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Abstract— In this paper, we describe a dataset relating toellular summarised by the TNM staging. Choosing the correct
and physical conditions of patients who are operateupon to  treatment at this stage is crucial to both theegpds survival
remove colorectal tumours. This data provides a umjue insight  and quality of life. A major goal of this researid to

into immunological status at the point of tumour removal,  automatically optimize the treatment plan basetherexisting
tumour classification and post-operative survival.Attempts are  data.

made to learn relationships between attributes (plsical and
immunological) and the resulting tumour stage and wrvival. The data for this research was gathered by sdierdisd
Results for conventional machine learning approacte can be  clinicians at the University of , Nottingham. Thatalset we use
considered poor, especially for predicting tumour sges for the  here is made up of the 84 attributes for 462 ptiemhe
most important types of cancer. This poor performage is further attributes are generated by recording metrics attitme of
investigated and compared with a synthetic, datasdtased on the  tumour removal, these include:

logical exclusive-OR function and it is shown thatthere is a
significant level of “anti-learning” present in all supervised
methods used and this can be explained by the highl

. Physical data (age, sex etc
dimensional, complex and sparsely representative tiset. For y (ag )

predicting the stage of cancer from the immunologil attributes, . Immunological data (levels of various T Cell sets3
anti-learning approaches outperform a range of poplar . . . .
algorithms g amp P g hop . Biochemical data (levels of certain proteins)

) ) . Retrospective data (post-operative survival stiat)
Keywords- Neural Networks, Colorectal Cancer, Anti-learning.

. Clinical data (Tumour location, size etc).
l. INTRODUCTION

Colorectal cancer is the third most commonly diagub
cancer in the world. Colorectal cancers start enlthing of the
bowel and grow into the muscle layers underneath through
the bowel wall [11]. TNM staging involves the Cldisstion *  The TNM stage assigned by the clinical team.
of Malignant Tumours

The goal of this research is two-fold, we hopebdable to
use the attribute set to accurately predict:

. The subsequent survival of the patient
. Tumour (T). Size of the tumor and whether it has

invaded nearby tissue We show in this paper that both of these taskexremely

difficult using conventional techniques and tha¢ tHataset
. Nodes (N). The extent to which regional lymphesd might belong to a subset of dataset that requirenigue
involved approach.

. Metastasis (M). This is the spread of a diseasm f
one organ or part to another non-adjacent organ. Il PRE-PROCESSING
The dataset supplied is a biological dataset arsliels has
a rich complement of preprocessing issues. 11.32%h®
values are missing, with some attributes havingr c4@%
missing values and some patients having over 30%sing
Treatment options include minor/major  surgery,values.
chemotherapy, radiotherapy but the correct treatiisdmeavily
dependent on the unique features of the tumour hwhie

4 TNM stages (1,11,111,1V) are generated by comligithese
three indicator levels and are allied with incregsseverity and
decreasing survival rates.



Missing data poses a problem for
techniques. One approach would be to remove e\aigm or
every attribute with any missing data. This wouinove a
large number of entries, some of which only havdéea
missing values that are possibly insignificant. o
approach is to average the existing values for attdhute and
to insert an average into the missing value spddee

appropriate average may be the mean, median or mode

depending on the profile of the data.

Much of the data takes the form of human analysis o 0

biopsy samples stained for various markers. Rathean raw
cell counts or measurements of protein levels eepagsented
with threshold values. For instance, CD16 is fowond the
surface of different types of cells such as natuider,
neutrophils, monocytes and macrophages. The dataine a
simple 0 or 1 for this rather than a count of thenber of cells.
This kind of manual inspection and simplificatia true for
most of the data and any modeling solution muskweéth this
limitation.
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Figure 1b. Relationship of CD46 to survival witleeage survival rates.

Ill.  LEARNING

It is relatively trivial to build a model that befis the data,
even with numerous attributes and missing values.
Unfortunately this model is very likely to be meisorg

It is apparent that there are some existing strongnique combinations of values for each patientsTiiwhy

correlations in the data. By using a combinatiorcafelation
coefficients and expert knowledge the data wasaediwown
to a set of ~50 attributes. This included removsayeral
measurements that were hindsight dependent (ienchar
radio treatment) and correlated with TNM stage. Deikes
stage).

