
Using Temporal and Semantic Developer-Level
Information to Predict Maintenance Activity Profiles

Stanislav Levin
The Blavatnik School of Computer Science

Tel Aviv University
Tel-Aviv, Israel

stanisl@post.tau.ac.il

Amiram Yehudai
The Blavatnik School of Computer Science

Tel Aviv University
Tel-Aviv, Israel

amiramy@tau.ac.il

Abstract—Predictive models for software projects’ character-
istics have been traditionally based on project-level metrics,
employing only little developer-level information, or none at all.
In this work we suggest novel metrics that capture temporal and
semantic developer-level information collected on a per developer
basis. To address the scalability challenges involved in computing
these metrics for each and every developer for a large number of
source code repositories, we have built a designated repository
mining platform. This platform was used to create a metrics
dataset based on processing nearly 1000 highly popular open
source GitHub repositories, consisting of 147 million LOC, and
maintained by 30,000 developers. The computed metrics were
then employed to predict the corrective, perfective, and adaptive
maintenance activity profiles identified in previous works. Our
results show both strong correlation and promising predictive
power with R2 values of 0.83, 0.64, and 0.75. We also show how
these results may help project managers to detect anomalies in the
development process and to build better development teams. In
addition, the platform we built has the potential to yield further
predictive models leveraging developer-level metrics at scale.

Index Terms—Software Maintenance; Software Metrics; Min-
ing Software Repositories; Predictive Models; Human Factors;

I. INTRODUCTION

Forecasting maintenance activities performed in a source
code repository could help practitioners reduce uncertainty
and improve cost-effectiveness [1] by planning ahead and
pre-allocating resources towards source code maintenance.
Maintenance activity profiles of software projects have been
therefore a subject of research in numerous works [1–4]. In this
work we adopt the maintenance activity categories corrective,
perfective, and adaptive as defined by Mockus et al. [2]:

• Corrective: fault fixing.
• Perfective: code structure / system design improvements.
• Adaptive: new feature introduction.

and put forth previously unexplored temporal and semantic
developer-level metrics, which we then utilize to study the
corrective, perfective and adaptive maintenance activity pro-
files on a developer-level granularity.

We seek to gain better understating of how personal charac-
teristics such as commit patterns, commit frequencies, project
join and departures dates, etc., impact the maintenance activi-
ties of individual developers, as well as the projects they work

on. Moreover, given a software project, we consider its main-
tenance activity profiles as an aggregation of the maintenance
activity profiles of all developers’ that have taken part in its
development. Therefore, predictions made on a developer-level
(i.e., for all individual developers in the project), can be used
to reason about, and derive project-level predictions.

Studying developer-level impact requires sufficient and suf-
ficiently fine-grained data, as well as the computational power
to process it. This work is therefore driven by two main factors
that have been trending up for the past decade:
• Big Code [5]: the availability of large source code corpora

via open source.
• Big Data [6] ecosystem: the availability of tools capable

of processing extremely large data volumes.
The combination of the two has created unprecedented oppor-
tunities to collect and process an enormous volume of source
code, and provide insights that were previously exponentially
harder, or even impossible to obtain [7].

II. RELATED WORK

Maintenance activity profiles and the application thereof
have been the subject of numerous works dealing with fault
prediction models, commit classification, software change
recommendations, and more [2,4,8–11]. While the precise
distribution of maintenance activities is inconclusive [8], their
classification into the corrective, perfective and adaptive cat-
egories has been a common practice. Our work therefore
seeks to explore how these maintenance activity categories
relate to the semantic and temporal developer-level metrics
we define, and whether such metrics can be used to build
effective predictive models for the corrective, perfective and
adaptive maintenance activity profiles.

III. RESEARCH QUESTION

RQ: How do temporal and semantic developer-level metrics
relate to developers maintenance activity profiles?

To the best of our knowledge, this work is the first to explore
temporal and semantic developer-level metrics (see Table I),
such as the number of distinct semantic changes performed by
each developer, the mean number of distinct semantic changes
in a given developer’s commits, mean time between commits
and others. Moreover, we explore these metrics at large scale,

ar
X

iv
:1

61
1.

10
05

3v
1

 [
cs

.S
E

]
 3

0
N

ov
 2

01
6

and analyze nearly 1000 different repositories that consist of
dozens of millions of commits in total. Our large scale study
was conducted using a VCS mining platform we have built to
enable large scale analysis of version control systems (VCS).
Our platform leverages Spark [12], an industrial cutting edge
data processing framework.

