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Abstract—The size of a software artifact influences the software
quality and impacts the development process. In industry, when
software size exceeds certain thresholds, memory errors accumu-
late and development tools might not be able to cope anymore,
resulting in a lengthy program start up times, failing builds,
or memory problems at unpredictable times. Thus, foreseeing
critical growth in software modules meets a high demand in
industrial practice. Predicting the time when the size grows
to the level where maintenance is needed prevents unexpected
efforts and helps to spot problematic artifacts before they become
critical.

Although the amount of prediction approaches in literature
is vast, it is unclear how well they fit with prerequisites and
expectations from practice. In this paper, we perform an in-
dustrial case study at an automotive manufacturer to explore
applicability and usability of prediction approaches in practice.
In a first step, we collect the most relevant prediction approaches
from literature, including both, approaches using statistics and
machine learning. Furthermore, we elicit expectations towards
predictions from practitioners using a survey and stakeholder
workshops. At the same time, we measure software size of
48 software artifacts by mining four years of revision history,
resulting in 4,547 data points. In the last step, we assess the
applicability of state-of-the-art prediction approaches using the
collected data by systematically analyzing how well they fulfill
the practitioners’ expectations.

Our main contribution is a comparison of commonly used
prediction approaches in a real world industrial setting while con-
sidering stakeholder expectations. We show that the approaches
provide significantly different results regarding prediction accu-
racy and that the statistical approaches fit our data best.

I. INTRODUCTION

Software development in the automotive industry is facing
steadily growing size and complexity among its artifacts. For
example, at Volvo Cars in Sweden, the amount of software
in cars has increased exponentially in the last twenty years:
In 2006, vehicles contained 10.9MB of code, in 2011 around
117.5MB, and in 2014 already 917MB [1]. Other car companies
have seen similar developments and according to Wyman [2],
the entire automotive sector is facing increasing technological
complexity. Concerning the amount of software and tests being
introduced with autonomous vehicles, this upwards trend is
not going to slow down anytime soon.

In practice, software exceeding size limits set by hardware
or software requirements causes long loading, build, and
deployment times. Hence, while software grows in size and
complexity, situations arise where refactoring and software

maintenance becomes necessary. When these situations occur
unexpectedly and immediate maintenance become inevitable
related delays slow down or stop whole development cycles
and result in increased development costs. Reliable predictions
of software status and quality can prevent such issues by
foreseeing problematic growth in software. This can improve
release planning processes and provide stakeholders with
additional information on the evolution of their software.
The need for such predictions at a collaborating automotive
manufacturer led us to investigate this topic, particularly
predicting the size of model-based software, hereafter software
models.

Predicting software model size can be done by assessing
growth information of past software development. By mining
past software revisions and measuring the size of the software
model time series data is created, which shows the models’
quality development throughout the whole software life cycle.
Many approaches for predicting time series data exist. Already
in 1970, for example, Box and Jenkins [3] presented approaches
to analyze and predict time series that are used by stock market
or meteorology. More recently, machine learning approaches
found their way to predict time series data as well [4]. In
some application domains they have been found to outperform
classical approaches regarding prediction accuracy [5].

However, it is still unclear how well such approaches perform
in a real world, industrial setting where additional factors
affecting their practicability need to be considered like the
time to train the predictors or their maintainability. Empirical
evidence is needed to show which approaches are applicable
to data that is gathered from realistic scenarios in practice.

A. Research Goal and Research Questions

The goal of this study is to investigate to what extent existing
approaches are applicable to predict model growth in practice.
The following three research questions contribute to the goal
of our study:
RQ1 What are the most important prediction approaches for

time series data that are mentioned in the literature?
RQ2 Which expectations do practitioners have on the predic-

tion of software size in practice?
RQ3 How do the prediction approaches from RQ1 perform

regarding the criteria elicited in RQ2?
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Fig. 1: Model size

Fig. 2: Overview over amount and size (number of blocks) of
the models used in this study.

B. Contributions

First, we present five different prediction approaches elicited
from literature and previous studies. They are artificial neural
networks (ANN), support vector regression (SVR), long short-
term memory (LST), autoregressive integrated moving averages
(ARIMA), and Holt’s linear trend method (HOLT). Second,
we list the expectations of ten stakeholders collected in
questionnaires and workshops. According to the stakeholders
in the automotive domain, predictions of software growth
should be accurate for about one month period. Finally, this
paper contributes by comparing the performance of the five
prediction approaches in an industrial context in the domain
of automotive software engineering. Our comparison includes
traditional statistical approaches (HOLT and ARIMA) next to
modern machine learning approaches (ANN, SVR, and LSTM)
to provide empirical evidence about their performance regarding
prediction accuracy. We find that the results received from
applying the approaches in practice differ significantly from
each other. We show that the statistical approaches outperform
machine learning in our context.

C. Paper Structure

The rest of the paper is structured as follows: We provide
background knowledge in Section II and cover related work in
Section III. In Section IV we outline our systematic approach to
address the research questions. Following the methodology, we
present, analyze, and discuss our results in Section V. Section
VI concludes the research and presents future work.