Single attribute relationships exist within theadat but are
not strong. Analysis of single attributes can yialdreater than
65% prediction rate when attempting to predict WwhidNM
stage a patient was classified as but only ~55%nwie TNM
stages were restricted to the more interesting M&tage 2 or
3). If we look at CD59a and CD46 threshold valuescan see
that they are loosely related to survival (figujemth elevated
levels of each indicating a reduction in survive¢maging ~13
(Figure 1a) and 6 months. (Fig. 1b) yet neither arstrong
discriminator of TNM stage 2 or 3 tumours.
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Figure 1a. Relationship of CD59a to survival witteage survival rates

models are tested on an unseen test set to demidevall the
trained model generalises to the “rest of the world

Define abbreviations and acronyms the first timeythare
used in the text, even after they have been definethe
abstract. Abbreviations such as IEEE, SI, MKS, C&S,dc,
and rms do not have to be defined. Do not use siattiens in
the title or heads unless they are unavoidable.

A. TNM Sage.

Several methods were used in an attempt to pretiet
appropriate TNM stage of a patient from their htite set.
The methods used included Bayesian Networks [7]ivéNa
Bayes Classifier [8], CART [3], Multilayer Percepitr[4] and
SVM [9]. These were either self-programmed, avadab the
WEKA toolkit [6] or used other existing softwareitas [5].
When initially looking at all 4 TNM stages there svaome
success at predicting stages from the attributepseticularly
when some of the patients and attributes with tbetmmissing
data were removed. Most success was achieved when
predicting TNM stage 1 and 4, which were the |east most
severe stages respectively. A Multilayer PerceptfiiP)
was trained using back-propagation of error. Thitdficial
neural network architecture included 5 sigmoid dfan
function hidden units and a linear transfer functiitput unit.
The desired output for the for TNM stage 1,2,3 dndiere
rescaled to 0.2, 0.4, 0,6 and 0.8 to allow for caffit
separation. This approach showed excellent accuvacthe
training set (Fig 2a) and showed some promise edigting
TNM stages 1 and 4 for the unseen test set (Figpoydut was
clearly very poor at predicting stages 2 and 3sThethod of
graded linear output makes for a neural networkloyf
complexity but assumes a linear progression thrabghTNM
stages. An approach using 4 independent binary utitp
performed equally poorly.
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Figure 2a. Neural Network Prediction of TNM stagetfaining set
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Figure 2b. Neural Network Prediction of TNM stage &n unseen test set
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Figure 3. CART tree for prediction on TNM class

Differentiating between TNM stage 2 and 3 is a fiyofor
this research, these are the stages where coheicecof post-
operative treatment are most important. We triakd 5
algorithms (SVM, Bayesian Network, Artificial Nedra
Network, Naive Bayes Classifier and CART) on 3 afiit
attribute sets (55, 45, 35) and used 3 differesting regimes
(10 fold cross validation, 5 fold cross validatiand a 33%
random selection). Table 1 shows the results frbis, the

Next a CART approach was used, Classification an@nly approach that performed better than guessiag Maive

regression trees (CART) are a non-parametric detisiee

learning technique that produces either classifioator

regression trees. Decision trees are formed byllaction of

rules based on attributes in the dataset basediles that

achieve the best division to differentiate obseovet based on
the dependent variable. This recursive processrmgg until

pre-defined stopping rules are met. Each branctheftree

ends in a terminal node. Each observation falls Etactly

one terminal node, and each terminal node is uhiglefined

by a set of rules. A CART approach achieved sinmiégults

when looking at all 4 TNM stages but slightly bettesults

could be achieved by just looking at TNM stage$8 and 4.

(Figure 3a) with particular importance being assijnto

cleaved caspase 3 (CC3) proteins, a sample CART igre
shown in figure 3. CC3 has been shown to play gmomant

role in tumour apoptosis [10].