We used the GQM approach [13] to derive the questions,
and then the metrics that are needed in order to answer the
research question in a measurable way. The developer-level
metrics we measured are listed in Table I.

TABLE I
DEVELOPER-LEVEL METRICS

Commitsrepo See Table II
Muserepo
DeveloperVersatilityrepo
MeanCommitVrepo

VersatilityLevelrepo

ContribStartRelrepo

Developer’s join date (first recorded
commit) expressed as the number of
days since project’s first observed
commit

ContribDurationrepo
The duration in days, of the period
between the developer’s first and last
commit dates.

MTBCrepo
Mean time between developer’s
commits, in days.

* Developers who have committed changes (contributed) to multiple source
code repositories are considered as if they were different individuals.

IV. BACKGROUND

Fluri et al. [14] put forth a taxonomy of semantic source
code changes for object-oriented programming languages
(OOPLs), and Java in particular. This taxonomy consists
of 47 different change types, such as statement delete,
statement insert, statement update, removed class, addi-
tional class, return type change and so on. The computation
of these change types from source code files was later imple-
mented by a tool named ”ChangeDistiller” [15].

We embrace this taxonomy and define the notion of versa-
tility based measures for developers and commits as defined
in Table II.
For example, if developer Alice performed 2 commits:

commit1 2 x stmt insert, 1 x stmt update
commit2 3 x stmt delete

CommitVSetrepo(commit1) = {stmt insert, stmt update}

CommitVSetrepo(commit2) = {stmt delete}

DeveloperVSetrepo(Alice) = {stmt insert, stmt update, stmt delete}

CommitVersatilityrepo(commit1) = 2

CommitVersatilityrepo(commit2) = 1

CommitVersatilityrepo(Alice) = 2+1
2 = 1.5

DeveloperVersatilityrepo(Alice) =| DeveloperVSetrepo(Alice) |= 3

Muserepo(Alice) = max{2, 1} = 2

VersatilityLevelrepo(dev) =| {{stmt insert, stmt update}, {stmt delete}} |= 2

The intuition behind these versatility based measures is
capturing the number of different fine-grained semantic change
types present in commits made by individual developers.

V. METRICS COMPUTATION

To provide reproducible results, we sought to base our
empirical study on publicly (and freely) available data. We
chose GitHub as the data source for this work due to its
prevalence among the repository hosting services. Candidate
repositories were selected according to the following criteria:

1) used the Java programming language
2) had more than 100 stars (i.e. more than 100 users had

”liked” these repositories)
3) had more than 60 forks (i.e., more than 60 users had

”copied” these repositories for their own use)
4) had their code updated since 2016-01-01 (i.e., these

repositories were active)
5) were created before 2015-01-01 (i.e., these repositories

had been around for at least ∼1.5 years)
6) had size over 2MB (i.e. these repositories were beefy)

The result set consists of 1000 repositories, the maximum limit
as stated by GitHub’s documentation [16]. Due to various
technical reasons our final dataset consisted of 979 unique
Git repositories, where the average number of developers per
project was 32, and the average project age was 4.2 years.
These repositories were then cloned and processed by our VCS
mining platform

First, to distill semantic source code changes as per the
taxonomy defined by Fluri et al. (see also section IV), our
VCS mining platform repeatedly applied the ChangeDistiller
([15,17,18]) on every two consecutive revisions of every Java
file in every repository in our result set. This stage yielded 30
million semantic source code change instances. Then, all the
semantic source code changes were aggregated using the key
(developer-id, repository-id), forming data bins from which the
temporal and semantic developer-level metrics (see Table I)
were computed. To classify developer’s commits into the cor-
rective, perfective, and adaptive categories, our VCS mining
platform used methods similar to [2,19,20], and searched for
indicative keywords in the commit’s comment field. Keyword
matching was boosted by using common techniques such as
stemming and case-folding, the keywords are listed in table
III.

