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Abstract—Mutation testing has been widely accepted as an
approach to guide test case generation or to assess the effective-
ness of test suites. Empirical studies have shown that mutants
are representative of real faults; yet they also indicated a clear
need for better, possibly customized, mutation operators and
strategies. While methods to devise domain-specific or general-
purpose mutation operators from real faults exist, they are effort-
and error-prone, and do not help the tester to decide whether
and how to mutate a given source code element. We propose
a novel approach to automatically learn mutants from faults in
real programs. First, our approach processes bug fixing changes
using fine-grained differencing, code abstraction, and change
clustering. Then, it learns mutation models using a deep learning
strategy. We have trained and evaluated our technique on a set of
∼787k bug fixes mined from GitHub. Our empirical evaluation
showed that our models are able to predict mutants that resemble
the actual fixed bugs in between 9% and 45% of the cases, and
over 98% of the automatically generated mutants are lexically
and syntactically correct.

Index Terms—mutation testing, deep learning, neural networks

I. INTRODUCTION

Mutation testing aims at injecting artificial faults into the
program’s source code or bytecode [1], [2] to simulate defects.
Mutants (i.e., versions of the program with an artificial defect)
can guide the design or even the automatic generation of a test
suite [3], [4], and can be used to assess the effectiveness of
an existing test suite [5], [6].

A number of studies have been dedicated to understand
the interconnection between mutants and real faults [7]–[14],
indicating that carefully-selected mutants can be as effective
as real faults [7]–[9], but also that mutants can underestimate
a test suite’s fault detection capability [7], [8]. As pointed
out by Just et al. [13], there is a need to improve mutant
taxonomies in order to make them more representative of
real faults. Taxonomies of mutants have been devised by
taking typical bugs into account [15], [16], and even coping
with specific domains [17]–[21]. Brown et al. [22] leveraged
bug-fixes to infer 7.5k types of mutation operators from
diff patches. However, devising specific mutant taxonomies
requires a substantial manual effort, and may not generalize
across projects.

Stemming from the previous considerations by Brown et
al. [22], as well as from recent work aimed at learning bug

repairs from an existing set of previous fixes [23], [24] and,
more generally, from the successful applications of machine
learning on code to support several SE tasks tasks [25]–
[34], we conjecture that mutants can be automatically learned
from previous fixes. We propose an approach for automatically
learning mutants from actual bug fixes. After having mined
bug-fixing commits from software repositories, we extract
change operations using an AST-based differencing tool and
abstract them. Then, to enable the learning of specific mutants,
we cluster similar changes together. Finally, we learn from the
changes using a Recurrent Neural Network (RNN) Encoder-
Decoder architecture [35]–[37]. When applied to unseen code,
the learned model decides in which location and what changes
should be performed. Besides being able to learn mutants from
an existing source code corpus, and differently from Brown et
al. [22], our approach is also able to determine where and how
to mutate source code, as well as to introduce new literals and
identifiers in the mutated code.

A buggy code fragment arguably represents the perfect
mutant for the fixed code because: (i) it is a mutation of the
fixed code; (ii) such a mutation exposed a buggy behavior;
(iii) the buggy code does not represent a trivial mutant; (iv)
the test suite did not detect the bug in the buggy version.

We evaluate our approach on 787k bug-fixing commits with
the aim of investigating (i) how similar the learned mutants
are as compared to real bugs; (ii) how specialized models
(obtained by clustering changes) can be used to generate
specific sets of mutants; and (iii) from a qualitative point of
view, what operators were the models able to learn. The results
indicate that our approach is able to generate mutants that
perfectly correspond to the original buggy code in 9% to 45%
of cases (depending on the model). Most of the generated
mutants are syntactically correct (more than 98%), and the
specialized models are able to inject different types of mutants.

This paper provides the following contributions:

• A novel approach for learning how to mutate code from
bug-fixes.
• Empirical evidence that our models are able to learn diverse
mutation operators that are closely related to real bugs.
• Data and source code to enable replication [38].
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II. APPROACH

We start by mining bug-fixing commits from thousands of
GitHub repositories (Sec. II-A). From the bug-fixes, we extract
method-level pairs of buggy and corresponding fixed code that
we call transformation pairs (TPs) (Sec. II-B1).

TPs represent the examples we use to learn how to mutate
code from bug-fixes (fixed → buggy). We rely on GumTree
[39] to extract a list of edit actions (A) performed between
the buggy and fixed code. Then, we use a Java Lexer and
Parser to abstract the source code of the TPs (Sec. II-B2) into a
representation that is more suitable for learning. The output of
this phase is the set of abstracted TPs and their corresponding
mapping M which allows reconstructing the original source
code. Next, we generate different datasets of TPs (Sec. II-B4
and II-B5). Finally, for each set of TPs we use an encoder-
decoder model to learn how to transform a fixed piece of code
into the corresponding buggy version (Sec. II-C).

