
Compiling clones: What happens?

Oleksii Kononenko, Cheng Zhang, and Michael W. Godfrey
David R. Cheriton School of Computer Science

University of Waterloo, Canada
{okononen, c16zhang, migod}@uwaterloo.ca

Abstract—Most clone detection techniques have focused on
the analysis of source code; however, sometimes stakeholders
have access only to compiled code. To address this, some
approaches have been developed for finding similarities at the
binary level. However, the precise relationships between source-
level and binary-level similarities remains unclear: While a
compiler will preserve the semantics of the source code in the
transformation to an executable, the resulting binary may differ
significantly in structure, including the addition and deletion of
entities in the source model. Also, compilation sometimes acts
as a kind of normalization, transforming syntactically different
but semantically similar structures into the same binary-level
representation.

In this paper, we describe a preliminary study into the effects
of the javac Java compiler on the results of clone detection. We use
CCFinderX — which can perform clone detection on sequences
of arbitrary tokens — to find clones in both the source code and
the corresponding bytecode of four large Java systems. The study
shows that source code and bytecode clone detection can produce
significantly different results, especially for large programs. We
report on a few typical examples of differences, and analyze
how they are introduced by the compiler. Finally, we discuss the
greater significance of this work, and sketch plans for expanded
study.

I. INTRODUCTION

Software clone detection — that is, finding similar design
structures that recur within a software system — can provide
useful input to many software maintenance activities: iden-
tifying emergent abstractions and refactoring opportunities,
finding defects in related code structures, and overall improved
program comprehension. There exist a variety of techniques
for clone detection, most of them focused on program source
code. In order to abstract out irrelevant differences and detect
genuine logic/semantic code similarity, these techniques often
transform source code into other representations — such as
character strings, token streams, abstract syntax trees, and
program dependence graphs — that are amenable to automated
analysis of similarity [1]–[3].

With the same purpose of detecting code clones, some
techniques use compiled code as the basic representation of
clone detection [4]–[6]. These techniques first compile source
code into an intermediate representation (IR), and then use
string- or token-based algorithms to detect clones. Typically,
bytecode and assembler are used as the IR of Java and C/C++
source code, respectively. Other IRs can also be used, for
example, the approach by Selim et al. [7] detects clones based
on the Jimple IR, to complement the result of source code
clone detection. Since the process of compilation generally
transforms the structure of the code in a significant way while
preserving the semantics, clone detection on compiled code is

free of many irrelevant source level differences and is able to
reveal logic similarity embedded in source code.

One of issues that has motivated clone detection research
on the bytecode level is the fact the source code is not always
available in the first place. Additionally, the application of
such analysis is somewhat different from that of source code
clone detection — here, researchers have typically focused
on detecting suspected copyright violations and malware code
injections. This analysis is based on the assumption that the
original code and its compiled versions are similar to some
degree, meaning that clone detection is likely to produce
similar results as well. However, no empirical evidence has
been shown to support this assumption. It remains unclear
whether analyzing compiled code generally produces different
results, and more importantly how the results differ from those
of source level techniques and why. We have conducted a
preliminary study to shed light on these key questions about
clone detection on compiled code. Specifically, we seek to
answer three research questions:

RQ1 Does (token-based) clone detection produce signifi-
cantly different result sets when performed on both
source code and compiled code?

RQ2 Are there clones that can be detected only at the
source code level? Why?

RQ3 Are there clones that can be detected only at the
compiled code level? Why?

We have used CCFinderX — a well known and widely
used clone detection tool — as the representative of token-
based clone detection techniques [1], [8]. We ran CCFinderX
on both the source code and the compiled bytecode of four
medium- to large-sized open source Java programs that are
in wide use. After cleansing the result data through some
automated filtering steps, we manually analyzed the clone sets
reported at both levels. We found systemic differences between
the results of clone detection at the different levels; we also
observed a number of factors that appear to underline these
differences.

II. BACKGROUND AND RELATED WORK

Clone detection has received much attention in the research
community, and there are many kinds of techniques and
supporting tools to perform it. While it is possible to categorize
these approaches across different dimensions, here we choose
to distinguish between source code-based and compiled code-
based approaches.

