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Abstract—Software popularity is a valuable information to
modern open source developers, who constantly want to know
if their systems are attracting new users, if new releases are
gaining acceptance, or if they are meeting user’s expectations.
In this paper, we describe a study on the popularity of software
systems hosted at GitHub, which is the world’s largest collection
of open source software. GitHub provides an explicit way for
users to manifest their satisfaction with a hosted repository:
the stargazers button. In our study, we reveal the main factors
that impact the number of stars of GitHub projects, including
programming language and application domain. We also study
the impact of new features on project popularity. Finally, we
identify four main patterns of popularity growth, which are
derived after clustering the time series representing the number
of stars of 2,279 popular GitHub repositories. We hope our results
provide valuable insights to developers and maintainers, which
could help them on building and evolving systems in a competitive
software market.

Index Terms—GitHub; Software Popularity; Open Source
software; Social coding.

I. INTRODUCTION

GitHub is the world’s largest collection of open source
software, with around 9 million users and 17 million public
repositories.1 In addition to a git-based version control
system, GitHub integrates many features for social coding. For
example, developers can fork their own copy of a repository,
work and improve the code locally, and then submit a pull
request to integrate their changes in the main repository. The
key characteristics and challenges of this pull-based devel-
opment model is recently explored in many studies [1]–[4].
However, GitHub also supports other typical features from
social networks. For example, users can star a repository to
manifest their interest or satisfaction with the hosted project.
Consequently, the number of stars of a GitHub repository
can be seen as a proxy of its popularity. Currently, the
two most popular repositories on GitHub are FREECODE-
CAMP/FREECODECAMP (a coding education software, which
claims to have more than 300K users2) and TWBS/BOOTSTRAP
(a library of HTML and CSS templates, which is used by
almost 7M web sites3).

A deep understanding of the factors that impact the num-
ber of stars of GitHub repositories is important to software

1https://github.com/search/advanced, verified on 04/04/2016
2https://www.freecodecamp.com/about, verified on 04/04/2016
3http://trends.builtwith.com/docinfo/Twitter-Bootstrap, verified 04/04/2016

developers because they want to know whether their systems
are attracting new users, whether the new releases are gaining
acceptance, whether their systems are as popular as competitor
systems, etc. Unfortunately, we have few studies about the
popularity of GitHub systems. The exceptions are probably
an attempt to differentiate popular and unpopular Python
repositories using machine learning techniques [5] and a
study on the effect of project’s popularity on documentation
quality [6]. By contrast, popularity is extensively studied on
other social platforms, like YouTube [7], [8] and Twitter [9],
[10]. These studies are mainly conducted to guide content
generators on producing successful social media content. Sim-
ilarly, knowledge on software popularity might also provide
valuable insights on how to build and evolve systems in a
competitive market.

This paper presents an in-depth investigation on the
popularity of GitHub repositories. We first collected historical
data about the number of stars of 2,500 popular repositories.
We use this dataset to answer four research questions:

RQ #1: How popularity varies per programming language,
application domain, and repository owner? The goal is to
provide an initial view about the popularity of the studied
systems, by comparing the number of stars according to
programming language, application domain, and repository
owner (user or organization).

RQ #2: Does popularity correlate with other characteristics
of a repository, like age, number of commits, number of
contributors, and number of forks? This investigation is
important to check whether there are factors that can be
worked to increase a project’s popularity.

RQ #3: How early do repositories get popular? With
this research question, we intend to check whether gains of
popularity are concentrated in specific phases of a repository’s
lifetime, specifically in early releases.

RQ #4: What is the impact of new features on popularity?
This investigation can show if relevant gains in popularity
happen due to new features (implemented in new releases).

In the second part of the paper, we identify four patterns of
popularity growth in GitHub, which are derived after clustering
the time series that describe the growth of the number of
stars of the systems in our dataset. These patterns can help
developers to understand how their systems have grown in the
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past and to predict future growth trends. Finally, in the third
part of the paper, we present a qualitative study with GitHub
developers to clarify some findings and themes of our study.
A total of 44 developers participated to the study.

The main contribution of this paper is an investigation of
factors that may impact the popularity of GitHub repositories,
including the identification of the major patterns that can be
used to describe popularity trends. Although similar studies
exist for social networks, to our knowledge we are the first
to focus on the popularity of systems hosted in an ultra-large
repository of open source code.