Bayes and this was only on one of the three atkilaets.
Furthermore, if we look at the performance of @pm@aches
for each validation technique as a whole it carsdid that the
approaches performed significantly worse than gngsdt

must be remembered that algorithms were optimisedefst
set performance and performance of the trainingvastmuch
better (80-98% accurate). This exceptionally poor
performance will be discussed more in section 4.

Table 1. Test Set performance of different algongh

10 fold cross-validation
55 Attribut 45 Attribui 35 Attributes

Naive Bayes 52.43 48.26 41.46 Mean
ANN 45.83 4535 46.34 46.67
CART 4479 48.25 45.73 StDev
SVM 44.44 45.93 44.51 2.65
BayesNet 48.61 49.41 48.78

5 fold cross-validation
Naive Bayes SLE 41.86 40.85 Mean
ANN 46.53 4477 44.51 45.69
CART 441 50 45.122 StDev
SVM 418.61 43.6 39.63 3.48
BayesNet 49.65 4593 48.78

Random 33%
Naive Bayes 56.12 431 412.86 Mean
ANN 45.92 34.48 41.07 42.78
CART 50 39.66 39.28 StDev
SVM 40.82 27.58 44.64 6.83
BayesNet 16.93 50 39.29



B. Survival

Several of the attributes presented in the datzesgain to
the survival of the patients after their operatioremove the
tumour. The number of months the patient has sedyiv
whether they are still alive or not and how thegdd{if dead)
are all available. Figure 4 shows survival curves gatients
with greater than 60 months survival or those tiied of
colorectal cancer prior to the 60 month period. Ete®ng
difference between survival rates in TNM stage 1 ah
patients is apparent (ie. at 30 month the surviek is
approximately 95 and 5%). The difference betweetiepis
with TNM stage 2 and 3 cancers is less apparenf,&ononths
there is very little difference between mortality fTNM stage
2 and 3 patients.. After 30 months deaths from regtal
cancer for TNM stage 1 patients increase quite kiyidn
percentage terms steeper than any other TNM class.
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Figure 4. Survival Curves for patients at all 4 TiSMges

Again focusing on just TNM stage 2 and 3 patientss w

attempted predict survival at different thresholadsing Al
techniques, this time Naive Bayes, ANN and CARTe Térm
“survival” is obviously somewhat subjective so wesed
several time periods to represent survival raniiogn 12 to 60
months, if a patient survived for the assigned nemobf
months they were deemed to have survived.

If we take just TNM stage 2 and 3 patients agaguyré 5
shows how well three techniques predicted survieal an
unseen test set, the average of all three techmidgiealso
shown. It is apparent that these techniques coeldopn
slightly better than guessing at all survival thiads but with
average performances of between 55 and 60% on seenn
test set (using 10 fold cross validation) the panénce is far
from impressive suggesting the issues discusseddtion 3.1
are still present. With CART performing worse thguressing
at a high survival threshold and an ANN performingrse
than guessing at a low survival threshold.
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Figure 5. Prediction accuracy when modeling TNMysta2 or 3

IV. ANTI-LEARNING

In many cases the results shown in section 3 slomes
very poor prediction on an unseen test set, sorestibelow
what would be expected for random guessing. Thil lof
behavior is rare but when it has been observed ainine
dataset types it has been observed in is biologiesh in
general and cancer data in particular. We investityahis
further by running a full range of predictive tecues on
several pre-processed versions of the original seéatavith
several correlation techniques. The results frons there
tabulated in Table 1. It is apparent that in allesaresults on a
test set are a small but significant amount bel®#o5which
would be the value for a random selection. Resuiee even
lower when hybrid techniques such as Bagging [12§l a
Boosting [13] were used. If we assume anti-learigngresent
and invert the outcome of the model we find superio
prediction results to any learning approach tesfeamble 2
shows a comparison of the best performing learaimg) anti-
learning techniques for 3 processed versions ofi¢tiaset with
55, 45 and 35 attributes, with the anti-learningutes showing
up as better on all 3 datasets.