II. BACKGROUND

A. Context

This case study is conducted at a testing department of
a German premium automobile manufacturer. The company
produces approximately two million vehicles per year. In the
automotive domain, multiple software projects are combined
to create the software of a vehicle. Resulting artifacts from
these projects are usually electronic control units (ECUs) to
be installed into a vehicle. Simulations of ECUs are used
during testing to replace incomplete real ECUs. This enables
the emulation of a real car environment for ECUs under test.
The simulations usually run on several real-time computers.

All simulation models needed to simulate a complete vehicle
were made accessible to the researchers for analysis. The
models are realized with Matlab/Simulink. Detailed information
about the simulation models cannot be disclosed, but in order to
understand the distribution of size and attributes among them,
an overview is provided in Figure 1. The figure shows the
different groups of simulation models driver assistance (DA),
vehicle control (VC), vehicle dynamics (VD), and others. The
graphs depict the current model sizes within the groups and the
whole data set, calculated by counting all blocks in the models.
The sizes of the majority of the models range between 331
and 18,376 blocks, with seven positive outliers. The strongest
outlier with 107,857 blocks within the others-group is not
shown in the figure for visibility reasons.

B. Measurements

Recently, Gil and Lalouche [6] showed that the measure of
size can predict the validity of any of the 26 metrics they used
for comparison. Also, they say that the higher the correlation
with size, the higher the ability of the metric to estimate external
features of the software artifact. Similarly, our previous studies
showed that size metrics are predictors for maintainability
and software complexity when measuring simulation models
in the automotive industry [7]. They outperformed cohesion
and coupling measurements in their ability to assess model
complexity and maintainability, accordingly.

The increasing size and complexity of software projects can
cause severe problems especially in systems that are limited by
the underlying hardware, for example, in embedded systems.
Furthermore, at the case company, lack of maintainability
among the software models causes significant delays in the
development process and in the time it takes to introduce new
engineers to a project. In this study, we assess these features
by measuring model size in form of lines of code (LOC) and
block count (BC). Both measurements can be considered as
static code analysis as they do not require the models to run for
providing results. Hence, they work even if syntax errors exist
in the model. This keeps data preprocessing to a minimum and
avoids unnecessary transformations or interpolation of missing
values, which could skew the data unintentionally.

To calculate the LOC metric in this study, the .mdl files of
the Simulink models are assessed by counting each line in the
XML-like representation of the respective model. They do not
contain comments or similar non-code related entities. The BC
metric counts blocks in a model using the function sldiagnostics,
which is built-in in the Matlab/Simulink environment. The
function considers all blocks in the model, even masked blocks
on the lowest layers. In a previous study, we show that both
metrics correlate weakly to moderately, depending on the model
under investigation. The correlation is not surprising as they
both count model size attributes. As they are not completely
similar, we expect that using two different size metrics in this
study will provide an additional means for ensuring the validity
of the results.



C. Time Series Prediction and Evaluation

Prediction can be categorized into classification and regres-
sion. In classification, the goal is to assign and learn classes
to a set of input values and predict these classes for each new
input value. Regression, on the other hand, aims for learning
the values of some input data and predicting a new value for
new or unknown input data. An example for classification
is predicting nominal categories like (requirement, feature,
bug) for a set of natural language-based issue tracker data. A
set of issues would be learned by the algorithm and a new
issue would be predicted to be in one of the three categories.
Predicting regressions usually regards an interval or ratio scale
like the development of sales over time. Learning sales data
of the past enables a prediction of the sales in the future.
All approaches presented in this paper are applied to time
series data. Time series are sequences of observations collected
over time, usually in equidistant time intervals. In this study,
we aim for predicting future values of time series, based on
previous values of the same time series. Therefore, we use
regression-based approaches.

Respectively, the approaches for evaluating the performance
of predictions differ in classification and regression problems.
Measures like F1-measure, Precision, Recall, etc. work well
in classification. Contrary to classification problems, the
performance of regressions problems is assessed by how close
they approximate a real value. Hence, the data is usually split
into one learning and one test set. Predictions are then made
based on the learning set and compared with the test set. An
error measurement is applied to evaluate the accuracy of the
predictions.

III. RELATED WORK

In this study, we combine research from the fields of
statistical and machine learning predictions, mining software
repositories, and software measurement.