Organization: The rest of this paper is organized as follows.
Section II describes and characterizes the dataset used in this
study. Section III uses this dataset to provide answers to four
questions about the popularity of GitHub repositories. Sec-
tion IV documents four patterns that describe the popularity
growth of GitHub systems. Section V reports the feedback
of GitHub developers about three specific themes of our
study. Section VI discusses threats to validity and Section VII
presents related work. Finally, Section VIII concludes the
paper and lists future work.

II. DATASET

The dataset used in this paper includes the top-2,500 public
repositories with more stars in GitHub. We limit the study
to 2,500 repositories for two major reasons. First, to focus
on the characteristics of the highly popular GitHub systems.
Second, because we investigate the impact of application
domain on popularity, which demands a manual classification
of the domain of each system.

All data was obtained using the GitHub API, which pro-
vides services to search public repositories and to retrieve
specific data about them (e.g., stars, commits, contributors,
and forks). The data was collected on March 28th, 2016.
Besides retrieving the number of stars on this date for each
system, we also relied on GitHub API to collect historical
data about the number of stars. For this purpose, we used a
service from the API that returns all star events of a given
repository. For each star, these events store the date and
the user who starred the repository. However, GitHub API
returns at most 100 events by request (i.e., a page) and at
most 400 pages. For this reason, it is not possible to retrieve
all stars events of systems with more than 40K stars, as is
the case of FREECODECAMP, BOOTSTRAP, ANGULARJS,
D3, and FONT-AWESOME. Therefore, these five systems are
not considered when answering the third and fourth research
questions (that depend on historical data) and also on the study
about common growth patterns (Section IV).

Table I shows descriptive statistics on the number of stars
of the repositories in our dataset. The number of stars ranges
from 2,150 (for CYBERAGENT/ANDROID-GPUIMAGE) to
97,948 stars (for FREECODECAMP/FREECODECAMP). The
median number of stars is 3,441.

Age, Commits, Contributors, and Forks: Figure 1 shows the
distribution of the age (in number of weeks), number of

TABLE I: Descriptive statistics on the number of stars of the
repositories in our dataset of 2,500 popular GitHub systems

Min 1st Quartile 2nd Quartile 3rd Quartile Max

2,150 2,682 3,441 5,331 97,948

commits, number of contributors, and number of forks for the
2,500 systems in the dataset. For age, the first, second, and
third quartiles are 101, 169, and 250 weeks, respectively. For
number of commits, the first, second, and third quartiles are
228, 608, and 1,721, respectively. For number of contributors,
the first, second, and third quartiles are 17, 41, and 96,
respectively;4 and for number of forks, the first, second,
and third quartiles are 298, 533, and 1,045, respectively.
Therefore, the systems in our dataset are mature and have
many commits and contributors.
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Fig. 1: Age, number of commits, number of contributors, and
number of Forks (outliers are omitted)

Programming Language: As returned by GitHub API,
the language of a repository is the one with the highest
percentage of source code, considering the files in the
repository. Figure 2 shows the distribution of the systems
per programming language. JavaScript is the most popular
language (855 repositories, 34.2%), followed by Python (203
repositories, 8.1%), Java (202 repositories, 8.0%), Objective-C
(188 repositories, 7.5%), and Ruby (178 repositories, 7.1%).
Despite a concentration of systems in these languages, the

4We report data from contributors as retrieved by GitHub API. This data
may be different from the one presented on the project’s page at GitHub,
which only counts contributors with GitHub account.



dataset includes systems in 53 languages, including Groovy,
R, Julia, and XSLT (all with just one repository).
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Fig. 2: Top-10 languages by number of repositories

Owner: We also provide results grouped by repository
owner. In GitHub, a repository can be owned by a
user (e.g., TORVALDS/LINUX) or by an organization
(e.g., FACEBOOK/REACT). In our dataset, 1,263 repositories
(50.5%) are owed by organizations and 1,237 repositories
(49.5%) by users.

Application Domain: In the study reported in this paper, results
are also grouped by application domain. However, different
from other source code repositories, like SourceForge, GitHub
does not include information about the application domain of
a project. For this reason, we manually classified the domain
of each system in our dataset. Initially, the first and third
authors of this paper inspected the description of the top-
200 repositories to provide a first list of application domains.
After this initial classification, the first author inspected the
short description (and in many cases the GitHub page and the
project’s page) of the remaining 2,300 repositories. During
this process, he also marked the repositories with dubious
classification decisions. These particular cases were discussed
by the first and second authors, to reach a consensus decision.
The spreadsheet with the proposed classification is publicly
available at https://goo.gl/73Sbvz.

