OPPORTUNITY DATASET

The Opportunity dataset was acquired from 12 subjects
while they are performing morning activities and includes 72
sensors of 10 modalities in 15 wireless and wired networked
sensor systems in the environment, objects and the body, as
shown in Fig 1(a) [14]. For each subject there are five daily
activity sessions and one drill session which has about 20
repetitions of some pre-defined actions. Data was manually
labeled for modes of locomotion, gestures and high-level
activities by at least two different persons [15]. In this paper,
we use a subset of the recording corresponding to 4 subjects
and focus on recognition of gesture and modes of locomotion
using body-worn sensors (class labels are presented in Table I),
while sensor locations are shown in Fig. 1(b),1(c). Moreover,
in order to test robustness of the methods, rotational noise was
added to the recordings of subject 4. Several applications may
suffer this type of noise. For instance, in some cases when
the user should re-attach the sensors over different days it is
unrealistic to expect him/her to place them always in the same
orientation. Similarly, sensors on mobile phones placed in a
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Fig. 1. (a) Recording environment of the Opportunity dataset. (b) Location of the on-body IMU sensors. (c) Location of the bluetooth accelerometers.

pocket may easily rotate as the person carries it over the day.
The rotation angle is at maximum 60 degrees in any direction
and all the sensors in the IMU (accelerometer, gyro, and
magnetic sensors) are affected. The rotation process is started
at a random time for each IMU. Following the guidelines of
the proposed challenge, the wired sensors located in the upper
body were used for the classification of this recording.

III. CLASSIFICATION METHODS

We present comparative results for activity recognition
using simple and standard classification methods. It should
be noticed that the goal of this study is to provide a baseline
characterization of the difficulty of the task, rather than aiming
to achieve the highest possible performance. Indeed, these
results should be used to assess how much improvement can
be obtained by using different, more complex approaches for
feature selection and classification.

In order to deal with the missing data in the wireless
sensors, although more complex methods are available (c.f.
[16]), we opt for the simple repetition of the last available
value. Taking into account that the data is not segmented, we
perform classification in a sliding window of 500ms, with steps
of 250ms. Experiments were performed using the mean value
of the sensor readings as feature, as well as both the mean
and the variance. Note that, the average length of gestures is
about 3.5 seconds, and the shortest gesture found in the dataset
lasts about 0.5 second, so the choice of half a second is a
good deal to have a high speed of recognition without missing

TABLE I
CLASS LABELS FOR BOTH MODELS OF LOCOMOTION AND GESTURES

RECOGNITION.

Modes of locomotion
Null Stand Sit Walk Lie

Gestures
Null clean Table open Drawer1 close Drawer1

open Dishwasher close Dishwasher open Drawer2 close Drawer2
open Fridge close Fridge open Drawer3 close Drawer3
open Door1 close Door1 open Door2 close Door2
move Cup

classes. Moreover, for some classifiers (NCC, LDA, QDA)
a rejection mechanism was implemented to identify samples
that correspond to the Null class. We tested the following
classifiers,

K-nearest neighbors (k-NN). We perform simulations using
k=1 and k=3. Since all the feature points are stored and the
Null class is explicitly modeled there is no need of rejection
procedure.

Nearest Centroid Classifier (NCC). Since the Null-class
samples are scattered in the feature space, it is not reasonable
to treat them as another class, and we implemented instead
a threshold-based rejection procedure. We initially train the
classifier using only the activity labels (i.e. excluding Null-
class samples of the training set). Then, using the whole dataset
we estimate class-specific thresholds on the distance to the
class center that maximize the accuracy (F-measure).

Linear Discriminant Analysis (LDA). This is a Gaussian
statistical method that assumes that class features have a
normal distribution and all classes have the same covariance
matrix. Similar to NCC, we implemented a rejection method,
where the thresholds are defined on the posterior probabilities.

Quadratic Discriminant Analysis (QDA). This classifier
also assumes that classes are normally distributed but does not
assume identical class covariances. Therefore, it results in a
quadratic discriminative function, instead of a linear function.
The same rejection method as LDA is used.