Source code clone detection — Based on the amount and
kind of preprocessing that the source code goes through before
clone detection is performed, source code-based techniques can



be further categorized into three families: text based, token
based, and tree/graph based. Text-based approaches usually
involve limited preprocessing followed by textual comparison.
For example, NiCad [9] pretty-prints the parsed source code,
and then performs line-by-line comparisons to find clones.
MOSS [10] has a set of document type specific front-ends that
“clean” the input; after that, it uses “fingerprinting” based on
a rolling hashing function to detect similar fragments of code.
While token-based approaches share the same initial step —
converting an input into a sequence of tokens — they differ in
how they analyze tokens. Baker’s Dup tool first replaces the
tokens that correspond to identifiers with their offsets, and then
uses a suffix-tree algorithm for line-based comparison [4], [5].
CCFinder by Kamiya et al. [1] is similar to Dup but it replaces
all identifiers with a single, special token and also performs
language-specific normalization of the token sequence before
executing a suffix tree algorithm. Once the analysis is done
and clones are found, their locations are mapped back to the
original source code. The last family consists of a variety
of complex language-dependent approaches that build parse
trees [11], abstract syntax trees [2], or program dependency
graphs [3] from the source code and then apply different
algorithms to find similar sub-trees or sub-graphs.

Binary code clone detection — The common motivation
for analysis at this level is that source code is not always
available, thus a source-based tool cannot be used. Since the
source code for each programming language is compiled into
a very specific form, each detection tool typically targets only
one language. We note that there are fewer clone detection
tools based on compiled code, compared to source code-based
tools. Baker and Manber [12] adapted three tools initially
designed for the source code (Dup [4], Siff [13], Diff) to
find similarities in Java bytecode. Salim et al. [7] proposed
to augment source code clone detection with results from
bytecode analysis; to do so, they transform Java bytecode
into an IR in the Jimple format, and use both CCFinder
and Simian to analyze this intermediate representation as
Java code. Davis and Godfrey developed two tools for clone
detection in compiled code: JCD for Java bytecode and ACD
for C/C++ assembler [6]; both tools are based on the same
logic of applying a greedy algorithm followed by a hill
climbing algorithm to find duplicates in the code. Keivanloo et
al. developed SeByte [14], a tool uses semantic-enabled token
matching to find clones in Java bytecode; it performs clone
detection for each type of tokens, and then uses the Jaccard
similarity coefficient to compute the similarity value. Chen et
al. [15] proposed an approach to find clones within Android
App markets; they extract control flow graphs (CFGs) from
Android apps, compute a characteristic called centroid for each
CFG, and then use these centroids to find similar apps.

To the best of our knowledge, there has been no system-
atic study examining the differences between clone detection
results performed at source code and compiled code levels.
However, both Salim et al. [7], and Davis and Godfrey [6]
include some observations in their studies that approach this
topic. In the former study, the authors used the same clone
detection techniques on both source and compiled code; how-
ever, they analyze an abstraction of bytecode rather than
“pure” bytecode per se. Also, the authors were focused on a
quantitative comparison of clone detection on different levels
and combining the results into a single, inclusive report. In the

latter study, the authors used different tools for finding clones
in source code and in the C++ assembler. They presented only
quantitative results on the agreement between those two tools
for different values of minimum length of a clone.

III. DESIGN OF EXPERIMENT

In this section, we describe how we adapted the CCFinderX
clone detection tool for use in our study, we discuss the
systems we selected for analysis, and we describe our approach
to studying cloning at the source code and bytecode levels.

A. CCFinderX as the clone detector

We decided to use CCFinderX [8] for our study, and to
focus on systems written in Java. CCFinderX is a token-
based clone detection tool designed to detect Type 1 and Type
2 clones, according to the Bellon taxonomy [16]; it is an
improved version of the original CCFinder tool [1]. We chose
to run CCFinderX on both the source and bytecode using the
default settings: 50 tokens for minimum clone length, and
12 for minimum number of token kinds. Since CCFinderX
supports clone detection for Java source code out-of-the-box,
we needed no additional preprocessing steps to process the
source code of our example systems. However, CCFinderX
cannot work directly with Java bytecode because it does not
have embedded rules for parsing and tokenizing the input. To
address this issue, we performed preprocessing of Java class
files and extended CCFinderX with a new set of rules for
lexical analysis of the preprocessed files.