TABLE III
KEYWORDS FOR CLASSIFYING MAINTENANCE ACTIVITIES

Corrective fix, esolv, clos, handl, issue, defect, bug, problem, ticket
Perfective refactor, re-factor, reimplement, re-implement, design, re-

plac, modify, updat, upgrad, cleanup, clean-up
Adaptive add, new, introduc, implement, implemented, extend, feature,

support

VI. RESULTS

We use generalized regression modeling (GLM) [21] in
the R statistical environment [22] to explore our dataset and
build predictive models. The predictive models were trained on

TABLE II
VERSATILITY BASED MEASURES FOR DEVELOPERS AND COMMITS

Given a source code repository repo and a developer dev that has committed code to repo:
Commitsrepo(dev) = {all commits by developer dev to repository repo}
CommitVSetrepo(commit) := {all semantic source code changes in commit}
DeveloperVSetrepo(dev) :=

⋃
commit∈Commitsrepo(dev)

CommitVSetrepo(commit)

CommitVersatilityrepo(commit) :=| CommitVSetrepo(commit) |
DeveloperVersatilityrepo(dev) :=| DeveloperVSetrepo(dev) |
Muserepo(dev) := max

commit∈Commitsrepo(dev)
CommitVersatilityrepo(commit)

CommitVersatilityrepo(dev) := (
∑

commit∈Commitsrepo(dev)

CommitVersatilisyrepo(commit)) ∗ 1
|Commitsrepo(dev)|

VersatilityLevelrepo(dev) :=|
⋃

commit∈Commitsrepo(dev)

{S|S = CommitVSetrepo(commit)} |

Note that: DeveloperVersatilityrepo(dev) ≥ Muserepo(dev)

Fig. 1. Prediction graphs for corrective, perfective and adaptive (left to right)
maintenance activity profiles for 150 developers randomly selected form the
test dataset. Actual values in blue, predicted ones are in red.

randomly chosen 90% of the repositories in the dataset, while
the remaining 10% were used for validation and measuring
goodness of fit.

In the rest of this section we present the predictive
models (see Table IV) for the developer-level corrective,
perfective and adaptive maintenance activity profiles.
To predict the profile of a maintenance activity
category MAc ∈ {Corrective,Perfective,Adaptive}
for a developer dev the following formula was used:
ProfileMAc(dev) = ConstMAc +

∑
Pi∈modelMAC

coeffPi

MAc
∗Pi(dev)

where modelMAc is the regression model for MAc, ConstMAc

is the constant in modelMAc , and coeffPi

MAc
is the coefficient

of predictor Pi in modelMAc
as specified in table IV. Pi(dev)

is the value of predictor Pi for a given developer dev.
All predictors were log transformed to alleviate skewed

data, a common practise when dealing with software met-
rics [23,24]. The standard error is specified in parenthesis
underneath the estimate for each predictor. Figure 1 presents
predictions results for 150 developers randomly selected from
the test dataset.

For each maintenance activity category MAc, the X axis is
a running developer-id and the Y axis is the number of the
developer’s commits of category MAc. For each developer, we
plot in blue the number of her commits classified as MAc by
the commit message classification algorithm (see section V),
and overlay it in red with the number of commits predicted to
be of category MAc by the GLM (see Table IV).

For all three maintenance activity profiles, the vast majority
of both temporal and versatility based developer metrics were

TABLE IV
GLM FOR DEVELOPER-LEVEL MAINTENANCE ACTIVITY

Predicted profile:
Predictor Corrective

(1)
Perfective

(2)
Adaptive

(3)

(P1) log(Commitsrepo) 0.797 0.572 0.503
(0.010) (0.020) (0.015)

(P2) log(Muserepo) 0.171 −0.288 −0.135
(0.010) (0.020) (0.013)

(P3) log(MTBCrepo) 0.012 −0.018
(0.002) (0.004)

(P4) log(ContribStartRelrepo +0.1) 0.014 −0.021
(0.001) (0.001)

(P5) log(CommitVersatilityrepo) 0.028 0.033
(0.009) (0.013)

(P6) log(ContribDurationrepo +0.1) 0.030 −0.050 −0.018
(0.002) (0.005) (0.002)

(P7) log(DeveloperVersatilityrepo) −0.205 0.394 0.243
(0.010) (0.025) (0.013)

(P8) log(VersatilityLevelrepo) 0.181 0.483 0.437
(0.012) (0.025) (0.017)

Constant −0.986 −3.092 −1.462
(0.019) (0.048) (0.020)

R2 0.832 0.640 0.759
Observations 27,850 27,850 27,850

statistically significant with p-value < 0.01. Metrics that were
not statistically significant were excluded from the predictive
models (represented by the empty cells in table IV) to improve
prediction quality.

In all three models, Commitsrepo (the total number of
commits made by a developer to the given repository) was
the most powerful predictor, and accounted for a great of deal
the high R2 values.