A. Bug-Fixes Mining

We downloaded the GitHub Archive [40] containing every
public GitHub event between March 2011 and October 2017.
Then, we used the Google BigQuery APIs to identify commits
related to bug-fixes. We selected all the commits having a
message containing the patterns: (“fix” or “solve”) and (“bug”
or “issue” or “problem” or “error”). We identified 10,056,052
bug-fixing commits for which we extracted the commit ID
(SHA), the project repository, and the commit message.

Since not all commits matching our pattern are necessarily
related to corrective maintenance [41], [42], we assessed the
precision of the regular expression used to identify bug-fixing
commits. Two authors independently analyzed a statistically
significant sample (95% confidence level ±5% confidence
interval, for a total size of 384) of identified commits to judge
whether the commits were actually referring to bug-fixing
activities. Next, the authors met to resolve a few disagreements
in the evaluation (13 cases). The evaluation results reported a
true positive rate of 97% [38]. The commits classified as false
positives mainly referred to partial/incomplete fixes.

After collecting the bug-fixing commits, for each commit
we extracted the source code pre- and post- bug-fixing (i.e.,
buggy and fixed code) using the GitHub Compare API [43].
We discarded (i) files created in the bug-fixing commit since
there is no buggy version to learn from; (ii) commits that
had touched more than five Java files, since we aim to
learn from bug-fixes focusing on only a few files and not
spread across the system; and (iii) large commits that are
more likely to represent tangled changes [44], i.e., dealing
with different tasks. Also, we excluded commits related to
repositories written in languages different than Java, since
we aim at learning mutation operators for Java code. After
these filtering steps, we extracted the pre- and post-code from
787,178 bug-fixing commits.

B. Analysis of Transformation Pairs

A TP is a pair (mb,mf ) where mb represents a buggy code
component and mf represents the corresponding fixed code.

We will use these TPs as examples when training our RNN.
The idea is to train the model to learn the transformation from
the fixed code component (mf ) to the buggy code (mb), in
order to generate mutants that are similar to real bugs.

1) Extraction: Given a bug-fix bf, we extracted the buggy
files (fb) and the corresponding fixed (ff ) files. For each pair
(fb, ff ), we ran AST differencing between the ASTs of fb
and ff using GumTree Spoon AST Diff [39], to compute the
sequence of AST edit actions that transforms fb into ff .

Instead of computing the AST differencing between the
entire buggy and fixed files, we separate the code into method-
level pieces that will constitute our TPs. We first rely on
GumTree to establish the mapping between the nodes of fb
and ff . Then, we extract the list of mapped pairs of methods
L = {(m1b,m1f ), . . . , (mnb,mnf )}. Each pair (mib,mif )
contains the method mib (from the buggy file fb) and the
corresponding mapped method mif (from the fixed file ff ).
Next, for each pair of mapped methods, we extract a sequence
of edit actions using the GumTree algorithm. We then consider
only those method pairs for which there is at least one edit
action (i.e., we disregard methods unmodified during the fix).
Therefore, the output of this phase is a list of TPs =
{tp1, . . . , tpk}, where each TP is a triplet tp = {mb,mf , A},
where mb is the buggy method, mf is the corresponding fixed
method, and A is a sequence of edit actions that transforms
mb in mf . We do not consider any methods that have been
newly created or completely deleted within the fixed file since
we cannot learn mutation operations from them. Also, TPs
do not capture changes performed outside methods (e.g., class
name).

The rationale behind the choice of method-level TPs is
manyfold. First, methods represent a reasonable target for
mutation, since they are more likely to implement a single
task. Second, methods provide enough meaningful context for
learning mutations, such as variables, parameters, and method
calls used in the method. Smaller snippets of code lack the
necessary context. Third, file- or class-level granularity could
be too large to learn patterns of transformation. Finally, consid-
ering arbitrarily long snippets of code, such as hunks in diffs,
could make the learning more difficult given the variability in
size and context [45], [46]. Note that we consider each TP as
an independent fix, meaning that multiple methods modified
in the same bug fixing activity are considered independently
from one other. In total, we extracted ∼2.3M TPs.