Bytecode preprocessing — A Java compiler transforms
source code into a set of Java class files; these files are in
a binary format and cannot be passed directly into source
code-based clone detection tools. We use a tool javap from
the Java SDK to get textual representations of the class files.
Once we have the disassembled text files, we split them into
separate files so that each file contains only one method; we
do this to force CCFinderX to detect clones that do not cross
method boundaries. Finally, we normalize the content of the
files by applying the set of transformations proposed by Baker
et al. [12]: put one opcode or argument per line, differentiate
between different types of elements, and replace all non-
opcode elements with their offsets. Baker et al. showed that
these transformations of the input improves the performance
of clone detection tools allowing them to detect longer clones.

Extending CCFinderX to bytecode — CCFinderX con-
sists of two main parts: a set of language-specific front-
ends that transform the input data into a sequence of tokens,
and a language-independent clone detection engine that finds
similarities in that sequence. CCFinderX also allows users to
extend the tool by adding new front-ends for additional target
languages. In our new front-end, each opcode has its own token
type; additionally, references into the constant pool, references
into the local variable table, both signed and unsigned inte-
gers, and jumps have different token types assigned to each
group. Also, we mark all non-opcode tokens as identifiers, so
CCFinderX can perform parameterized matching.

B. Subject programs

Bellon et al. [16], [17] compared the performance of
different source code-based clone detection tools. The authors



TABLE I. SUBJECT SYSTEMS

Size in # Java Size in # Java # Bytecode
System Java source Bytecode class preprocessed

(KLOC) Files (KLOC) files files
netbeans-javadoc 9 101 54 230 1380

eclipse-ant 16 178 105 267 2156
eclipse-jdtcore 98 741 586 823 8772

j2sdk1.4.0-javax-swing 103 538 639 1588 13992

used four C/C++ systems and four Java systems. They slightly
changed the source code of those systems: empty lines were
removed, and curly braces were moved one line up if there
was no other elements in a particular line. They asked the
authors of several clone detection tools to submit the results
of analysis of the normalized code. After that, they manually
analyzed 2% of submitted clones and constructed a reference
corpus for evaluation of clone detection tools. Although we do
not use the corpus data in this paper, we did use the four Java
systems from their study; we plan to incorporate the corpus
data in the future work.

Table I provides some information about the systems we
use in our study. Since comments in the source code are
automatically ignored by the clone detection tools, we report
the size of the systems in terms of the number of lines of
actual code. The size of the bytecode representation for each
system is much bigger than the size of a corresponding source
code; however, these differences are due only to the fact that
we output only one element (opcode, reference, jump, etc.) per
line during preprocessing. There is also a difference between
the number of source code files and the number of class
files, because the Java compiler outputs nested and anonymous
classes into separate class files.

C. Procedure of analysis

source code
clone sets

bytecode
clone sets

filtering
overlapping
clone sets

filtering
boundary-crossing

clone sets

filtering
overlapping
clone sets

filtering
common
clone sets

differing
clone sets

manual
analysis

Fig. 1. Workflow of our study. The filtering steps are automatic, and the last
step is done manually.

Figure 1 shows the workflow of our analysis of source level
and bytecode level clone detection results. Before manually
analyzing the results — which are clone sets reported by
CCFinderX — we cleanse them by filtering out the useless
and common ones.

The most common kind of useless results are overlapping
clone sets: a clone set is said to be overlapping if two or more
of its clone pairs overlap with each other; that is, they share
some program code. Overlapping clone sets have little value
for our analysis and make the manual analysis unnecessarily
complicated. For example, it is almost impossible to identify
boundaries between clone instances due to overlap. Therefore,
we filter out overlapping clone sets from the results of both
source code level and bytecode level analysis; this is done
programmatically, based on the token information generated
by CCFinderX. Our filtering program can accurately identify
overlapping clone sets by comparing indices of beginning and
ending tokens of their constituent clone instances.

Another kind of useless result is boundary-crossing clone
sets, which contain clone pairs that span multiple methods.
Due to the way in which we pre-process Java class files,
bytecode level clone sets can never cross method boundaries.
Because CCFinderX performs token-based clone detection, it
does not really takes into account the syntactical structure of
the source code. Although the tool places a restriction that a
clone can start only at the beginning of a statement (which
is done by specifying a list of tokens that can be at the
beginning of a clone), it does not check whether a clone crosses
method boundaries. In order to make the results at the two
analysis levels comparable, we need to filter out the boundary-
crossing clone sets from the source code results. Again, we use
an automatic filter to eliminate boundary-crossing clone sets.
Apart from token indices generated by CCFinderX, this filter
parses source code to determine method boundaries. Then,
by comparing offsets of beginning and ending tokens against
offsets of method boundaries, the filter can identify clone
instances extending across multiple methods.