Corrective profile (table IV, column 1): In contrast to other
predictors, Versatilityd has a negative coefficient indicating
that developers with higher Versatilityd values are likely to
perform less corrective commits given that other predictors
remain fixed. The fact that Muse and Versatilityd are both
versatility based metrics, yet have opposite signs in this model,
supports our assumption that Muse and Versatilityd capture
different kinds of information. In addition, it is also evident
that developers who commit less frequently (higher MTBC),
join the project later, remain active for longer, and have

more commits with distinct change type patterns, are likely to
have a higher corrective profile (i.e., perform more corrective
commits).

Perfective profile (see Table IV, column 2): Similarly to
the corrective model, the signs of Versatilityd and Muse are
opposite, but in contrast to the former, it is now Muse that
has a negative sign. This indicates that developers with higher
Muse values are likely to perform less perfective commits
given that other predictors remain fixed. Also, developers who
commit more frequently (lower MTBC), and remain active for
shorter time (lower ContribDuration), but have more commits
with distinct change type patterns (i.e., higher values for
DistinctChangeTypeSets) are likely to have a higher perfective
profile (i.e., perform more perfective commits).

Adaptive profile (see Table IV, column 3): The adaptive
model is more similar to the perfective one than to the
corrective one, with Versatility having a positive sign and
Muse a negative sign. Adaptive commits are likely to favour
developers with lower Muse, who join the project earlier
(lower ContribStartRel), remain active for shorter time (lower
ContribDuration), have more commits with distinct change
type patterns, and have a greater versatility (as defined in Table
II).

VII. DISCUSSION & APPLICATIONS

Identifying anomalies in development process. The manager
of a large software project should aim to control and manage
its maintenance activity profiles. Monitoring for unexpected
spikes in maintenance activity profiles and investigating the
reasons (root cause) behind them would assist managers and
other stakeholders to plan ahead and identify areas that require
additional resource allocation. For example, lower corrective
profiles could imply that developers are neglecting bug fixing.
Higher corrective profiles could imply an excessive bug count.
Finding the root cause in cases of significant deviations from
predicted values may reveal essential issues whose removal
can improve projects’ health. Similarly, exceptionally well per-
forming projects can also be a good subject for investigation
in order to identify positive patterns.
Improving development team’s composition. Building a
successful software team is hardly a trivial task as it involves
a delicate balance between technological and human aspects
[25,26]. We believe that developers’ maintenance activity
profiles could assist in composing a more balanced team.
We conjecture that composing a team that heavily favors a
particular maintenance activity over the others could lead to
an unbalanced development process and adversely affect the
team’s ability to meet typical requirements such as developing
a sustainable number of product features, adhering to quality
standards, and minimizing technical debt so as to facilitate
future changes.

VIII. THREATS TO VALIDITY

Threats to Statistical Conclusion Validity is the degree to
which conclusions about the relationship among variables
based on the data are reasonable. Our results are based on

nearly 30,000 observations, and the predictors are statistically
significant with p-value < 0.01.
Threats to Construct Validity consider the relationship be-
tween theory and observation, in case the measured variables
do not measure the actual factors.
• Volatile Classification. While the method we used is

commonly practiced ([2,19,20]), our experiments show
it may be sensitive to the choice of keywords used as
indicative for the various maintenance activity types.

• Semantic Change Extraction. ChangeDistiller ([15,17])
was used to extract semantic changes from the VCS.
Unfortunately, like any other software, it may not be
immune to bugs and malfunctions.

• Developer-level Metrics Computation. To compute
developer-level metrics we used a novel VCS mining
platform we had built to support this study. While
we invested great effort into testing it to ensure its
proper functionality, it may not be immune to bugs and
malfunctions.

Threats to External Validity consider the generalization of our
findings.
• Programming Language Bias. All analyzed commits

were in the Java programming language. It is possible
that developers who use other programming languages,
have different maintenance activity patterns which have
not been explored in the scope of this work.

• Open Source Bias. The repositories studied in this paper
were all popular open source projects from GitHub ([27]).
It may be the case that developers’ maintenance activity
profiles are different in an open source environment when
compared to other environments.

• Popularity Bias. We intentionally selected the most pop-
ular, data rich repositories. This could limit our results
to developers and repositories of high popularity, and
potentially skew the perspective on characteristics found
only in less popular repositories and their developers.

IX. CONCLUSIONS AND FUTURE WORK

We have demonstrated that the developer-level metrics we
have defined are statistically significant, and can be success-
fully used to model and predict the corrective, perfective
and adaptive maintenance activity profiles with promising
R2 values of 0.83, 0.64 and 0.75 respectively. Our work is
based on studying Big Code ([5]), and involved processing
nearly 1000 highly popular open source GitHub repositories,
comprising a corpus of 147 million LOC, maintained by
30,000 developers, spread over 2.5 million revisions and 30
million individual code change instances.