2) Abstraction: The major problem in dealing with raw
source code in TPs is the extremely large vocabulary created
by the multitude of identifiers and literals used in the code
of the ∼2M mined projects. This large vocabulary would
hinder our goal of learning transformations of code as a neural
machine translation task. Therefore, we abstract the code and
generate an expressive yet vocabulary-limited representation.
We use a combination of a Java lexer and parser to represent
each buggy and fixed method within a TP, as a stream of
tokens. First, the lexer (based on ANTLR [47], [48]) reads the
raw code tokenizing it into a stream of tokens. The tokenized
stream is then fed into a Java parser [49], which discerns the



role of each identifier (i.e., whether it represents a variable,
method, or type name) and the type of literals. Each TP is
abstracted in isolation. Given a TP tp = {mb,mf , A}, we
first consider the source code of mf . The source code is fed
to a Java lexer, producing the stream of tokens. The stream
of tokens is then fed to a Java parser, which recognizes the
identifiers and literals in the stream. The parser then generates
and substitutes a unique ID for each identifier/literal within the
tokenized stream. If an identifier or literal appears multiple
times in the stream, it will be replaced with the same ID.
The mapping of identifiers/literals with their corresponding
IDs is saved in a map (M ). The final output of the Java
parser is the abstracted method (abstractf ). Then, we consider
the source code of mb. The Java lexer produces a stream of
tokens, which is then fed to the parser. The parser continues
to use map M for mb. The parser generates new IDs only for
novel identifiers/literals, not already contained in M , meaning,
they exist in mb but not in mf . Then, it replaces all the
identifiers/literals with the corresponding IDs, generating the
abstracted method (abstractb). The abstracted TP is now the
following 4-tuple tpa = {abstractb, abstractf , A,M}, where
M is the ID mapping for that particular TP. The process
continues considering the next TP, generating a new mapping
M . Note that we first analyze the fixed code mf and then
the corresponding buggy code mb of a TP since this is the
direction of the learning process (from mb to mf ).

The assignment of IDs to identifiers and literals occurs in
a sequential and positional fashion. Thus, the first method
name found will receive the ID METHOD_1, likewise the
second method name will receive ID METHOD_2. This process
continues for all method and variable names (VAR_X) and
literals (STRING_X, INT_X, FLOAT_X). Fig. 1 shows an
example of the TP’s abstracted code. It is worth noting that IDs
are shared between the two versions of the methods and new
IDs are generated only for newly found identifiers/literals. The
abstracted code allows to substantially reduce the number of
unique words in the vocabulary because we allow the reuse of
IDs across different TPs. For example, the first method name
identifier in any transformation pair will be replaced with the
ID METHOD_1, regardless of the original method name.

At this point, abstractb and abstractf of a TP are a
stream of tokens consisting of language keywords (e.g., if),
separators (e.g., “(”, “;”) and IDs representing identifiers and
literals. Comments and annotations have been removed.

Fig. 1 shows an example of a TP. The left side is the buggy
code and the right side is the same method after the bug-fix

public MyList checkList(MyList l){
   if(l.size() < 0)
      populateList(l);
   return l;}

public MyList checkList(MyList l){
   if(l.size() < 1)
      populateList(l);
   return l;}

buggy code fixed code
bug-fix

mutation

public TYPE_1 METHOD_1 ( TYPE_1 
VAR_1 ) { if ( VAR_1 . METHOD_2 
( )  < INT_1 ) METHOD_3 
( VAR_1 ) ; return VAR_1 ; }

abstracted buggy code abstracted fixed code
public TYPE_1 METHOD_1 ( TYPE_1 
VAR_1 ) { if ( VAR_1 . METHOD_2 
( )  < INT_2 ) METHOD_3 
( VAR_1 ) ; return VAR_1 ; }

public TYPE_1 METHOD_1 ( TYPE_1 
VAR_1 ) { if ( VAR_1 . size 
( )  < 1 ) METHOD_2 ( VAR_1 ); 
return VAR_1 ; }

abstracted buggy code with idioms abstracted fixed code with idioms
public TYPE_1 METHOD_1 ( TYPE_1 
VAR_1 ) { if ( VAR_1 . size 
( )  < 0 ) METHOD_2 ( VAR_1 ) ; 
return VAR_1 ; }

learning

Fig. 1: Transformation Pair Example.

(changed the if condition). The abstracted stream of tokens is
shown below each corresponding version of the code. Note that
the fixed version is abstracted before the buggy version. The
two abstracted streams share most of the IDs, except for the
INT_2 ID (corresponding to the int value 0), which appears
only in the buggy version.