Synthetic and real world datasets have been shawn t
express similar anti-learning properties. The seapkxample
being the exclusive-OR (XOR) problem, which can be
summarised as a logical function on two operands rbsults
in a value of true if exactly one of the operands h value of
true. This can be tabulated and plotted as follavith, X and Y
being the two operands and Z being the result riidi). An
exclusive-AND function is just the opposite whereot
operands that results in a value of true if neittreboth of the
operands are true.

Table 2. Comparison of Learning and Anti-learningtimods of predicting

TNM stage for datasets with 35, 45 and 55 attribute

Dataset Attributes
Method 55 Attributes 45 Attributes 35 Attributes
52.43% (Naive 49.41%
Learning Bayes) (BayesNet) 46.34% (ANN)
58.54% (Naive
Antileaning 55.56% (SVM) | 54.65% (ANN) | Bayes)
Anti-learning + 58.54% (Naive
Boosting 57.25% (SVM) | 56.9% (ANN) Bayes)
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Figure 6. Graph and Table showing a standard 2rdiioeal XOR dataset

This dataset can be learned by an Al approach tawdb
non-linear feature extraction, an example wouldbartificial
neural network, but only if all 4 operand couples presented
with the desired output. This leaves no sampleddsting. If
we present any 3 of the 4 examples to any macleiamihg
approach they will generalise to a point where thmdict the
unseen test value wrong 100% of the time, in effleey will
“anti-learn” the problem. This is a trivial, absttaxample but
is an important indication that if too few datagsinare
presented to a machine learning solution it is iptesshat they
will not only perform poorly (ie. equal to guessingn an
unseen test set but actually perform WORSE tharsging.
When we are dealing with real world datasets withnyn
attributes and relatively few samples, the posgittihat the N
dimensional search space is badly representedtindi

100

x 90 .
. L 4

3 + 12 Attribute
& 80 - *
£ XOR
£ 70 m Cancer
g *
£ 60 |
4 50 iy s o
2 A,
) + 0t

40 |

10 100 Sample size 1000 10000

Figure 7 Predictive performance of Neural Netwarll ancreasing sample
sizes

We can generate a 12 dimensional synthetic XORe styl

dataset by taking all possible combinations of aaftBibute
binary dataset (4096 combinations) and passing thesagh a
series of XOR and XAND processes:

{[(AxorB)xor(CxandD)]xor[(Exorfxand (G
xand H) ]} xor{[(1xorJ)xor(KxandL)}

If we take this 12 dimensional exclusive-OR and&siue-
AND problem we can achieve degrees of anti-learnifgn
small percentages of the total dataset are prasemgelearning
algorithm. Figure 7 shows how presenting most efatailable
data yields high test set performance (~90%) hbduticieg the
sample size for training and testing reduces thst tet

performance to a point where it drops below 50%uceng it

even further means any prediction tends towards 50%

(guessing). Initial results for a real world candataset appear
to occupy an area that would suggest the availasia
represents only a small sample of a much biggen;linear
‘complete’ set. Another approach to show anti-leggrexists
in this dataset and how it differs from overtragior the
absence of any learnable features is to show tfieretfice
between training and testing for a dataset ovearayg of
modeling configurations, in this case ANN architeet If we
take a very simple, single hidden unit ANN we cahieve
slightly higher than guessing performance for thmo€ctal
Cancer training dataset (figure 8), but below gings$or test
set. As we increase the number of hidden units ee an
increase in training set performance up to nead@% at 20
hidden units but performance on an unseen tesiedds a less
than 50% performance in all cases. In cases of ranalp
learnable dataset we can see that the test seatriperice
increases up to an optimal number of hidden uriit loefore
overtraining occurs and the test set performanceedses. If
the dataset just consists of random numbers the ses

performance approximates to 50% which is the same a

guessing as there are no general features in taebdaadding
hidden units allows a degree of memorization in tilaéning
set. From these results we can conclude that theecalataset
consists of a mixture of unlearnable attributetreteships and
anti-learning relationships.
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Figure 8. Training and test set performance fooremtal cancer data as
the number of hidden units is increased

V. CONCLUSIONS

We have presented results for a unique datasetl lmmsthe
biochemical and factors associated with colorettahour
patients. This dataset is limited in many ways, éxttemely
important nonetheless and modeling any relatiosship
features based on the dataset to hand is an upyimity.
Generally, whether attempting to predict TNM stages
survival, patients at TNM stage 1 and 4 have mdearc
indicators in the attribute set. TNM stage 2 anpr8vides a
much more challenging prediction task, so muchhst the
TNM stage appears much less important when predicti
survival for these 2 stages than other indicators.