The systems are classified in the following six domains:

• Application software: systems that provide functionalities
to end-users, like browsers and text editors (e.g., WORD-
PRESS/WORDPRESS and ADOBE/BRACKETS).

• System software: systems that provide services and in-
frastructure to other systems, like operating systems, mid-
dleware, servers, and databases (e.g., TORVALDS/LINUX
and MONGODB/MONGO).

• Web libraries and frameworks (e.g., TWBS/BOOTSTRAP
and ANGULAR/ANGULAR.JS).

• Non-web libraries and frameworks (e.g., GOOGLE/GUAVA
and FACEBOOK/FRESCO).

• Software tools: systems that support software develop-
ment tasks, like IDEs, package managers, and compilers
(e.g., HOMEBREW/HOMEBREW and GIT/GIT).

• Documentation: repositories with documentation, tutori-
als, source code examples, etc. (e.g., ILUWATAR/JAVA-
DESIGN-PATTERNS).

Figure 3 shows the number of systems in each domain.
The top-3 domains are web libraries and frameworks (837
repositories, 33%), non-web libraries and frameworks (641
repositories, 25%), and software tools (470 repositories, 18%).
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Fig. 3: Number of repositories by domain

III. RESULTS

In this section, we use the described dataset to answer the
four research questions listed in the paper’s introduction.

RQ #1: How popularity varies per programming language,
application domain, and repository owner?

Figure 4 shows the distribution of the number of stars for the
top-10 languages with more repositories. The top-3 languages
whose repositories have the highest median number of stars
are: JavaScript (3,697 stars), Go (3,549 stars), and HTML
(3,513 stars). The three languages whose repositories have
the lowest median number of stars are PHP (3,245 stars),
Java (3,224 stars), and Python (3,099 stars). By applying the
Kruskal-Wallis test to compare multiple samples, we find that
the distribution of the number of stars per language is different
(p-value = 0.001). Thus, we can consider that programming
language may impact on system popularity.
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Fig. 4: Stars by programming language (considering only the
top-10 languages with more repositories)



Figure 5 shows the distribution of the number of stars for the
repositories in each application domain. The median number
of stars varies as follow: systems software (3,807 stars), web
libraries and frameworks (3,596 stars), documentation (3,547
stars), software tools (3,538 stars), applications (3,443 stars),
and now-web libraries and frameworks (3,204 stars). By
applying the Kruskal-Wallis test, we find that the distribution
of the number of stars by domain is different (p-value <
0.001). Therefore, application domain is also an important
factor that may impact on system popularity.
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Fig. 5: Popularity by application domain

Finally, Figure 6 shows how popularity varies depending
on the repository owner (i.e., user or organization). The
median number of stars is 3,622 stars for repositories
owned by organizations and 3,298 stars for repositories
owned by users. By applying the Mann-Whitney test, we
detect that indeed these distributions are different (p-value
< 0.001). We hypothesize that repositories owned by
organizations—specially major software companies and free
software foundations—have more funding and resources,
which somehow explains their higher popularity.
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Fig. 6: Popularity by repository owner

Summary: The top-5 languages with more stars are JavaScript,
Python, Java, Objective-C, and Ruby (Figure 2). However, the
top-5 languages whose systems have the highest median num-
ber of stars are JavaScript, Go, HTML, CSS, and C (Figure 4).

The top-3 application domains whose repositories have more
stars are systems software, web libraries and frameworks, and
documentation. Repositories owned by organizations are more
popular than the ones owned by individuals.

RQ #2: Does popularity correlate with repository’s age,
number of commits, number of contributors, and number of
forks?

Figure 7 shows scatterplots correlating the number of stars
with the age (in number of weeks), number of commits,
number of contributors, and number of forks of a repository.
First, the plots suggest that stars are not correlated with the
repository’s age (Figure 7a). We have old repositories with
few stars and new repositories with many stars. For example,
APPLE/SWIFT has only five months and 28,105 stars, while
MOJOMBO/CHRONIC has more than 8 years and 2,440 stars.
Essentially, this result shows that repositories gain stars at
different speeds. We ran Spearman’s rank correlation test and
the resulting correlation coefficient is close to zero (rho =
0.0757 and p-value < 0.001).