Many existing studies assess different prediction approaches.
Malhotra [5] studied 64 publications regarding the application
of machine learning techniques for software fault prediction.
Malhotra found that 19 out of 64 studies involved a comparison
element between statistical and machine learning methods. The
results demonstrate that the machine learning approaches mostly
outperform statistical linear approaches. The author identified
three frequently used machine learning approaches for software
fault prediction: 1) decision trees, 2) neural networks, and 3)
support vector machines. Fu [4] performed a literature review
on prediction approaches as well. The author provides a com-
prehensive overview of existing techniques and classifies them
according to their application. There is still a lack of concrete,
in-depth evaluations of the applicability of the approaches in
real-world cases. Lastly, Martínez-Álvarez et al. [8] also review
recent work on time series prediction. They split results in linear
statistical and non-linear machine learning approaches. We
follow their notation in this study. They list multiple prediction
approaches and error measurements currently used in literature.
Their study, however, is specifically designed for electricity-
related time series. Accordingly, prediction approaches are

O1)	Prediction	
approaches	from	
literature	and	prev.	
studies	(RQ1)

O4)	Comparison	of	
prediction	
approaches	from	O1
regarding	O2	(RQ3)

T7)	Data	preprocessing
T8)	Application	of	prediction
T9)	Evaluation	using	statistical	analysis

T1)	Literature	review	
and	T2)	Classification

T5)	Measurement	
and	T6)	Data	analysis

O3)	Data	set	used	for	
the	case	study	
(RQ3)

T3)	Survey	and	
T4)	Workshops

O2)	Expectations	
of	practitioners	
towards	pre-
diction	(RQ2)

Fig. 3: The study design consists of four main tasks. Tasks are
presented in gray squared boxes. They are attributed to our
research questions. The outcomes are depicted in blue boxes
with bent corners.

broadly addressed in literature. Therefore, in our study, we
investigate the existing work in a literature review to find the
approaches fitting our problem domain.

Size measurement is also well studied. Research investigating
software size has shown that size can be used to assess
productivity [9] and defects [10] in practice. Schroeder et
al. [7] have shown that simple metrics like lines of code are
well suited to assess software complexity and maintainability
in a similar environment. Hence, in this study, we consider
size metrics as a powerful and established metric.

Regarding the field of mining software repositories, many
studies focus on predicting defects like Zimmermann [11].
Other studies have used software repositories to investigate
refactoring practices (cf. [12]). However, to the best knowledge
of the authors, no studies have been reported so far combining
aspects of software repository mining and measurements with
prediction approaches including machine learning approaches
that are evaluated in a realistic industrial context.

IV. METHODOLOGY

In this paper, we perform an industrial case study, in which
we observe and investigate a specific case in a real world
context [13] while avoiding interventions of researchers with
the case [14]. We follow Runeson and Höst’s guidelines on
designing, planning, conducting, and reporting the case study
[15]. Our study comprises quantitative and qualitative methods
and consists of multiple tasks as outlined in Figure 3. In the
tasks T1-T4, we answer RQ1 and RQ2 using a literature review,
a survey, and workshops. Together with the measurements in
task T5, they build the basis for the final evaluation of the
applicability of prediction approaches in industry (RQ3). The
tasks are outlined in greater detail in the following sections.

A. Case and Subject Selection

The artifacts being assessed in this study are Simulink models
simulating electronic control unit (ECU) functionality. All 70



models available at the department are considered for the
data collection. Most models are still frequently updated with
functionality or quality improvements; other models are only
maintained to keep them usable in combination with the rest; a
third group contains legacy models which are not used anymore,
and the last group is formed by newly created models with little
past data. Legacy models could skew the results as they might
not represent the current development practices. Models that are
too new do not provide sufficient data for our analysis. Hence,
as previously shown in Figure 1, for this study only the first
two groups are considered, and 22 models are removed from
the data set. The remaining 48 models provide a representative
view on the development conducted for integration testing
at the case company. For the 48 models 4,547 revisions are
assessed. This includes only revisions where one of the models’
code was changed.

Six engineers participated in the industry workshops and ten
in the survey. The first six engineers have 3.8 years experience
on average (1-7 years) and the ten engineers 4.6 years (1-
10 years). The engineers have the roles developer, tester, or
team leader. All existing roles present at the department are
considered for the survey. All engineers are working on the
shared set of models while having different development foci
including driver assistance, vehicle dynamics, and general ve-
hicle control. All lead developers for the previously mentioned
function groups are interviewed, as well as the respective team
leader.

B. Data Collection Procedure

Our study comprises several tasks involving data collection.
They are outlined in detail below.

T1) Literature Review and T2) Classification: We conduct
a literature review to investigate the most important prediction
approaches. We examine existing literature that focuses on
algorithms and approaches used in the context of predicting
time series data, as well as their implementation in software
development. Hence, the search string is constructed by
combining synonyms of the three keywords prediction, time
series, and data mining. We focus on research applying
prediction approaches. Optimization or in-depth performance
analysis of existing approaches is out of scope of the review.
The literature studies of Fu [4], Malhotra [5], and Martínez-
Álvarez et al. [8] are used as main source for approaches, as
they provide existing investigations and comparison.

In the review, we identify the methods and details used for
predicting time series. Based on this information, we identify
the most common approaches applied to data similar to ours.
Further details on methodology and results of the literature
review are published separately.