IV. PERFORMANCE MEASURES

There are several ways to assess the performance of an
activity recognition system. However, the choice of an appro-
priate measure is not trivial as these measures may reflect some
specific qualities of the system while hiding or misrepresenting
others (c.f. [17]). This becomes even more important when
dealing with real-life data where labels used as ground truth
might be loosely defined or ambiguous (i.e. the time when a
gesture starts or finishes is subjectively assessed by the person
doing the labeling). Similarly, during periods labeled as null
–denoting when none of the class actions is performed– it
cannot be assumed that the person remained still; indeed, most
of the time s/he is performing another action or in a transition



Fig. 2. ROC curves of NCC, LDA and QDA classifiers. Four gesture classes
are shown: Stand, Sit, Open and Close Dishwasher.

from one action to another. Furthermore, continuous recordings
may be highly unbalanced with one of the classes being
overrepresented with respect to the others. This is the current
case for gesture recognition where ’Null’ class represents about
80% of the recorded data (76%, 82%, 76% and 78% for
subjects 1 to 4, respectively).

The simplest performance measure is the accuracy (acc =
correct predicted/number of samples), which is highly affected
by the sample distribution across activity classes. Alternatively,
the F-measure –taking into account the precision and recall
for each class– can give a better assessment of performance.
Furthermore, to counter the class imbalance, classes can be
weighted according to their sample proportion,

F1 =
∑
i

2 ∗ wi
precisioni.recalli
precisioni + recalli

(1)

where i is the class index and wi is the proportion of
samples of class i (wi = ni/N ). Similarly, the area under
the curve (AUC) in the ROC space can also be used as a
performance measure (c.f. Figure 2). As for the F-measure,
the class imbalance can be taking into account by weighting
the AUC for each class by its prevalence on the data [18].

AUCtotal =
∑
i

wi ∗AUC(ci) (2)

In addition, as actions onset and offset times are not
precisely defined, misalignment of output labels (e.g. early
detection of an action onset) may be wrongly considered as
classification errors. Ward et al. propose to explicitly quantify
the system performance taking all these aspects into account
[19]. They characterized different types of errors as follows
(listed in increasing order of importance),

1) Overfill: when the start and stop time of predicted labels
are less and greater than actual time, respectively.

2) Underfill: when the start and stop time of predicted labels
are greater and less than actual time, respectively.

3) Merge: recognizing Null label as a label of an action in
the middle of its occurrence.

4) Insertion: when an activity is recognized while there is
no activity.

5) Fragmentation: predicting Null in between of an action.
6) Deletion: the predicted label is recognized as Null class,

but in fact it is an activity going on.
7) Substitution: The predicted and actual labels are not Null

but they are not the same.
Note that overfill and underfill may not necessarily corre-

spond to recognition errors but the result of alignment variation
with the label used as ground truth.

V. RESULTS

We report the recognition performance using the classi-
fication methods presented in Section III. Please note that
results on subjects 2 and 3 correspond to the tasks A, and
B2 of the activity recognition challenge (modes of locomotion
and gesture recognition, respectively), and results on subject
4 corresponds to the Task C (noisy data). Surprisingly, using
both the mean and variance of the signal does not improve
performance as compared to use only the mean values. In
the following, we report only the results obtained using the
mean as feature. Table II shows the weighted F-measure as
well as accuracy. We present two ways of computing the
F- measure, either including or not the Null class1. Overall,
the best performance was achieved by the kNN classifier
for recognizing both locomotion and gestures, followed by
the Gaussian classifiers. From the table, it can also be seen
the effect of the class imbalance, as the inclusion of the
Null class leads to an overestimation of the accuracy in the
gesture recognition problem. The same effect is observed when
comparing the weighted AUC for NCC, LDA and QDA, as
shown in Table III.

The detailed measures proposed by Ward et al. are shown
in Figure 3. This confirms the results obtained with the F-
measures that point out the higher performance of the kNN
classifiers, even with noisy data. When recognizing modes of
locomotion, these classifiers had a smaller rate of overfill and
underfill than other classifiers, suggesting it accurately captures
the on/offset of the actions. Unsurprisingly, this percentage
increases for subject 4 that has noisy data and only sensors on
the upper torso are available. Regarding gesture recognition,
the advantage of kNN results from its reduced level insertions
errors, suggesting that the threshold-based rejection mecha-
nism is not always able to discriminate the Null class. This is
probably due to the overlapping in the feature distribution.