Rule tree, Bayesian and Neural approaches have usszh
with some limited success for prediction, but in sto
experiments there is a lack of repeatable sucoedevieloping
a model that accurately predicts survival or TNg&t on an
unseen test set. One possible reason for this cbeld
overfitting, though a well-constructed ANN or CARfee
shouldn’t exhibit overfitting and in any case thahouldn’t be
WORSE than guessing. Another possibility is poor
inaccurate labeling of patients tumour stages. &ydin this
should only result in poor performance on the undest set.
Modelling a dataset using all available data maydpce the
best possible model if the modelling process isliglecarried
out, but ideal modelling is much more difficult itut a test
set. Methods such as Correlated Activity Pruning fhay be
useful in ensuring a minimal sized model and wi#l bne
focus of future research. There might be improventen
learning by using recent advancements such aspieukernel
learning [15] but it is just as likely, as with kstimg, methods
that improve learning may be just as effective mprioving
anti-learning.

for

This failure to accurately classify TNM stages arvival  [1]
periods may in fact be useful if we suspect thesesaibsets
within the groups. The failure to correctly clagsié set of [2]
patients may mean these patients have differemticteistics
while still expressing the same classification whour. This
would imply that treatment based solely on tumour
classification would be sub-optimal. [3]
Overall this is an iterative process with a largember of
steps, each providing more insight into the dataset its [4]
modelling. We are still at the stage where we #éterihg and 5]
focusing the original data so that we arrive at thest (6]

important, complete dataset for modelling the refethip
between tumour markers/immunology, tumour stage and

survivability. It is also very significant that gmecessing the [7]
patient's data (selecting based on different thokels) has a
significant difference on the resulting models. (8]
We have proposed an explanation for the resultsiwig a
phenomenon called “Anti-learning”.  Here, unique
characteristics of the dataset lead to a conditigmere [9]
validation on an unseen test set produces resgltgisantly

and repeatedly worse than guessing. Interestinghg real [10]
world dataset that demonstrates this behaviouerg similar

to the dataset used here, being the classificafioesponse to [11]
chemoradiotherapy in Esophageal Adenocarcinomeergati
using microarray data of biopsied patients [1]ork with a  [1]
12 dimensional exclusive-OR problem shows that wirdg a

small portion of the dataset is available thereaisreal [13]

possibility that anti-learning will be present.i$t possible to
then infer that with some highly dimensional comple
biological data sets, when we have a relativelylssample [t
size, anti-learning may also exist. Initial expegims appeared
to show that the best possible approach to clasgifyatients
with TNM stage 2 and 3 tumours was to focus on-anti
optimising the learning process to achieve the e@sssible

[15]

test set performance and then inverting the unitgrlsnodel.
Overall when looking for test set performance ore th
important TNM stage 2 and 3 patients, the bestiplesgesults
can be achieved if we inverted the answer suppbgdan
ADABoosted SVM or ANN. Using this method it is pdde
to achieve reliable prediction rates of 55-60% onuaseen
test set of higher than any learning algorithm rafteed.
orTaking this approach involves a significant leapfaith but
we have shown that this method is optimal whenidgatith
a small sample of a compounded exclusive-OR datésist
not impossible to imagine that many complex bidctagi
datasets also present us with a small, noisy saofpdemuch
bigger complex dataset and this must be investigat¢her.

This dataset will be made available, in an anon@uy®rm

other research groups to apply their own mesheoal

ascertain the true extent of the anti-learning beha
Interested parties should contact the authors ghaut
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