T3) Survey and T4) Workshops: The goal of the survey
and workshops in this study is to complement the quantitative
analysis with practical information from practitioners and to
provide a qualitative view on software size prediction. The
survey in particular has the purpose to collect the practitioners’
expectations on predictions. After introducing the topic the
following questions were asked. The possible answers are

depicted below the questions. The intervals for the answers
are based on knowledge received during the literature work
and gathered at the case company.

1) How long can a prediction take, at most?
(< 1m, < 1h, < 12h, ≤ 24h, > 24h)

2) How accurate should a prediction be?
(deviation from true values: 1%, 3%, 5%, 10%, __%)

3) How far ahead should the prediction be accurate?
(in days: 1, 2, 4, 7, 14, __)

4) How much maintenance effort is acceptable to keep
predictions running continuously?
(freely specifiable in man-hours per day or week)

5) What are additional important properties of a prediction?
(free text)

6) Rank the prediction properties by their importance:
(maintenance, run time, long-term accuracy, short-term
accuracy, and additional properties mentioned before)

The questions aim to assess the importance of prediction
properties, but also on possible quantification of these properties
by asking for thresholds. Quantification is achieved by assigning
values to the ranks assigned in the last question, ranging from
one to the number of properties discovered. Those values are
counted and compared to determine the importance of the
properties.

The industry workshops serve the two purposes of discussion
and verification of the gathered results. Findings extracted
from the anonymous survey are discussed and evaluated. The
workshops are conducted without a prescribed structure to
allow for discussions about the intermediate results and to
find additional input like prediction properties of interest. This
provides input for RQ2 as well as it validates the applicability
of prediction approaches in practice.

T5) Measurements and T6) Data Analysis: Having the ex-
pectations from practitioners and the background on prediction
approaches from literature, the data set for the predictions
under investigation has to be created. The two size metrics
described in Section II-B are applied to all 4,547 revisions of
the 48 software models. This results in two measurement values,
one for LOC and one for BC for each revision and therefore
two lists for each model. The lists depict the development of
the size metrics over time. On the resulting data set, manual
data interpretation and time series analysis are performed
to understand how the data behaves and to fit appropriate
prediction approaches later. Investigations include analysis of
trend, seasonality, and outlying/random data. The analysis of
the time series shows that they are mostly determined by their
trend. All models grow in size. We expected seasonal behavior
including, for example, regular increases in size within release
cycles but the data set does not express this types of seasonality.
In Figure 4, the development of the LOC measure is depicted
for one model. The y-axis contains the measurement values
and the x-axis the number of commits.

T7) Data Preprocessing: To evaluate the prediction accuracy
using ground truth data, the data set, consisting of measured
models throughout revision history, is split up. The data is
divided into three sets: a training set, a validation set, and a
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TABLE I: Summary of the collected revision data for the 48
models.
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revisions rev. rev.

All Revisions 4,547 20 439 94 1/2013-6/2016
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Test set 376 2 44 7 4/2016-6/2016
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Fig. 5: Amounts of model revisions available in this case study,
grouped by functionality.

test set. The training set is determined by our previous study,
where we collected measurement data between 2013 until 2015.
A second data collection was performed in 2016. This data is
split equally into a test and a validation set. The resulting data
set, which is used for all further analysis in this case study,
is summarized in Table I. Altogether, we collected data from
4,547 revisions in the time between 2013 and mid-2016. In this
set, we found at least 20 and at most 439 revisions per model.
Additionally, Figure 5 shows the distribution of all revisions
throughout the groups of functionality.

To perform a time series analysis according to Box and
Jenkins [3] the time intervals between data points have to be
equidistant. However, in the context of revisions and commits,
this is not the case, as commits and consequently measurements
are conducted whenever a developer decides to make changes
to the project. There are multiple ways to address this problem.
Eckner [16] presents an approach directly applicable to non-
equidistant data and Rehfeld et al. present a re-sampling
approach [17]. Both are not widely applied. Analyzing time
series without constant intervals, also called unevenly spaced

time series or irregularly sampled time series, still requires
further research.

Specifically in our case, a more intuitive and straight forward
approach is data interpolation. A fixed time interval is chosen,
for example, daily intervals. Missing values are interpolated.
This practice is applied widely but is not without critique.
A data set can be misinterpreted if it cannot be ensured
that in between two data points no significant change of
values has occurred. This value would inevitably be missed by
interpolation. In our case, it is safe to assume that data values
actually do not change in between time samples, as we measure
every time a change to the models was made in form of a
commit. The software does not change in between commits
and any missing measurement value can be interpolated from
the previous data point. This results in time series, which
changes step-wise with each commit while values stay similar
in between commits.

We decided to interpolate the data to daily intervals. If
multiple commits occurred to the same model on a single
day we use the latest. According to above descriptions, if no
commit was made the value for this day is copied from the
previous day. Those daily intervals might introduce bias, as
multiple observations during a single day are hidden, but it
provides a realistic data set for practical observations.