We also filter out common clone sets, i.e., clone sets
found in both the source and bytecode analysis. While these
may consist of “true” clones, we are interested here only in
the differences between the two analyses; consequently, we
developed a third program to filter out the common clone sets.
To avoid missing relevant clone sets, the filter is designed to
be strict: a pair of clone sets (one at each level) is filtered out
only if they have the same number of clone instances and there
is a one-to-one mapping between the clone instances at both
levels. More precisely, within a pair of common clone sets,
every clone instance at the source level should correspond to
a clone instance at the bytecode level at the same location of
the same source file. If compiled with -g option (to enable
debugging), Java class files include “Line Number Tables”
that map some opcodes to locations in the original source
code. We use this information to match the locations of clone
instances at different levels. We did not run this tool on the
two smallest systems, because their size meant that it was
practical to perform a more accurate manual analysis of the
clone detection results.

It should also be noted that in case of two largest subject
systems, jdt-core and swing, we analyzed only a sample
of the clone sets; this is because there were thousands of clone
sets reported, and it would be impractical to analyze all of
them. For both bytecode and source code clone sets, we sorted
them by their length — defined as the maximum number of
tokens of their constituent clone instances — and selected 1
out of 20 to analyze; that is, the sample rate is 5%, and the
samples cover clone sets of varying size.

After the filtering and sampling, we then performed manual
analysis; while this requires subjective judgement, we followed
a defined protocol whenever possible to minimize bias:

1) For a clone set that is present in the source code
results but not in the bytecode results, we first identify
the class files that are expected to contain the clone
instances, by checking the class and method names
in the source code.

2) Next, we locate the bytecode opcodes corresponding
to the source code snippets using line number infor-
mation in the source files and the class files.



TABLE II. RESULTS OF CLONE DETECTION ON SOURCE CODE AND
BYTECODE.

Subject #Src #Byte #Common #SrcOnly #ByteOnly
netbeans-javadoc 94 94 45 49 47*

eclipse-ant 74 83 39 35 43*
eclipse-jdtcore 1207 1118 308 899 810

j2sdk1.4.0-javax-swing 470 690 96 374 594
total 1845 1985 488 1357 1494

* — more than one clone set is needed to match a clone set from the other level

3) Finally, we scrutinize the different pieces of bytecode
to determine why they are not detected as clone
instances. Specifically, we check the opcodes from
the beginning to the end, and also consider several
opcodes before and after the central opcodes; we
do this because the line number information does
not perfectly match that of the source code due to
simplifying assumptions made by the compiler.

When analyzing the clone sets that are detected only at
bytecode level, we followed an analogous protocol.

IV. RESULTS AND ANALYSIS

Table II shows statistics of clone detection on source and
bytecode levels. The first column displays names of subjects.
The columns “#Src” and “#Byte” show the number of clone
sets detected at source level and bytecode level, respectively.
The column “#Common” shows the number of clone sets that
are detected at both levels. The column “#SrcOnly” shows the
number of clone sets detected at source level only, while the
column “#ByteOnly” shows the number of clone sets detected
at bytecode level only.

As can be seen in Table II, in the two smallest subjects,
there are about 50% clone sets that are specific to only one
level. In the two larger subject systems the results are even
more diverse at the two levels. In eclipse-jdtcore, about
72% of bytecode results are not detected at the source code
level, and 74% of source code results are missing in bytecode
level. For swing, the rates are 86% and 80%, respectively.

We can now answer RQ1: Token-based clone detection
performed on source code and compiled code can produce
significantly different result sets. Through manual analysis, we
also found that different clone sets can be attributed to various
factors, which we now discuss.

A. Clone sets specific to source level detection

As shown in the column “#SrcOnly” of Table II, there are
1357 clone sets detected only at the source level. These clone
sets are caused mainly by the changing length of code, creating
separate files, and the generating different bytecode sequences
for syntactically similar source code during compilation.