We believe that considering a project’s characteristics as an
aggregation of the characteristics of all the developers’ that
have taken part in its development, and modeling the former
using the latter, is a useful technique. It might, for example,
assist in predicting further project characteristics such as
fault potential, which has traditionally relied on project-level
metrics [10,28–32] or only limited developer-level metrics

[33–36] (e.g., numeric representations of experience, number
of developers that changed a particular file or method).

In light of the promising results, we are in the process of
conducting further studies that involve developer-level metrics.
For example, we are working on comparing project-level and
developer-level maintenance activity profiles. Preliminary re-
sults indicate that the variance in developer-level maintenance
activity profiles is much greater than it is in the project-level
ones.

We believe that the combination of Big Code and fined
grained developer-level metrics, can open the door to a new
range of applications and empirical studies. A particularly
compelling direction is fusing more data sources such as
bug tracking systems, social Q&A sites (e.g., StackOverflow
[37]) and others, to study how these types of data relate to
developers’ characteristics such as commit patterns, temporal
activity, fault potential, etc. Augmented with developer surveys
to validate the relations, we hope these studies could shed
new light on our understanding of software development and
evolution.

ACKNOWLEDGEMENTS

We thank Ms Ilana Gelernter and the Tel Aviv University’s
statistical counseling service for the help with the statistical
analysis, and Dr. Boris Levin for comments that greatly
improved the manuscript. This research was supported by THE
ISRAEL SCIENCE FOUNDATION, grant No. 476/11.

REFERENCES

[1] E. B. Swanson, “The dimensions of maintenance,” in Proceedings of the
2nd international conference on Software engineering. IEEE Computer
Society Press, 1976, pp. 492–497.

[2] A. Mockus and L. G. Votta, “Identifying reasons for software changes
using historic databases,” in Software Maintenance, 2000. Proceedings.
International Conference on. IEEE, 2000, pp. 120–130.

[3] W. Meyers, “Interview with wilma osborne,” IEEE Software, vol. 5,
no. 3, pp. 104–105, 1988.

[4] B. P. Lientz, E. B. Swanson, and G. E. Tompkins, “Characteristics
of application software maintenance,” Communications of the ACM,
vol. 21, no. 6, pp. 466–471, 1978.

[5] “Muse envisions mining big code to improve software reliability and
construction,” http://www.darpa.mil/news-events/2014-03-06a, [Online;
accessed 18-April-2016].

[6] F. X. Diebold, “On the origin (s) and development of the term Big Data,”
PIER Working Paper, 2012.

[7] V. Raychev, M. Vechev, and A. Krause, “Predicting program properties
from big code,” in ACM SIGPLAN Notices, vol. 50, no. 1. ACM, 2015,
pp. 111–124.

[8] S. R. Schach, B. Jin, L. Yu, G. Z. Heller, and J. Offutt, “Determining
the distribution of maintenance categories: Survey versus measurement,”
Empirical Software Engineering, vol. 8, no. 4, pp. 351–365, 2003.

[9] R. E. Johnson and B. Foote, “Designing reusable classes,” Journal of
object-oriented programming, vol. 1, no. 2, pp. 22–35, 1988.

[10] A. E. Hassan, “Predicting faults using the complexity of code changes,”
in Proceedings of the 31st International Conference on Software Engi-
neering. IEEE Computer Society, 2009, pp. 78–88.

[11] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl, “Mining
version histories to guide software changes,” Software Engineering,
IEEE Transactions on, vol. 31, no. 6, pp. 429–445, 2005.

[12] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets.” HotCloud, vol. 10, pp.
10–10, 2010.

[13] V. R. Basili, “Software modeling and measurement: the goal/question/-
metric paradigm,” 1992.

[14] B. Fluri and H. C. Gall, “Classifying change types for qualifying change
couplings,” in Program Comprehension, 2006. ICPC 2006. 14th IEEE
International Conference on. IEEE, 2006, pp. 35–45.

[15] H. C. Gall, B. Fluri, and M. Pinzger, “Change analysis with evolizer
and changedistiller,” IEEE Software, vol. 26, no. 1, p. 26, 2009.

[16] “About the search api,” https://developer.github.com/v3/search/, [Online;
accessed 11-April-2016].

[17] B. Fluri, E. Giger, and H. C. Gall, “Discovering patterns of change
types,” in Automated Software Engineering, 2008. ASE 2008. 23rd
IEEE/ACM International Conference on. IEEE, 2008, pp. 463–466.