The scatterplot in Figure 7b suggests that stars are weakly
correlated with number of commits (rho = 0.249 with p-value
< 0.001). Similarly, as presented in Figure 7c stars are weakly
correlated with contributors (rho = 0.341 with p-value <
0.001). In this figure, a logarithm scale is used in both axes;
the line represents the identity relation: below the line are
the systems with more contributors than stars. Interestingly,
two systems indeed have more contributors than stars:
RASPBERRYPI/LINUX (17,766 contributors and 2,739 stars)
and LINUXBREW/LINUXBREW (7,304 contributors and 2,241
stars). This happens because they are forks of highly successful
repositories (TORVALDS/LINUX and HOMEBREW/BREW,
respectively). The top-3 systems with more stars per
contributor are SHADOWSOCKS/SHADOWSOCKS (12,287
stars/contributor), OCTOCAT/SPOON-KNIFE (9,944
stars/contributor), and WG/WRK (7,923 stars/contributor).
All these systems have just one contributor. The
three systems with less stars per contributor are
ANDROID/PLATFORM FRAMEWORKS BASE (2.28
stars/contributor), FFMPEG/FFMPEG (2.39 stars/contributor),
and DEFINITELYTYPED/DEFINITELYTYPED (2.68 stars/
contributor).

Finally, Figure 7d shows plots correlating a system
popularity and its number of forks. As visually suggested
by the figure, there is a strong positive correlation between
stars and forks (rho = 0.549 and p-value < 0.001). For
example, TWBS/BOOTSTRAP is the second repository with the
highest number of stars and the second one with more forks.
ANGULAR/ANGULAR.JS is the third repository in number of
stars and the third one with more forks. In Figure 7d, we can
also see that only nine systems (0.36%) have more forks than
stars. As examples, we have a repository that just provides
a tutorial for forking a repository (OCTOCAT/SPOONKNIFE)
and a popular puzzle game (GABRIELECIRULLI/2048), whose
success motivated many forks with variations of the original
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Fig. 7: Correlation analysis. In subfigures (c) and (d), the line is the identity relation

implementation. Since the game can be downloaded directly
from the web, we hypothesize that it receives most users’
feedback in the web and not on GitHub.

Summary: There is no correlation between numbers of stars
and the repository’s age; however, there is a weak correlation
with commits and contributors. Moreover, a strong correlation
with forks was found.

RQ #3: How early do repositories get popular?

Figure 8 shows the cumulative distribution of the fraction
of time a repository takes to receive at least 10%, at least
50%, and at least 90% of its stars. Specifically, the y-axis
shows the fraction of repositories that achieved 10%, 50%,
and 90% of their stars in a period of time that does not
exceed the fraction of time shown in the x-axis. Around 40%
of the repositories receive 10% of their stars very early, in the
first days after the initial release (label A, in Figure 8). We
hypothesize that many of these initial stars come from early
adopters, who start commenting and using novel open source
software immediately after they are out. After this initial
burst of popularity, the growth of half of the repositories tend
to stabilize. For example, half of the repositories take 51% of
their age to receive 50% of their stars (label B); and half of
the repositories take 91% of their age to receive 90% of their
total number of stars (label C).

Summary: Repositories have a tendency to receive more stars
right after their first public release. After this period, for half
of the repositories the growth rate tends to stabilize.

RQ #4: What is the impact of new features on popularity?

In this research question, we investigate the impact of
new features on the popularity of GitHub repositories. The
goal is to check whether the implementation of new features
(resulting in new releases of the projects) contribute to a
boost in popularity. Specifically, we selected 834 repositories
from our dataset (33.3%) that follow a semantic versioning
convention to number releases.5 In such systems, versions

5http://semver.org
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Fig. 8: Cumulative distribution of the fraction of time a
repository takes to receive 10%, 50%, and 90% of its stars

are identified by three integers, in the format x.y.z, with the
following semantics: increments in x denote major releases,
which can be incompatible with old versions; increments
in y denote minor releases, which add functionality in a
backwards-compatible manner; and increments in z denote
patches implementing bug fixes. In our sample, we identified
580 major releases and 4,343 minor releases.