A single statement of Java source code is often translated
into multiple opcodes in Java bytecode; this is because each
opcode performs an elementary operation, while a source code
statement usually corresponds to a sequence of elementary
operations. However, long source code sequences can be
compiled into short bytecode sequences. For example, long
qualified names, such as System.out may take up several
tokens at source level, but they are translated into simple
opcodes, like getstatic. When the length of source code

snippet is above the threshold and the corresponding bytecode
sequence is below it, the clone set can be detected only at the
source level.

During compilation of a Java program, a .class bytecode
file is generated for each class (or interface) in the source code
base. If a source code class contains inner classes, the rules
of the Java language require that they must all be declared
in the same source code file; however, the bytecode of any
inner classes will be located in .class files that are separate
from the .class file of the defining “outer” class. Thus, if
part of the source code of a detected clone set belongs to an
inner class, then part of the corresponding bytecode will be
placed into another .class and cannot be connected with
the bytecode of the outer class during clone detection. This
often results in missing clone sets at the bytecode level.

Also, although a compiler ought, in principle, work as a
normalizer of the source code, this is not always the case;
sometimes, a small difference in the source code, which is
ignored by the clone detector, may result in bytecode level
differences that change the results of clone detection. For
example, in one clone instance, the boolean literal true is
used, while in the other clone instance of the same clone set
the literal false is used. At the source level, CCFinderX con-
siders both true and false as boolean literals and does not
differentiate between them. However, in the bytecode, true
and false yield different opcodes (i.e., iconst_1 and
iconst_0), making the corresponding bytecode sequences
differ from each other, and no clone set is detected for them.

We also found that the compiler may produce different sets
of opcode instructions for same source code when this code
is placed in static and non-static methods. For the non-static
methods, a compiler adds additional opcodes to load references
to the current object (this) onto the stack; however, it does
not do this for static methods. In such situations, a simple
Type 1/Type 2 clone in source code becomes a Type 3 clone
in bytecode. As CCFinderX does not detect Type 3 clones
well, we receive a clone set that is detected only at one level.

To summarize our observations above, we can now answer
RQ2: There are clone sets that can be detected only at the level
of source code, mainly because the compiler may shorten code
sequences, create extra .class files, and generate different
opcodes instead of operands.

B. Clone sets specific to bytecode level detection

As shown in the column “#ByteOnly”, there are 1494
clone sets detected only at the bytecode level. The reasons
for this phenomenon relate mostly to the change of length of
code, normalization of control structures, and the treatment on
identifiers.

Some source code structures — such as static field defi-
nitions and array accesses — often lead very long bytecode
sequences. Sometimes the source code snippet is too short to
be detected, but the length of the corresponding bytecode well
exceeds the threshold for clone detection. In this case, only
bytecode level clone set can be detected.

At the source code level, the basic control structures can
be used quite flexibly, especially for nested if...else...
statements and loops. However, during compilation, most



control structures are translated into opcodes for conditional
jumps. Even if two pieces of source code appear to have
significantly different structures, their bytecode sequences can
be very close to each other. In such cases, the compilation has
normalized the program using limited opcodes, showing that
the control flows of two seemingly different source snippets
are essentially similar; that is, bytecode analysis has detected
a true semantic clone that is hard to identify using syntactic
approaches on the source code.

Given the above discussions, we can now answer RQ3:
There are clone sets that can be detected only at the bytecode
level, mainly because the compiler may elongate the code
sequences and normalize control flows.

C. Threats to validity

We are aware of some threats to the validity of our study.
Since we used CCFinderX as the only clone detector in
the study, the result is unlikely to generalize to other clone
detectors. Nevertheless, as a representative token-based clone
detection technique, CCFinderX fits well to this preliminary
qualitative study. Also, during our manual analysis, we have
paid special attention to the differing clone sets that are
likely introduced by the specific algorithms of CCFinderX,
and excluded them from further analysis.

Our use of the javac Java compiler confines the validity of
results to the specific compilation technique of Java platform.
Our results might not be applicable to other Java compilers,
other languages that use some intermediate representation of
the source code such as C#, and likely are not applicable
to languages that are compiled into pure machine code, such
C/C++.

Only four Java programs were used in the study, imposing a
threat to generalizing the results to other programs. In addition
to being used by previous studies, these four programs are
diverse in terms of size and application domain. It is worth
noting that our analysis of results is mainly qualitative, rather
than quantitative.