[18] M. Martinez, L. Duchien, and M. Monperrus, “Automatically extracting
instances of code change patterns with ast analysis,” arXiv preprint
arXiv:1309.3730, 2013.

[19] M. Fischer, M. Pinzger, and H. Gall, “Populating a release history
database from version control and bug tracking systems,” in Software
Maintenance, 2003. ICSM 2003. Proceedings. International Conference
on. IEEE, 2003, pp. 23–32.

[20] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes induce
fixes?” in ACM sigsoft software engineering notes, vol. 30, no. 4. ACM,
2005, pp. 1–5.

[21] P. McCullagh and J. A. Nelder, Generalized linear models. CRC press,
1989, vol. 37.

[22] R Development Core Team, R: A Language and Environment
for Statistical Computing, R Foundation for Statistical Computing,
Vienna, Austria, 2008, ISBN 3-900051-07-0. [Online]. Available:
http://www.R-project.org

[23] E. Shihab, “An exploration of challenges limiting pragmatic software
defect prediction,” Ph.D. dissertation, Citeseer, 2012.

[24] A. E. Camargo Cruz and K. Ochimizu, “Towards logistic regression
models for predicting fault-prone code across software projects,” in
Proceedings of the 2009 3rd International Symposium on Empirical
Software Engineering and Measurement. IEEE Computer Society, 2009,
pp. 460–463.

[25] N. Gorla and Y. W. Lam, “Who should work with whom?: building
effective software project teams,” Communications of the ACM, vol. 47,
no. 6, pp. 79–82, 2004.

[26] P. J. Guinan, J. G. Cooprider, and S. Faraj, “Enabling software devel-
opment team performance during requirements definition: A behavioral
versus technical approach,” Information Systems Research, vol. 9, no. 2,
pp. 101–125, 1998.

[27] “Github - the largest open source community in the world,” https://
github.com/open-source, [Online; accessed 18-April-2016].

[28] T. J. McCabe, “A complexity measure,” Software Engineering, IEEE
Transactions on, no. 4, pp. 308–320, 1976.

[29] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code
attributes to learn defect predictors,” Software Engineering, IEEE Trans-
actions on, vol. 33, no. 1, pp. 2–13, 2007.

[30] R. M. Bell, T. J. Ostrand, and E. J. Weyuker, “Does measuring code
change improve fault prediction?” in Proceedings of the 7th Interna-
tional Conference on Predictive Models in Software Engineering. ACM,
2011, p. 2.

[31] N. Nagappan and T. Ball, “Use of relative code churn measures to
predict system defect density,” in Software Engineering, 2005. ICSE
2005. Proceedings. 27th International Conference on. IEEE, 2005, pp.
284–292.

[32] T. J. Ostrand and E. J. Weyuker, “Predicting bugs in large industrial
software systems.” in ISSSE. Springer, 2011, pp. 71–93.

[33] R. M. Bell, T. J. Ostrand, and E. J. Weyuker, “The limited impact
of individual developer data on software defect prediction,” Empirical
Software Engineering, vol. 18, no. 3, pp. 478–505, 2013.

[34] S. Matsumoto, Y. Kamei, A. Monden, K.-i. Matsumoto, and M. Naka-
mura, “An analysis of developer metrics for fault prediction,” in Pro-
ceedings of the 6th International Conference on Predictive Models in
Software Engineering. ACM, 2010, p. 18.

[35] E. Shihab, A. E. Hassan, B. Adams, and Z. M. Jiang, “An industrial
study on the risk of software changes,” in Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of Software
Engineering. ACM, 2012, p. 62.

[36] T. Jiang, L. Tan, and S. Kim, “Personalized defect prediction,” in Auto-
mated Software Engineering (ASE), 2013 IEEE/ACM 28th International
Conference on. IEEE, 2013, pp. 279–289.

[37] “Stackoverflow - a language-independent collaboratively edited question
and answer site for programmers,” http://stackoverflow.com/, [Online;
accessed 11-April-2016].

http://www.darpa.mil/news-events/2014-03-06a
https://developer.github.com/v3/search/
http://www.R-project.org
https://github.com/open-source
https://github.com/open-source
http://stackoverflow.com/

	I Introduction
	II Related Work
	III Research Question
	IV Background
	V Metrics Computation
	VI Results
	VII Discussion & Applications
	VIII Threats to validity
	IX Conclusions and Future Work
	References