There are some identifiers and literals that appear so often
in the source code that, for the purpose of our abstraction,
they can almost be treated as keywords of the language. For
example, the variables i, j, or index are often used in
loops. Similarly, literals such as 0, 1, -1 are often used
in conditional statements and return values. Method names,
such as getValue, appear multiple times in the code as
they represent common concepts. These identifiers and literals
are often referred to as “idioms” [22]. We keep these idioms
in our representation, that is, we do not replace idioms
with a generated ID, but rather keep the original text in
the code representation. To define the list of idioms, we
first randomly sampled 300k TPs and considered all their
original source code. Then, we extracted the frequency of
each identifier/literal used in the code, discarding keywords,
separators, and comments. Next, we analyzed the distribution
of the frequencies and focused on the top frequent words
(outliers of the distribution). In particular, we focused on the
top 0.005% of the distribution. Two authors manually analyzed
this list and curated a set of 272 idioms. Idioms also include
standard Java types such as String, Integer, common
Exceptions, etc. The complete list of idioms is available
on our online appendix [38].

Fig. 1 shows the idiomized abstracted code at the bottom.
The method name size is now kept in the representation
and not substituted with an ID. This is also the case for
the literal values 0 and 1, which are very frequent idioms.
Note that the method name populateList is now assigned
ID METHOD_2 rather than METHOD_3. This representation
provides enough context and information to effectively learn
code transformations, while keeping a limited vocabulary
(|V | = ∼430). Note that the abstracted code can be mapped
back to the real source code using the mapping (M ).

3) Filtering Invalid TPs: Given the extracted list of 2.3M
TPs, we manipulated their code via the aforementioned ab-
straction method. During the abstraction, we filter out such
TPs that: (i) contain lexical or syntactic errors (i.e., either the
lexer or parser failed to process them) in either the buggy
or fixed version of the code; (ii) their buggy and fixed ab-
stracted code (abstractb, abstractf ) resulted in equal strings.
The equality of abstractb and abstractf is evaluated while
ignoring whitespace, comments or annotations edits, which
are not useful in learning mutants. Next, we filter out TPs that
performed more than 100 atomic AST actions (|A| > 100)
between the buggy and fixed version. The rationale behind this
decision was to eliminate outliers of the distribution (the 3rd
quartile of the distribution is 14 actions) which could hinder
the learning process. Moreover, we do not aim to learn such
large mutations. Finally, we discard long methods and focus
on small/medium size TPs. We filter out TPs whose fixed or



buggy abstracted code is longer than 50 tokens. We discuss this
choice in the Section V and report preliminary results also for
longer methods. After the filtering, we obtained ∼380k TPs.

4) Synthesis of Identifiers and Literals: TPs are the exam-
ples we use to make our model learn how to mutate source
code. Given a tp = {mb,mf , A}, we first abstract its code,
obtaining tpa = {abstractb, abstractf , A,M}. The fixed
code abstractf is used as input to the model which is trained
to output the corresponding buggy code (mutant) abstractb.
This output can be mapped back to real source code using M .

In the current usage scenario (i.e., generating mutants),
when the model is deployed, we do not have access to
the oracle (i.e., buggy code, abstractb), but only to the
input code. This source code can then be abstracted and fed
to the model, which generates as output a predicted code
(abstractp). The IDs that the abstractp contains can be
mapped back to real values only if they also appear in the
input code. If the mutated code suggests to introduce a method
call, METHOD_6, which is not found in the input code, we
cannot automatically map METHOD_6 to an actual method
name. This inability to map back source code exists for any
newly created ID generated for identifiers or literals, which
are absent in the input code. Synthesizing new identifiers
would involve extensive knowledge about the project, control
and data flow information. For this reason, we discard the
TPs that contain, in the buggy method mb, new identifiers
not seen in the fixed method mf . The rationale is that we
want to train our model from examples that rearrange existing
identifiers, keywords and operators to mutate source code.
Instead, this is not the case for literals. While we cannot
perfectly map a new literal ID to a concrete value, we can
still synthesize new literals by leveraging the type information
embedded in the ID. For example, the (fixed) if condition in
Fig. 1 if(VAR_1.METHOD_2( ) < INT_1) should be
mutated in its buggy version if(VAR_1.METHOD_2( ) <
INT_2). The value of INT_2 has never appeared in the input
code (fixed), but we could still generate a compilable mutant
by randomly generating a new integer value (different from
any literal in the input code). While in these cases the literal
value is randomly generated, the mutation model still provides
the prediction about which literal to mutate.

For such reasons, we create two sets of TPs, hereby re-
ferred as TPident and TPident−lit. TPident contains all TPs
tpa = {abstractb, abstractf , A,M} such that every identifier
ID (VAR_, METHOD_, TYPE_) in abstractb is found also in
abstractf . In this set we do allow new literal IDs (STRING_,
INT_, etc.). TPident−lit is a subset of TPident, which is
more restrictive, and only contains the transformation pairs
tpa = {abstractb, abstractf , A,M} such that every identi-
fier and literal ID in abstractb is found also in abstractf .
Therefore, we do not allow new identifiers nor literals.