Another threat stems from the filtering and sampling steps
of our study. As explained in Section III, the filtering of
overlapping and boundary-crossing clone sets can filter out
clone sets that are actually useless to the study. A major
concern is that the rules of filtering equivalent clone sets can
be too strict, so that some clone sets, which should have been
viewed as equivalent by human developers, may be considered
to be different. During our manual analysis, we encountered
few such cases, but the differences between clone detection
results (shown in Table II) might be inflated. Clearly, it is
possible that some interesting clone sets may be overlooked
due to the sampling step. However, considering the sheer
number of clone sets in the two larger subjects, sampling is
necessary to make the manual analysis feasible.

V. CONCLUSION AND FUTURE WORK

Clone detection results for the source code and bytecode
levels are similar yet different. After studying four Java sys-
tems of different sizes we found that each of these levels has
its own unique features that translates into a difference in the
results. The manual analysis is extremely time consuming, and

in the vast majority of cases it results in finding clone sets that
are similar but have not been removed by filtering (usually
because of 1-2 line shift). A deeper study would be aided
by a tool that can intelligently identify and discard similar
clone sets, so a human need focus only on analyzing the “true”
differences.

We plan to extend this study to examine the other four
systems, written in C/C++, from the Bellon benchmark. C/C++
compilers usually allows a programmer to select different
settings for code optimization which will likely result in new
kinds of differences between two levels. At the same time,
some observations, such the effects of changing the length of
code and normalization of control structure, may be valid in
a wide range of compilation techniques. In addition, we want
to use the data published by Bellon as an oracle to calculate
statistical information for each type of differences.

REFERENCES

[1] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Trans. on Software Engineering, vol. 28, no. 7, July 2002.

[2] R. Koschke, R. Falke, and P. Frenzel, “Clone detection using abstract
syntax suffix trees,” in Proc. of the Working Conf. on Reverse Engi-
neering, 2006.

[3] M. Gabel, L. Jiang, and Z. Su, “Scalable detection of semantic clones,”
in Proc. of the ACM/IEEE Intl. Conf. on Software Engineering, 2008.

[4] B. S. Baker, “A program for identifying duplicated code,” in Proc. of
Computing Science and Statistics: 24th Symposium on the Interface,
1992.

[5] ——, “On finding duplication and near-duplication in large software
systems,” in Proc. of the Working Conf. on Reverse Engineering, 1995.

[6] I. J. Davis and M. W. Godfrey, “From whence it came: Detecting source
code clones by analyzing assembler.” in Proc. of the Working Conf. on
Reverse Engineering, 2010.

[7] G. M. K. Selim, K. C. Foo, and Y. Zou, “Enhancing source-based clone
detection using intermediate representation,” in Proc. of the Working
Conf. on Reverse Engineering, 2010.

[8] “CCFinderX,” http://www.ccfinder.net/ccfinderxos.html.
[9] C. K. Roy and J. R. Cordy, “NICAD: Accurate detection of near-miss

intentional clones using flexible pretty-printing and code normalization,”
in Proc. of the IEEE Intl. Conf. on Program Comprehension, 2008.

[10] S. Schleimer, D. S. Wilkerson, and A. Aiken, “Winnowing: Local
algorithms for document fingerprinting,” in Proc. of the ACM Intl. Conf.
on Management of Data, 2003.

[11] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone
detection using abstract syntax trees,” in Proc. of the IEEE Intl. Conf.
on Software Maintenance, 1998.

[12] B. S. Baker and U. Manber, “Deducing similarities in Java sources from
bytecodes,” in Proc. of the USENIX Annual Technical Conf., 1998.

[13] U. Manber, “Finding similar files in a large file system,” in Proc. of the
USENIX Annual Technical Conf., 1994.

[14] I. Keivanloo, C. K. Roy, and J. Rilling, “Sebyte: A semantic clone
detection tool for intermediate languages,” in Proc. of the IEEE Intl.
Conf. on Program Comprehension, 2012.

[15] K. Chen, P. Liu, and Y. Zhang, “Achieving accuracy and scalability
simultaneously in detecting application clones on Android markets,” in
Proc. of the ACM/IEEE Intl. Conf. on Software Engineering, 2014.

[16] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Compar-
ison and evaluation of clone detection tools,” IEEE Trans. on Software
Engineering, vol. 33, no. 9, 2007.

[17] “The Bellon benchmark,” http://www.bauhaus-stuttgart.de/clones/.