First, we counted the fraction of stars received by each
repository in the week following all releases (major or minor)
and just after major releases. As mentioned, the goal is to
check the impact of new releases in the number of stars.
Figure 9 shows the distribution of these fractions. When
considering all releases, the fraction of stars gained in the first
week after the releases is 1.1% (first quartile), 3.2% (second
quartile), and 10.2% (third quartile). For the major releases
only, it is 0.5% (first quartile), 1.4% (second quartile), and
4.3% (third quartile). SO-FANCY/DIFF-SO-FANCY (a visual-
ization for git diffs) is the repository with the highest fraction
of stars received after releases. The repository has 53 days and
4,402 stars. Since it has a fast releasing rate (one new release
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Fig. 9: Fraction of stars gained in the first week after all
releases and just after the major releases

per week, on average), it gained almost of its stars (89.1%) in
the weeks after releases.

We computed a second ratio for each repository: fraction of
stars in the week following all releases or just major releases
(FS) / fraction of time represented by these weeks (FT). When
FS/FT > 1, the repository gains proportionally more stars
after the releases. Figure 10 shows boxplots with the results
of FS/FT for all repositories. When considering all releases,
we have that FS/FT is 0.80 (first quartile), 1.25 (second
quartile), and 1.98 (third quartile). For major releases only,
we have that FS/FT is 0.81 (first quartile), 1.53 (second
quartile), and 2.98 (third quartile).
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Figure 11 shows the median values of FS/FT computed
using stars gained after n weeks (1 ≤ n ≤ 4). This ratio
decreases, both for major and for all releases. Therefore,
although there is some gains of stars after releases, they tend
to decrease after few weeks.

Summary: There is an acceleration in the number of stars
gained just after releases. For example, half of the repositories
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gain at least 53% more stars in the week following major
releases, than in the other weeks (see Figure 10). However,
because repositories usually have much more weeks without
releases than with releases, this phenomenon is not sufficient
to generate a major concentration of popularity gain after
releases. For example, 75% of the systems gain at most 4.3% of
their stars in the week following major releases (see Figure 9).

IV. POPULARITY GROWTH PATTERNS

In this section, we investigate common patterns of pop-
ularity growth concerning the GitHub repositories in our
dataset. To this purpose, we use the KSC algorithm [11].
This algorithm clusters time series with similar shapes using a
metric that is invariant to scaling and shifting. The algorithm
is used in other studies to cluster time series representing the
popularity of YouTube videos [12] and Twitter [9]. Like K-
means [13], KSC requires as input the number of clusters k.

Because the time series provided as input to KSC must
have the same length, we only consider data regarding the last
52 weeks (one year). Due to this restriction, we exclude 216
repositories (8.6%) that have less than 52 weeks. We use the
βCV heuristic [14] to define the best number k of clusters.
βCV is defined as the ratio of the coefficient of variation of
the intracluster distances and the coefficient of variation of
the intercluster distances. The smallest value of k after which
the βCV ratio remains roughly stable should be selected. This
means that new added clusters affect only marginally the intra
and intercluster variations [8]. In our dataset, the values of
βCV stabilize for k = 4 (see Figure 13).

A. Proposed Growth Patterns

Figure 12 shows plots with the time series in each cluster.
The time series representing the clusters’ centroids are pre-
sented in Figure 14. The time series in clusters C1, C2, and
C3 suggest a linear growth, but at different speeds. On the
other hand, the series in cluster C4 suggest repositories with
a sudden growth on the number of stars. We refer to these
clusters as including systems with Slow, Moderate, Fast, and
Viral Growth, respectively.
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Fig. 12: Clusters of time series representing the growth of the number of starts of 2,279 GitHub repositories

TABLE II: Popularity Growth Patterns

Pattern Cluster # Repositories % Growth Top-3 Repositories

Slow C1 1,497 (65.7%) 27.3 JQUERY/JQUERY, H5BP/HTML5-BOILERPLATE, and METEOR/METEOR
Moderate C2 614 (26.9%) 94.0 FACEBOOK/REACT, ROBBYRUSSELL/OH-MY-ZSH, and AIRBNB/JAVASCRIPT
Fast C3 131 (5.7%) 469.2 ATOM/ELECTRON, GOOGLE/MATERIAL-DESIGN-LITE, and VUEJS/VUE
Viral C4 37 (1.6%) 2,673.8 NYLAS/N1, LETSENCRYPT/LETSENCRYPT, and JWAGNER/SMARTCROP.JS
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Fig. 14: Time series representing the centroids of each cluster

Slow growth is the dominant pattern, including 65.7% of
the repositories in our sample, as presented in Table II. The
table also shows the number of repositories in each cluster
and the percentage of stars gained by the cluster’s centroids
in the period under analysis (52 weeks). The speed in which
the stars are gained by repositories on cluster C1 is the
lowest one (27.3% of new stars in one year). Moderate growth
is the second pattern with more repositories (26.9% of the
repositories and 94% of new stars in one year). 5.7% of the
repositories have a fast growth (469.2% of new stars in the
analyzed year).