VI. CONCLUSION

This paper presents a comparative study of classification
techniques for activity recognition. We assessed performance
using different measures for standard classification techniques

1Note that this measure disregards the true negatives (correctly classified
Null-class samples), while taking into account false negatives.



TABLE II
ACCURACY AND WEIGHTED F-MEASURE.

Modes of Locomotion
Accuracy F-measure (Incl Null class) F-measure (Without Null class)

Classifier S1 S2(A) S3(A) S4 Avg S1 S2(A) S3(A) S4 Avg S1 S2(A) S3(A) S4 Avg
LDA 0.66 0.64 0.68 0.44 0.60 0.64 0.64 0.68 0.43 0.60 0.75 0.70 0.74 0.53 0.68
QDA 0.71 0.67 0.72 0.47 0.64 0.67 0.63 0.71 0.45 0.62 0.80 0.74 0.79 0.59 0.73
1-NN 0.84 0.85 0.84 0.77 0.82 0.84 0.85 0.83 0.77 0.82 0.85 0.85 0.85 0.76 0.83
3-NN 0.85 0.86 0.85 0.78 0.83 0.85 0.86 0.84 0.77 0.83 0.86 0.86 0.86 0.77 0.84
NCC 0.62 0.59 0.55 0.41 0.54 0.60 0.58 0.56 0.41 0.54 0.69 0.67 0.62 0.50 0.62

Gesture recognition
Accuracy F-measure (Incl Null class) F-measure (Without Null class)

Classifier S1 S2(B2) S3(B2) S4(C) Avg S1 S2(B2) S3(B2) S4(C) Avg S1 S2(B2) S3(B2) S4(C) Avg
LDA 0.58 0.44 0.64 0.54 0.53 0.64 0.54 0.69 0.60 0.62 0.34 0.26 0.33 0.19 0.28
QDA 0.52 0.35 0.62 0.48 0.49 0.57 0.44 0.68 0.55 0.56 0.32 0.25 0.39 0.19 0.29
1-NN 0.82 0.84 0.85 0.81 0.83 0.82 0.84 0.85 0.81 0.83 0.53 0.47 0.62 0.47 0.52
3-NN 0.83 0.85 0.85 0.83 0.84 0.82 0.85 0.85 0.82 0.83 0.52 0.49 0.62 0.48 0.53
NCC 0.42 0.39 0.49 0.27 0.39 0.48 0.48 0.55 0.33 0.46 0.30 0.21 0.29 0.15 0.24

TABLE III
WEIGHTED AREA UNDER THE CURVE (AUC)

Modes of Locomotion
Classifier S1 S2(A) S3(A) S4 Avg

LDA 0.77 0.71 0.75 0.63 0.72
QDA 0.82 0.79 0.83 0.68 0.78
NCC 0.72 0.68 0.71 0.59 0.68

Gesture recognition
Classifier S1 S2(A) S3(A) S4 Avg

LDA 0.89 0.81 0.87 0.89 0.86
QDA 0.92 0.88 0.90 0.91 0.90
NCC 0.79 0.76 0.82 0.78 0.79

such as k-NN, NCC, LDA, and QDA. A particularly important
issue that we observed was the effect of class imbalance in the
evaluation of F-measures and overall performance. Indeed, as
we deal with continuous, unsegmented data, the Null class is
overrepresented in the dataset. Furthermore, these samples may
contain activity that overlaps with some of the selected classes.
This aspect has to be taken into account when designing a
system (e.g. by including risk function in the optimization of
the classifier parameters). Alternatively, dedicated methods to
automatically segment can be developed (as proposed by Task
B1 in the activity recognition challenge).

Based on the Opportunity activity recognition challenge,
this work illustrates the use of a common database to assess
performance of different methods over several subjects and
recording conditions. We study the recognition of modes of
locomotion and gestures using data from 4 subjects performing
daily activities recorded with different inertial sensor modali-
ties, and one of the subjects has a different sensor configuration
and noisy data. The selection of the compared methods aims
at providing a baseline performance. Since the data is publicly
available, these baseline results can be later used by other
researchers to assess how much improvement is achieved
when more complex techniques are applied. We expect that
the possibility to replicate and outperform these results will
contribute to further advances in state-of-the-art methods.
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