The rationale behind this choice is that we want to learn
from examples (TPs) where the model is able to generate
compilable mutants (i.e., generate actual source code, with
real values for IDs). In the case of the TPident−lit set, the
model will learn from examples that do not introduce any new

identifier and literal. This means that the model will likely
generate code for which every literal and identifier can be
mapped to actual values. From the set TPident the model will
likely generate code for which we can map every identifier
but we may need to generate new random literals.

In this context it is important to understand the role played
by the idioms in our code representation. Idioms help to
retain transformation pairs that we would otherwise discard,
and learn transformation of literal values that we would
otherwise need to randomly generate. Consider again the pre-
vious example if(VAR_1 . METHOD_2 ( ) < INT_1)
and its mutated version if(VAR_1 . METHOD_2 ( ) <
INT_2). In this example, there are no idioms and, therefore,
the model learns to mutate INT_1 to INT_2 within the if
condition. However, when we want to map back the mutated
(buggy) representation to actual source code, we will not
have a value for INT_2 (which does not appear in the input
code) and, thus, we will be forced to generate a synthetic
value for it. Instead, with the idiomized abstract representation
the model would treat the idioms 0 and 1 as keywords of
the language and learn the exact transformation of the if
condition. The proposed mutant will therefore contain directly
the idiom value (1) rather than INT_2. Thus, the model will
learn and propose such transformation without the need to
randomly generate literal values. In summary, idioms increase
the number of transformations incorporating real values rather
than abstract representations. Without idioms, we would lose
these transformations and our model could be less expressive.

5) Clustering: The goal of clustering is to create subsets of
TPs such that TPs in each cluster share a similar list of AST
actions. Each cluster represents a cohesive set of examples so
that a trained a model can apply those actions to a new code.

As previously explained, each transformation pair tp =
{mb,mf , A} includes a list of AST actions A. In our dataset,
we found ∼1,200 unique AST actions, and each TP can per-
form a different number and combination of these actions. De-
ciding whether the transformation pairs, tp1 and tp2, perform
a similar sequence of actions and, thus, should be clustered to-
gether, is far from trivial. Possible similarity functions include
the number of shared elements in the two sets of actions and
the frequency of particular actions within the sets. Rather than
defining such handcrafted rules, we choose to learn similarities
directly from the data. We rely on an unsupervised learning
algorithm that learns vector representations for the lists of
actions A of each TP. We treat each list of AST actions (A)
as a document and rely on doc2vec [50] to learn a fixed-
size vector representation of such variable-length documents
embedded in a latent space where similarities can be computed
as distances. The closer two vectors are, the more similar the
content of the two corresponding documents. In other words,
we mapped the problem of clustering TPs to the problem of
clustering continuous valued vectors. To this goal, we use k-
means clustering, requiring the number of clusters (k) into
which to partition the data upfront. When choosing k, we need
to balance two conflicting factors: (i) maximize the number of
clusters so that we can train several different mutation models



and, as a consequence, apply different mutations to a given
piece of code; and (ii) have enough training examples (TPs) in
each cluster to make the learning possible. Regarding the first
point, we target at least three mutation models. Concerning
the second point, with the available TPs dataset we could
reasonably train no more than six clusters, so that each of
those contain enough TPs. Thus, we experiment on the dataset
TPident−lit with values of k going from 3 to 6 at steps of
1 and we evaluate each clustering solution in terms of its
Silhouette statistic [51], [52], a metric used to judge the quality
of clustering. We found that k = 5 generates the clusters
with the best overall Silhouette values. We cluster the dataset
TPident−lit into clusters: C1, C2, C3, C4, C5.

C. Learning Mutations

1) Dataset Preparation: Given a set of TPs
(i.e., TPident, TPident−lit, C1, . . . , C5) we use the
instances to train our Encoder-Decoder model. Given a
tpa = {abstractb, abstractf , A,M} we use only the pair
(abstractf , abstractb) of fixed and buggy abstracted code
for learning. No additional information about the possible
mutation actions (A) is provided during the learning process
to the model. The given set of TPs is randomly partitioned
into: training (80%), evaluation (10%), and test (10%)
sets. Before the partitioning, we make sure to remove any
duplicated pairs (abstractf , abstractb) to not bias the results
(i.e., same pair both in training and test set).