Additional steps like differentiation and normalizing of the
time series might be necessary. Differentiation removes the
trend of a time series and enables separate investigations of
trend and seasonality. Normalization of the data might be
necessary, particularly for the use with neural networks as they
are often adjusted to work with inputs ranging from 0 to 1.

T8) Application of the Predictions: The selection of pre-
diction approaches is based on the outcome of the literature
review. The criteria for the selection is how often an approach is
mentioned in literature. The approaches have to be mentioned
as being able to handle similarly structured data sets as in
our case. For our study, both, statistical and machine learning
approaches are considered.

In addition to the most used approaches, we add two
approaches used previously on the same data set. In our
earlier study, the autoregressive integrated moving average
(ARIMA) approach was applied. As ARIMA is an established
approach to predict time series, we consider it as an appropriate
benchmark. Similarly, Holt’s linear trend method complements
the approaches from literature. Both approaches are explained
in more detail together with the literature review results in
Section V-A.

The application of the prediction approaches also has to
consider their respective parameterization. Much time and effort
is spent on optimizing parameters of predicting approaches to
the data at hand. Research is conducted on how to fit prediction
approaches best to a specific data set. Furthermore, for the
majority of the approaches there are parameter estimation
algorithms. As it is not the aim of this study to investigate
perfect parameterizations but instead to provide a practical
overview of existing approaches and their applicability in
practice, we decided to use existing parameter estimation
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Prediction Approach 1 Prediction Approach 2 …
Measurement LOC BC LOC BC …

Model 1 RMSE_LOC_11 RMSE_BC_11 RMSE_LOC_21 RMSE_BC_21 …

Model 2 RMSE_LOC_12 RMSE_BC_12 RMSE_LOC_22 RMSE_BC_22 …

… … … … … …

Model n RMSE_LOC_1n RMSE_BC_1n RMSE_LOC_2n RMSE_BC_2n …

for predicting x revisions, 
with y revisions used for learning

Fig. 6: Evaluation of the calculated error measurements. For
each approach, the measurement results for all models are
compared regarding their prediction error.

algorithms. The libraries providing the approaches usually
also provide optimization algorithms for parameter estimation.

The selected and configured approaches are then applied to
the two lists containing the measurement data for the LOC
and BC metrics created in task T5 for all 4,547 revisions of
the 48 models. Therefore, we created the predictions for each
metric and each model, respectively.

C. Analysis Procedure

In this section, we describe how the data from literature
(T1, T2) and the data collected in the survey and workshops
(T3, T4) is evaluated to answer RQ1 and RQ2, respectively.
Furthermore, the analysis to determine the performance of the
prediction approaches is outlined in step T9 to answer RQ3.

T1), T2) Classification of Literature and T3), T4) Analysis
of Survey/Workshop Results: The approaches found in the
literature are selected by comparing how often they are
mentioned for the use on data with a similar structure. For
the assessment of survey results we combine the answers in a
table and visualize results to make informed decisions on their
implications.

T9) Evaluation of Prediction Results: For evaluating
regression-based prediction accuracy, we determine how close
predicted values are to the ground truth data. There are multiple
possible prediction error measurements mentioned in literature
having different strengths, weaknesses, and biases. Additionally,
many approaches are very closely related. Based on Adhikari
and Agrawal [18] and Hyndman and Athanasopoulos [19], we
select the root mean squared error (RMSE) as it is widely used
and has advantages of making errors comparable across models.

RMSE is calculated by
√∑ (Prediction−GroundTruth)2

n .
In order to systematically compare the results, we follow

guidelines from Basili et al. [20] and Wohlin et al. [21]. We
create a hypothesis, determine independent variables, and run
statistical tests to find statistical significant observations. The
comparison of the prediction results is visualized in Figure 6.

Using the data presented in this form, the analysis starts with
determining the distribution of the data to decide if parametric
or non-parametric tests should be used. The next step is
comparing the prediction approaches by their prediction errors
with the goal to determine if there is a statistically significant
difference among the error measurements grouped by the
different approaches. Hence, we define following hypothesis:
H0 The samples of error measurements for the different

approaches originate from identical populations.

Ha The samples come from different populations.
A one way ANOVA (parametric) or a Kruskal Wallis test (non-
parametric) test is used to reveal significant differences within
the independent groups of prediction errors (RMSE). Using
these tests, we can show if there is one approach performing
significantly better or worse than the others regarding predic-
tion errors. This is conducted for both metrics individually.
Additionally, we also investigate maintenance effort and run
time that the practitioners were asked about in the survey and
the workshops.

D. Validity Procedure

To ensure validity while conducting the study, we focus on
employing multiple combinations of approaches and methods in
order to avoid bias. We use five different prediction approaches
with different underlying algorithms, two different size metrics,
and 48 independent models with and without data interpolation.
We are performing rigorous statistical analysis using established
statistical tests.

V. RESULTS

In the results, we consecutively answer the research questions
by presenting the outcomes of the associated tasks. We present
prediction approaches elicited from literature and previous
studies, followed by the practitioners’ expectations collected
in the survey and workshops. Lastly, we present and analyze
the prediction results.