The last cluster (Viral Growth) describes repositories with

a massive growth in their number of stars in a short period of
time. It is a less common pattern, including 1.6% of the repos-
itories. Figure 15 shows two examples of systems with a viral
growth: NYLAS/N1 (an email client, with a peak of more than
7,300 stars in a single week) and SOUNDNODE/SOUNDNODE-
APP (a desktop client for SoundCloud, which received almost
1,400 stars in a single week).
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Fig. 15: Examples of viral growth

B. Growth Patterns vs Repositories Properties

Figure 16 shows the percentage of systems following the
proposed growth patterns, for the top-10 programming lan-
guages in number of repositories, application domains, repos-
itory owners, and age. The three languages with the highest
percentage of systems with slow growth are Ruby (92%), CSS
(82%), and HTML (79%). By contrast, the languages with the
highest percentage of systems with fast growth are Go (7.6%)
and Java (7.6%). Go is a new language that is attracting a
lot of interest.6 Regarding Java, 61 out of 95 repositories

6https://www.thoughtworks.com/radar/languages-and-frameworks/go-
language, verified on 04/07/2016.
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Fig. 16: Percentage of systems following the proposed growth patterns, for the most popular programming languages, application
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with fast growth are Android applications. JavaScript is the
language with the highest number of repositories with viral
growth (10 repositories), followed by C++ (5 repositories)
and Python (5 repositories). In relative terms, 2.7% of the
Python systems have a viral growth, followed by 1.6% of the
systems implemented in Ruby. When we group the systems by
application domain, 75% of the web libraries and frameworks
have a slow growth. Interestingly, the two domains with the
highest percentage of systems following a fast growth are
documentation (9.8%) and non-web libraries and frameworks
(6.9%). Regarding the repository owners, there is no sub-
stantial difference between users and organizations. For slow
growth, the percentage of systems is 66.4% and 64.9%, for
users and organizations, respectively. For fast growth, the
percentage is 5.8% and 5.6%, respectively. Finally, the last
bars in Figure 16 show that old repositories tend to present a
slow growth. The percentage of such repositories ranges from
30.8% (age < 2 years) to 87.2% (age ≥ 4 years).

As mentioned, we found a high percentage of web frame-
works and libraries—especially the ones implemented in
Ruby, CSS, and HTML—with a slow growth. We hypoth-
esize two main reasons to explain this result. First, web
libraries and frameworks are the dominant applications in
our dataset of popular applications (837 repositories, 33%).
This implies in a high competition, with many systems dis-
puting the same users. For example, we found a list of
JavaScript MVC-based frameworks with slow growth, in-

cluding systems like KNOCKOUT/KNOCKOUT, SPINE/SPINE,
QUIRKEY/SAMMY, and SPROUTCORE/SPROUTCORE. These
systems have to compete with “blockbusters”, like ANGU-
LAR/ANGULAR.JS, which is certainly a challenging task. The
second reason is that there are many highly popular web
frameworks and libraries in our dataset. For example, among
the top-10% repositories in number of stars, 42.8% are web
libraries and frameworks. We cannot assume that these systems
will present the same growth rates of less popular ones. For
instance, if ANGULAR/ANGULAR.JS starts to grow at 469.2%
per year (the growth rate observed for the centroid of the
repositories with fast growth) it will have almost 1.5M stars
in two years.

V. FEEDBACK FROM DEVELOPERS

We contacted the main developers of some GitHub reposi-
tories to clarify the results presented in the previous sections.
Specifically, we surveyed developers about three themes: (a)
the impact on popularity of repositories owned by users (Sec-
tion V-A); (b) the main characteristics of successful releases
(Section V-B); (c) the reasons for the peaks of popularity
observed in systems with viral growth (Section V-C). The
surveys were performed by means of follow-up emails.