2) Encoder-Decoder Model: Our models are based on
an RNN Encoder-Decoder architecture, commonly adopted
in Machine Translation [35]–[37]. This model comprises
two major components: an RNN Encoder, which encodes
a sequence of terms x into a vector representation, and
an RNN Decoder, which decodes the representation into
another sequence of terms y. The model learns a condi-
tional distribution over a (output) sequence conditioned on
another (input) sequence of terms: P (y1, .., ym|x1, .., xn),
where n and m may differ. In our case, given an input
sequence x = abstractf = (x1, .., xn) and a target sequence
y = abstractb = (y1, .., ym), the model is trained to
learn the conditional distribution: P (abstractb|abstractf ) =
P (y1, .., ym|x1, .., xn), where xi and yj are abstracted source
tokens: Java keywords, separators, IDs, and idioms. The En-
coder takes as input a sequence x = (x1, .., xn) and produces a
sequence of states h = (h1, .., hn). We rely on a bi-directional
RNN Encoder [53] which is formed by a backward and
forward RNNs, which are able to create representations taking
into account both past and future inputs [54]. That is, each
state hi represents the concatenation of the states produced
by the two RNNs reading the sequence in a forward and
backward fashion: hi = [

−→
hi ;
←−
hi ]. The RNN Decoder predicts

the probability of a target sequence y = (y1, .., ym) given h.
Specifically, the probability of each output term yi is computed
based on: (i) the recurrent state si in the Decoder; (ii) the
previous i−1 terms (y1, .., yi−1); and (iii) a context vector ci.
The latter practically constitutes the attention mechanism. The
vector ci is computed as a weighted average of the states in

h, as follows: ci =
∑n
t=1 aitht where the weights ait allow

the model to pay more attention to different parts of the input
sequence. Specifically, the weight ait defines how much the
term xi should be taken into account when predicting the target
term yt. The entire model is trained end-to-end (Encoder and
Decoder jointly) by minimizing the negative log likelihood of
the target terms, using stochastic gradient descent.

3) Configuration and Tuning: For the RNN Cells we tested
both LSTM [55] and GRU [37], founding the latter to be
slightly more accurate and faster to train. Before settling
on the bi-directional Encoder, we tested the unidirectional
Encoder (with and without reversing the input sequence), but
we consistently found the bi-directional one yielding more
accurate results. Bucketing and padding was used to deal
with the variable length of the sequences. We tested several
combinations of the number of layers (1,2,3,4) and units (256,
512). The configuration that best balanced performance and
training time was the one with 1 layer encoder, 2 layer decoder
both with 256 units. We train our models for 40k epochs,
which represented our empirically-based sweet spot between
training time and loss function improvements. The evaluation
step was performed every 1k epochs.

III. EXPERIMENTAL DESIGN

The evaluation has been performed on the dataset of bug
fixes described in Sec. II and answers three RQs.

RQ1: Can we learn how to generate mutants from
bug-fixes? RQ1 investigates the extent to which bug fixes
can be used to learn and generate mutants. We train models
based on the two datasets: TPident and TPident−lit. We refer
to such models with the name general models (GMident,
GMident−lit), because they are trained using TPs of each
dataset without clustering. Each dataset is partitioned into 80%
training, 10% validation, 10% testing.

BLEU Score. The first performance metric we use is the
Bilingual Evaluation Understudy (BLEU) score, a metric used
to assess the quality of a machine-translated sentence [56].
BLEU scores require reference text to generate a score, which
indicates how similar the candidate and reference texts are.
The candidate and reference texts are broken into n-grams and
the algorithm determines how many n-grams of the candidate
text appear in the reference text. We report the global BLEU
score, which is the geometric mean of all n-grams up to four.
To assess our mutant generation approach, we first compute
the BLEU score between the abstracted fixed code (abstractf )
and the corresponding target buggy code. This BLEU score
serves as our baseline for comparison. We compute the BLEU
score between the predicted mutant (abstractp) and the target
(abstractb). The higher the BLEU score, the more similar
abstractp is to abstractb, i.e., the actual buggy code. To fully
understand how similar our prediction is to the real buggy
code, we need to compare the BLEU score with our baseline.
Indeed, the input code (i.e., the fixed code) provided to our
model can be considered by itself as a “close translation”
of the buggy code, therefore, helping in achieving a high
BLEU score. To avoid this bias, we compare the BLEU score