A. Predictions approaches Identified in Literature and Previous
Studies

In this section, we answer RQ1, on the most important
prediction approaches currently used in literature on similar
data. The results of the literature review reveal two major
insights. Firstly, the distinction between linear and non-linear
approaches, whereas linear approaches are often outperformed
by non-linear ones, especially in cases when the data exhibits
lots of random noise (cf. [5], [22]).

Notably, both linear and non-linear approaches have their
strengths and weaknesses. The linear approaches exhibit good
prediction performance when time series comprise stationary,
non-trending data (cf. [23]). This is because linear approaches
predict values based on the previous data in the time series. To
circumvent this weakness, approaches exist to make input data
for linear approaches stationary. Non-linear approaches such as
support vector machines (SVM) and artificial neural networks
(ANN) have their strengths in the robustness of the prediction
if the data is limited or from a short-term period. However,
their weakness is a lengthy training process as mentioned by
Sapankevych and Sankar [24], Vanajakshi and Rilett [25], and
Meyfroidt et al. [26].

Secondly, a majority of identified studies highlight the
implementation of SVM and ANN implemented in a variety
of domains. From literature and previous studies, we extracted
the approaches as listed in Table II. They are briefly outlined
in the following paragraphs.



TABLE II: The approaches used in this study and their specifications.

Category Approach Tool Library Parameter estimation algorithm Parameters

Statistical, Linear HOLT R forecast none none
Statistical, Linear ARIMA R forecast built-in optimization AR, I, MA

Machine Learning, Non-Linear SVR Python scikit-learn grid search kernel, C, gamma
Machine Learning, Non-Linear AVNNET R caret caret lag, hidden neurons
Machine Learning, Non-Linear LSTM Python Keras manual and built-in grid search lag, # epochs, hidden neurons, optimizer

TABLE III: The answers collected from the survey, verified in the workshops.

Importance Rating max time acceptable how far to acceptable maintenance
accuracy accuracy mainte- run- to predict error predict

long short nance time

P1 4 2 3 1 >24h 10% 14 days “automation, big initial effort acceptable”
P2 2 3 1 4 <1h 10% 21 days “less than a man-day per week”
P3 4 3 2 1 <12h 10% 7 days “3h per week”
P4 4 3 1 2 >24h 10% 30 days “automation, moderate initial effort acceptable”
P5 4 1 3 2 <1h 5% 90 days “1h per week”
P6 4 2 3 1 ≤24h 15% 28 days “2h per week”
P7 3 2 4 1 ≤24h 5% 30 days “automation, only little initial effort acceptable”
P8 1 4 3 2 <12h 3% 14 days “25-30h per week”
P9 3 2 4 1 <1h 10% 28 days “automation”

P10 1 4 3 2 ≤24h 5% 14 days “2-4h per week”

AVG 3 2.6 2.7 1.7 / 8.3% 27.6 days /

Holt’s linear trend method (HOLT): This approach is serving
as a reference for comparison. As shown in Section IV-B in
task T6, the time series are characterized by their upwards
trend. Smoothing approaches like Holt’s are designed for
forecasting trends (cf. [19]). It is provided with R using the
“holt” function contained in the forecast package and does not
require configuration. The only input required is the time series
itself.

Autoregressive integrated moving average (ARIMA) model:
ARIMA is an advanced regression approach and commonly
used with time series data. The approach combines an au-
toregressive function (AR), differentiation (I), and a moving
averages function (MA). These three functions are also the
three main configuration parameters. ARIMA was used in a
previous study with similar data to create models for outlier
detection. The R package “forecast” provides an “auto-arima”
function, which compares multiple ARIMA configurations and
selects the configuration according to the model quality. The
only input required is the time series itself.

Feed-Forward Artificial Neural Network (ANN): Feed-
forward artificial neural networks are widely used for time
series analysis. As neural networks are based on learning
from past data, it has to be determined which input should
be provided to the network and how. To receive comparable
results, we teach the ANN with the same data as all other
approaches: one time series is learned to create predictions
for the same data. For training and prediction, we provide the
network with a set of past data points, called lagged data points,
instead of feeding one data point at a time. Hence, the network
can learn to predict a point in the future from multiple past

revisions. We use the “AVNNET” implementation provided by
the “caret” package in R as it provides automatic parameter
estimation functions. The only configuration parameter was
the size of the input.As ANNs base upon activation functions,
typically ranging from 0 to 1, we adjust our data to this range
using normalization.

Long Short Term Memory (LSTM): Long short term memo-
ries are recurrent neural networks, which have drawn attention
in the field of forecasting time series in the recent years due to
their performance (cf. [27], [28], and [29]). An LSTM enhances
a plain feed-forward neural network by a memory layer to
store information from a previous learning step and reuse
it to influence a current learning step. The “Keras” package
provides LSTM algorithms for Python. It also provides a grid
search algorithm for parameter estimation. The grid search
tries all provided combinations of configuration parameters
and determines the network with the least error in a given
test data. As for the ANN, LSTM is provided with lagged,
normalized input. The following parameters are tried during
the grid search: Number of hidden neurons, length of lagged
input, number of epochs to train, and the optimizer to be used.