A. Impact on Popularity of Repositories Owned by Users

In Section III (RQ #1), we found that repositories owned
by organizations are more popular than the ones owned by
individuals. For example, among the top-100 most popular



repositories, only 30 repositories are owned by users. The
developers of 17 of such systems have a public mail address
in their GitHub profile. We sent a short survey to these
developers and received responses from five of them (29.8%).
In this survey, we asked two questions. First, we asked the
developers about possible plans to migrate their repositories to
an organization account. All developers answered negatively
this question. Two developers mentioned they want to
explicitly appear as the repository owner, like in this answer:

“I worked hard to create the project, and having it under my
personal username is necessary to have proper credit for it.”

To complement the first question, we asked the developers
if they agree that migrating the repositories to an organization
account would help to attract more users. Four developers
(80%) answered negatively to this question and only one
participant provided the following answer:

“It depends on what organization it is. If it’s a well known org
I’m sure it helps, otherwise I don’t think it makes a difference.”

Therefore, although it seems “easier” to organizations to
reach the top positions of GitHub popularity ranking, some
systems owned by individual developers also reach these
positions. These developers usually do not want to move to
organizational accounts, basically to keep full control and
credit for their repositories.

B. Characteristics of Successful Releases

To reveal the characteristics of the most successful releases
in our dataset (see RQ #4, Section III), we perform a survey
with the main developers of 60 releases with the highest
fraction of stars gained on the week after the release (and
whose developers have a public mail address on their GitHub
profile). We received answers from 25 developers, which
corresponds to a response ratio of 41.6%. First, we asked the
developers about the type of features implemented in these
releases. As presented in Table III, the releases usually include
both functional and non-functional requirements (14 answers),
followed by releases with mostly functional requirements (9
answers). We did not receive answers about releases including
non-functional requirements. Two developers provide other
types of answers (“complete rewrite” and “maintenance re-
lease”, respectively).

TABLE III: Features implemented in successful releases

Features Answers

Both functional and non-functional 14
Mostly functional 9
Other answers 2
Mostly non-functional 0

We also asked the developers to explain how the fea-
tures implemented in these releases were selected (answers
including multiple items are possible in this question). As
presented in Table IV, the features usually come from ideas
of the repository’ maintainers (23 answers) and from user’s
suggestions (11 answers).

TABLE IV: How the features are selected?

Features selected from Answers

Ideas of the repository maintainers 23
Users suggestions 11
Features of similar projects 6
Other answers 3

C. Reasons for Viral Growth

To expose the reasons for viral growth, we sent a message
to the main developer of 22 systems with viral growth and
who have a public mail address on their GitHub profile. In
the message, we asked the developers to explain the peaks
observed in the number of stars of their repositories. We
received answers from 14 developers, which corresponds
to a response ratio of 63%. As presented in Table V, 11
developers (78.5%) linked the peaks to posts in social media
sites, mostly Hacker News.7 For example, we received the
following answer:

“I posted about this project on HackerNews. It quickly
got a lot of attention and remained on the front page of
HackerNews (a very high traffic tech site) for over 24
hours. It subsequently made it onto the github.com/explore
as one of the top starred repositories for around a week.
Because the repo was highlighted in these two high-profile
locations for so much time, it received an incredible amount
of traffic, which translated to a considerable number of stars.”

TABLE V: Sources of popularity

Source Answers

Social media sites (e.g., HackerNews) 11
Blogs and news sites (e.g., infoq.com) 3
Other answers (e.g., private mailing list) 4

VI. THREATS TO VALIDITY

Number of stars as a proxy for popularity: In the paper,
we consider that stars are proxies for a project popularity,
as common in studies about the popularity of social media
content [7]–[10]. However, a developer can star a repository
for other reasons, for example, when she in fact finds
problems in the system and wants to create a bookmark for
later access and analysis.

Dataset. GitHub has millions of repositories. We build our
dataset by collecting the top-2,500 repositories with more
stars, which represents a small fraction in comparison to
the GitHub’s universe. However, our goal is exactly to
investigate the popularity of the most starred repositories.
Furthermore, most GitHub repositories are forks and have
very low activity [15], [16].

Application domains. Because GitHub does not classify
the hosted applications in domains, we performed this
classification manually. Therefore, it is subjected to errors and

7https://news.ycombinator.com/



inaccuracies. To mitigate this threat, the dubious classification
decisions were discussed by two paper’s authors.

Growth patterns. The selection of the number of clusters is a
key parameter in algorithms like KSC. To mitigate this threat,
we employed a heuristic that considers the intra/intercluster
distance variations [14]. Furthermore, the analysis of growth
patterns was based on the stars obtained on the last year. The
stars before this period are not considered, since the KSC
algorithm requires time series with the same length.