between the fixed code and the buggy code (baseline) with the
BLUE score obtained when comparing the predicted buggy
code (abstractp) to the actual buggy code (abstractb). If
the BLEU score between abstractp and abstractb is higher
than that one between abstractf and abstractb, it means
that the model transforms the input code (abstractf ) into a
mutant (abstractp) that is closer to the buggy code (abstractb)
than it was before the mutation, i.e., the mutation goes in
the right direction. In the opposite case, the predicted code
represents a translation that is further from the buggy code
when compared to the original input. To assess whether the
differences in BLEU scores between the baseline and the
models are statistically significant, we employ a technique
devised by Zhang et al. [57]. Given the test set, we generate
m = 2, 000 test sets by sampling with replacement from the
original test set. Then, we evaluate the BLEU score on the m
test sets both for our model and the baseline. Next, we compute
the m deltas of the scores: δi = modeli−baselinei. Given the
distribution of the deltas, we select the 95% confidence interval
(CI) (i.e., from the 2.5th percentile to the 97.5th percentile).
If the CI is completely above or below the zero (e.g., 2.5th

percentile > 0) then the differences are statistically significant.
Prediction Classification. Given abstractf , abstractb and

abstractp, we classify each prediction into one of the follow-
ing categories: (i) perfect prediction if abstractp = abstractb
(the model converts the fixed code back to its buggy version,
thus reintroducing the original bug); (ii) bad prediction if
abstractp = abstractf (the model was not able to mutate
the code and returned the same input code); and (iii) mutated
prediction if abstractp 6= abstractb AND abstractp 6=
abstractf (the model mutated the code, but differently than
the target buggy code). We report raw numbers and percent-
ages of the predictions falling in the described categories.

Syntactic Correctness. To be effective, mutants need to be
syntactically correct, allowing the project to be compiled and
tested against the test suite. We evaluate whether the models’
predictions are lexically and syntactically correct by means of
a Java lexer and parser. Perfect predictions and bad predic-
tions are already known to be syntactically correct since we
established the correctness of the buggy and fixed code when
extracting the TPs. The correctness of the predictions within
the mutated prediction category is instead unknown. For this
reason, we report both the overall percentage of syntactically
correct predictions as well as the mutated predictions. We do
not assess the compilability of the code.

Token-based Operations. We analyzed and classified mod-
els’ predictions also based on their tokens’ operations, classi-
fying the predictions into one of four categories: (i) insertion
if #tokens predictions > #tokens input; (ii) changes if #tokens
prediction = #tokens input AND prediction 6= input; (iii)
deletions if #tokens prediction < #tokens input; (iv) none if
prediction = input. This analysis aims to understand whether
the models are able to insert, change or delete tokens.

AST-based Operations. Next, we focus on the mutated pre-
dictions. These are not perfect predictions, but we are inter-
ested in understanding whether the transformations performed

by the models are somewhat similar to the transformations
between the fixed and buggy code. In other words, we in-
vestigate whether the model performs AST actions similar
to the ones needed to transform the input (fixed) code into
the corresponding buggy code. Given the input fixed code
abstractf , the corresponding buggy code abstractb, and the
predicted mutant abstractp, we extract with GumTreeDiff the
following lists of AST actions: Af−b = actions(abstractf →
abstractb) and Af−p = actions(abstractf → abstractp).
We then compare the two lists of actions, Af−b and Af−p, to
assess their similarities. We report the percentage of mutated
predictions whose list of actions Af−p contains the same
elements and frequency of those found in Af−b. We also report
the percentage of mutated predictions when only comparing
their unique actions and disregarding their frequency. In those
cases, the model performed the same list of actions but
possibly in a different order, location or frequency than those
which led to the perfect prediction (buggy code).

RQ2: Can we train different mutation models? RQ2
evaluates the five models trained using the five clusters of
TPs. For each model, we evaluate its performance on the
corresponding 10% test set using the same analyses discussed
for RQ1. In addition, we evaluate whether models belonging
to different clusters generate different mutants. To this aim,
we first concatenate the test set of each cluster into a single
test set. Then, we feed each input instance in the test set (fixed
code) to each and every mutation model M1, ..,M5, obtaining
five mutant outputs. After that, we compute the number of
unique mutants generated by the models. For each input, the
number of unique mutants ranges from one to five depending
on how many models generate the same mutation. We report
the distribution of unique mutants generated by the models.

RQ3: What are the characteristics of the mutants gener-
ated by the models? RQ3 qualitatively assesses the generated
mutants through manual analysis. We first discuss some of the
perfect predictions found by the models. Then, we focus our
attention on the mutated predictions (neither perfect nor bad
predictions). We randomly selected a statistically significant
sample from the mutated predictions of each cluster-model
and manually analyzed them. The manual evaluation assesses
(i) whether the functional behavior of the generated mutant
differs from the original input code; (ii) the types of mutation
operations performed by the model in generating the mutant.