Both neural networks use random weights of the neurons in
the beginning of learning. Hence, the results created are not
deterministic every time the networks are trained. To address the
non-determinism and receive similar results for each teaching of
the networks, we average the results of multiple runs following
an established method in the field (cf. [30]).

Support Vector Regression (SVR): Support Vector Regression
is based on the Support Vector Machine. We implement it
using the “scikit-learn” package in Python. The configuration



parameters are the error metric to be used for predictions, the
kernel, the penalty parameter C, and the coefficient for the
kernel gamma. The scikit-learn package provides a grid search
algorithm to find the best set of configuration parameters.

B. Expectations of Practitioners towards Predictions

In this section we answer RQ2 on the stakeholders’ ex-
pectations towards predictions. Findings from the survey are
summarized in Table III. The table shows that predicting
over long intervals is most important to the stakeholders.
The respective answer received three points, on average. Still,
maintenance and short term predictions are almost similarly
relevant, with 2.7 and 2.6 points, respectively. Hence, the
answers to the consecutive questions have to clarify the
expectations. Interestingly, run time received only 1.7 points,
on average, and is least important for the stakeholders. The
related answers for how much time a prediction may take vary
strongly. Some engineers expect a prediction tool which they
can have at hand for their work during the day, the other group
seems to expect predictions to run over night. The answers for
accuracy are more clear: Engineers accept not more than 15%
error within the predictions and 8.3% on average. Both, the
results for the error rates and for how far to predict confirm
the results of the importance rating. It seems that rather high
error rates are acceptable as long as predictions stay within
the boundary, even for long distances. Hence, we interpret that
short-term predictions, for example, until the next day are not
sufficient. Engineers expect accurate predictions for 27.6 days
on average.

The acceptable maintenance times mentioned by the partic-
ipants highlight the need for automation. Engineers expect
the predictions to run in an automated way and accept
associated initial effort. Engineers expect less than three
hours of maintenance work on the predictions per week. The
importance of maintenance time was expected, as man-hours
are a valuable resource. The received results were discussed
and validated in consecutive stakeholder workshops.

C. Prediction Results

In this section we present results from applying the elicited
approaches to the measurements. We answer RQ3 by conclud-
ing about the applicability and accuracy of the approaches
regarding the priorities elicited in the survey and workshops.

1) Prediction Accuracy: The results of the accuracy inves-
tigations are summarized in Figure 7. The figure shows how
the errors computed by RMSE for all five approaches are
distributed among the data. In general, most errors are low
while some outlying spikes are visible. If there are spikes, the
approaches mostly increase altogether like for model 5 and
28. Still, sometimes only the machine learning approaches are
outlying, like in model 16 and 21.

We investigated the prediction accuracy using the engineers’
expectations. According to Table III, on average, practitioners
found a deviation of 8.3% from the ground truth acceptable.
Hence, we count the number of models where predictions,
on average, deviate more than 8.3% from the ground truth.

TABLE IV: Results of the accuracy investigations with practi-
tioners’ expectation of less than 8.3% error (48 models total).

HOLT ARIMA SVR ANN LSTM

# of models above 8.3% 7 6 17 11 12

TABLE V: Accuracy comparison using the Kruskal-Wallis test.

short term prediction long term prediction
LOC BC LOC BC

HOLT 110.25 112.23 114.02 113.27
Kruskal- ARIMA 87.67 100.60 98.00 105.67
Wallis SVR 144.96 151.35 137.54 146.17
Ranks ANN 126.38 110.54 125.02 113.75

LSTM 133.25 127.77 127.92 123.65

p-values 0.001 0.004 0.059 0.043

Table IV shows the results of this analysis. This data shows
the robustness of the approaches by counting the amount of
models for which the required accuracy could not be achieved.
We conclude that the approaches HOLT and ARIMA fail
in the least cases. SVR predictions deviated most from the
ground truth data. The two statistical approaches seem to
outperform the three machine learning approaches, considering
the stakeholders’ expectations. Among the machine learning
approaches, ANN performs best.