VII. RELATED WORK

Several studies examine the relationship between popularity
of mobile apps and their code properties [17]–[25]. Yuan et
al. investigate 28 factors along eight dimensions to understand
how high-rated Android applications are different from low-
rated ones [22]. Their result shows that external factors, like
number of promotional images, are the most influential factors.
Guerrouj and Baysal explore the relationships between mobile
apps’ success and API quality [26]. They found that changes
and bugs in API methods are not strong predictors of apps’
popularity. Ruiz et al. examine the relationship between the
number of ad libraries and app’s user ratings [20]. Their
results show that there is no relationship between the number
of ad libraries in an app and its rating. Linares-Vásquez et
al. investigate how the fault- and change-proneness of Android
API elements relate to applications’ lack of success [19]. They
state that making heavy use of fault- and change-prone APIs
can negatively impact the success of these apps.

Other studies examine source code repositories in order to
understand what makes a project popular. Weber and Luo
attempt to differentiate popular and unpopular Python projects
on GitHub using machine learning techniques [5]. They found
that in-code features are more important than author metadata
features. Zho et al. study the frequency of folders used
by 140 thousands GitHub projects and the results suggest
that the use of standard folders (e.g., doc, test, examples)
may have an impact on project popularity [27]. Bissyande
et al. analyze the popularity, interoperability, and impact of
various programming languages, using a dataset of 100K open
source software projects [28]. Aggarwal et al. study the effect
of social interactions on GitHub projects’ documentation [6].
They conclude that popular projects tend to attract more
documentation collaborators. By analyzing usage of Java APIs,
Mileva states that popularity trend is a method for displaying
the users preferences and for predicting their future [29].

Finally, other studies analyze the relationship between
popularity and software quality. Sajnani et. al. study the
relationship between component popularity and component
quality in Maven [30], finding that, in most cases, there is
no correlation. Capra et. al. evaluate the effect of firms’
participation on communities of open source projects and
conclude that firms’ involvement improves the popularity, but
leads to lower software quality [31].

To our knowledge, we are the first study to track popu-
larity over time on social code sharing sites, like GitHub.

However, there are similar studies in other contexts, like App
Stores [23], video sharing sites [32], and social platforms [10].
Chatzopoulou et al. [32] analyze popularity of Youtube videos
by looking at properties and patterns metrics. They report
that many of the popularity metrics are highly correlated. In
our study, we also report correlations between stars and other
popularity metrics (e.g., forks). Lehmann et al. [9] analyze
popularity peaks of hashtags in Twitter. They found four usage
patterns restricted to a two-week period centered on the peak
time whereas the popularity patterns presented in this study
are based on the last year data.

VIII. CONCLUSION

In this paper, we first studied the popularity of GitHub
repositories aiming to answer four research questions. We con-
cluded that three most common domains on GitHub are web
libraries and frameworks, non-web libraries and frameworks,
and software tools. However, the three domains whose reposi-
tories have more stars are systems software, web libraries and
frameworks, and documentation. Additionally, we found that
repositories owned by organizations are more popular than
the ones owned by individuals (RQ #1). We also reported
the existence of a strong correlation between stars and forks,
a weak correlation between stars and commits, and a weak
correlation between stars and contributors (RQ #2), confirming
the importance of a large base of contributors to the success
of open source software [33]. We concluded that repositories
have a tendency to receive more stars right after their first
public release. After this period, for half of the repositories
the growth rate tends to stabilize (RQ #3). In other words,
bursts of popularity do not explain the popularity growth of
most repositories. We showed that there is an acceleration in
the number of stars gained just after releases (RQ #4), which
confirms the importance of developers constantly evolving and
improving their systems.

We identified four patterns of popularity growth, which were
derived after clustering the time series that describe the number
of stars of the systems in our dataset. We found that slow
growth is the most common pattern (65.7%) and that very
few systems present a viral behavior (1.6%). Slow growth is
more common in case of overpopulated application domains
(as web libraries and frameworks) and for old repositories.

As future work, we plan to investigate repositories that are
not popular yet and compare them with the popular ones.
We also plan to correlate repository and language popularity
to provide relative measures of popularity. For example, if
we restrict the analysis to developers from a given language,
a Scala repository can be considered more popular than a
JavaScript one, although having less stars. Moreover, we plan
to investigate models for predicting software popularity, which
can be used for example to warn developers when signs of
stagnation are detected in their repositories.
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