Additionally, we address the hypothesis on a difference
between the approaches, by performing statistical tests on the
error data, as previously shown in Figure 6 in Section IV-C.
Thereby, we expect to generate a more reliable and significant
evaluation. The 48 values of RMSE for all five approaches are
not normally distributed. Hence, we use the Kruskal-Wallis
analysis of variance for comparison. This test compares multiple
non-parametric samples to determine if they come from the
same population. The samples in our case are the accuracy
results of the predictions, represented as RMSE. We test four
different data sets: The results for short and long term prediction
accuracy on both, the LOC and the BC data set, respectively.
Whereas for the long term the whole set of predictions is used,
we consider four revisions into the future as short term. Four
predictions is the smallest amount of prediction length which
is achieved by all approaches. Accordingly, for evaluation of
short term predictions the full dataset of 48 models is used. For
long term predictions eight data sets are excluded. Hence, we
have four sets of accuracy results for all five approaches which
can be investigated independently. The result of conducting
Kruskal-Wallis tests on all four sets are shown in Table V.
The test compares group medians, shown in the center of the
table. From comparing the medians, differences within the error
values are visible. Evidence on this observation is provided by
the p-values in the lower part of the table. Regarding the short
term predictions, we can reject the null hypothesis of equal
populations. We have evidence that at least one approach is
significantly different. For long term predictions we can reject
the null hypothesis in case of the BC metric, both considering
a significance level α of 0.05.
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Fig. 7: Overview of the prediction errors (RMSE) by approach using the LOC metric, arranged in the four groups of functionality.

The ranks provided by the test indicate the effect size.
ARIMA has the lowest medians within RMSE of all approaches,
while SVR has the highest. By running separate tests in between
the groups, we found that the predictions performed by SVR are
significantly worse than the others. Between the other groups,
no statistically significant difference could be detected. Lastly,
the results suggest that the approaches converge towards long
term predictions. All approaches decrease in accuracy when
predicting long-terms.

2) Prediction Maintenance Effort: The implementations
of the approaches in the different languages using different
libraries strongly depend on expertise with the respective
language. Maintenance effort based on code size or complexity
cannot be used as metrics cannot be compared among different
languages. Nevertheless, as we used parameter estimation
algorithms, which automatically estimate the optimal set of
parameters, the maintenance effort for future predictions is
small for all approaches. As data changes, the algorithms
will find matching sets of parameters. Hence, we evaluate all
approaches to performing equally well.

3) Prediction Run Time: Run time depends on the implemen-
tation and the underlying computer system used. Still, run time
differences can be compared. Machine learning approaches
require a learning period while statistical approaches do not
require this step. It depends on the accuracy required how long
learning periods have to be and how often they are performed.
If run time is an important aspect, statistical approaches are
preferable. In practice predictions can run during night time.
So run time is not an issue in the context of predicting time
series of model growth in the automotive industry.

D. Threats to Validity

As this case study focuses on one specific case in industry,
we assess generalizability to other domains as a threat to the
validity of the results. We mitigated this threat by designing the
study in a way to cover multiple different models, two metrics,
and data formats to reduce the chance that results are just
obtained by chance in the context. We also provide detailed
descriptions of our data set as well as the approaches and tools
used. We expect that replications with similar preconditions
produce similar results, even in different domains.

When using machine learning and particularly deep learning
approaches, there is always the possibility of further opti-
mization. While the results obtained from these approaches
might be improved further, we mitigated this threat to construct
validity by using automatic parameter estimators to ensure a
fair treatment of all approaches.

Furthermore, the approaches might perform differently using
other programming languages or libraries. Even though the
approaches should be implemented as specified by formulas
in publications, it could happen that the same approach is
implemented differently in different libraries/tools. Hence, there
is a threat that results can differ when replicating the research
with different libraries or tools. We mitigated this threat by
implementing our approaches with widely used libraries and
tools.

Due to the small sample size in the survey, it does only
represent a fraction of the whole industry. We tried to mitigate
this threat by considering practitioners in all different existing
roles at the department. Additionally, the lead developers of
all function groups were surveyed. Still, in other domains, the
expectations towards predictions might differ.



VI. CONCLUSION AND FUTURE WORK

In this study we compare five prediction approaches, HOLT,
ARIMA, SVR, ANN, and LSTM, which were elicited from
literature or used previously on the same data set. Our results
show that all five are applicable to predict time series of
software size measurements performed on simulation models
in the automotive industry.

We identify differences regarding their performance, particu-
larly with respect to prediction accuracy, which is assessed by
calculating the differences between predictions and ground truth
data. We find that SVR performs significantly worse than the
other four approaches, in three out of four data sets. The data
also indicates, that the linear, statistical approaches outperform
the non-linear machine learning approaches regarding accuracy,
using our data set. This might be due to the comparably small
amount of training data available (between 6 and 351 data
points, 73 on average) or the shape of the data that is mostly
steadily increasing. For cases with similar data in related
application areas we recommend linear approaches like HOLT
or ARIMA, or feed-forward neural networks like ANN.

Additionally, we also contribute by reporting on practitioners
expectations towards model growth predictions, collected in a
survey with ten local developers, testers, and team leaders. We
find that they expect predictions to be accurate on long term
(about one month) and that short term predictions (about 4
days) of model growth is less important. We also conclude, that
predictions are expected to run automated with low amount
of maintenance. Run-times of predictions are not an issue for
most practitioners.

Future investigations are intended to reveal clusters of time
series favoring specific prediction approaches. We might be
able to extract general attributes of data sets that favor specific
approaches, like the size of the data set or the distance
between data points. Accordingly, we would be able to suggest
prediction approaches matching specific attributes of a dataset.
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