Three judges, among the authors performed the analysis,
and each instance was independently evaluated by two of them.
The judges were presented with the original input code and
the mutated code. The judges defined the mutation operations
types in an open-coding fashion. Also, they were required to
indicate whether the performed mutation changed the code
behavior. After the initial evaluation, two of the three judges
met to discuss and resolve the conflicts (i.e., disagreement
in the functional behavior change or in the set of mutation
operators assigned) in the evaluation results. We report the
distribution of the mutation operators applied by the different
cluster-models, and highlight the differences.



TABLE I: BLEU Score

Model abstractf - abstractb abstractp - abstractb 2.5th percentile
(baseline) (mutation) δ =mutation - baseline

GMident 71.85 76.68 +5.63
GMident−lit 70.07 76.92 +7.97

M1 67.18 82.16 +17.01
M2 51.58 50.96 +1.01
M3 81.89 83.15 +0.94
M4 67.04 78.87 +12.45
M5 65.68 77.73 +13.51

IV. RESULTS

RQ1: Can we learn how to generate mutants?
BLEU Score. The top part of Table I shows the BLEU

scores obtained by the two general models and compared
with the baseline. The rightmost column represents the 2.5th

percentile of the distribution of the deltas. Compared to the
baseline, the models achieve a better BLEU score when
mutating the source code w.r.t. the target buggy code. The
differences are statistically significant, and the 2.5th percentile
of the distribution of the deltas (+5.63 and +7.97), shows that
the models’ BLEU scores are significantly higher than those
obtained by the baseline. The observed increase in BLEU score
indicates that the code mutated by our approach (abstractp)
is more similar to the buggy code (abstractb) than the input
code (abstractf ). Thus, the injected mutations push the fixed
code towards a “buggy” state, exactly what we expect from
mutation operators. While our baseline is relatively simple,
improvements of few BLEU score points have been treated as
“considerable” in neural machine translation tasks [58].

Prediction Classification. Table II shows the raw numbers
and percentages of predictions falling into the three categories
previously described (i.e., perfect, mutated, and bad predic-
tions). The GMident generated 1,991 (17%) perfect predic-
tions whereas GMident−lit 2,132 (21%) perfect predictions.
We fed into the trained model a fixed piece of code, which
the model has never seen before, and the model was able
to perfectly predict the buggy version of that code, i.e., to
replicate the original bug. No information about the type of
mutation operations to perform nor mutation locations are
provided to the model. The fixed code is its only input. It is
also important to note that, for the perfect predictions of the
GMident−lit model, we can transform the entire abstracted
code to the actual source code by mapping each and every ID
to their corresponding value. The perfect predictions generated
by GMident can be mapped to actual source code but, in some
cases, we might need to randomly generate new literal values.
GMident and GMident−lit generate 6,020 (52%) and 5,240

(52%) mutated predictions, respectively. While these predic-
tions do not match the actual buggy code, they still represent
meaningful mutants. We analyze these predictions in terms of
syntactic correctness and types of operations they perform.

Finally, GMident and GMident−lit are not able to mutate
the source code in 3,548 (30%) and 2,644 (26%) cases,
respectively. While the percentages are non-negligible, it is
still worth noting that overall, in 69% and 73% of cases, the
models are able to mutate the code. These instances of bad
predictions can be seen as cases where the model is unsure
of about how to properly mutate the code. There are different

TABLE II: Prediction Classification

Model Perfect pred. Mutated pred. Bad pred. Total

GMident 1,991 (17%) 6,020 (52%) 3,548 (31%) 11,559
GMident−lit 2,132 (21%) 5,240 (52%) 2,644 (27%) 10,016

M1 1,348 (45%) 1,500 (49%) 190 (6%) 3,038
M2 65 (9%) 635 (91%) 1 (0%) 701
M3 392 (13%) 967 (33%) 1,603 (54%) 2,962
M4 721 (29%) 1,453 (57%) 358 (14%) 2,532
M5 366 (34%) 681 (63%) 33 (3%) 1,080

TABLE III: Syntactic Correctness

Model Mutated pred. Overall

GMident 96.96% 98.42%
GMident−lit 96.56% 98.20%

M1 96.07% 98.06%
M2 95.12% 95.58%
M3 94.42% 98.18%
M4 95.25% 97.27%
M5 91.48% 94.63%

strategies that could be adopted to force the model to mutate
the code (e.g., penalize during training predictions that are
equal to the input, modify the inference step, or using beam
search and select the prediction that is not equal to the input).

Syntactic Correctness. Table III reports the percentage of
syntactically correct predictions performed by the model. More
than 98% of the model predictions are lexically and syntac-
tically correct. When focusing on mutated predictions, the
syntactic correctness is still very high (>96%). This indicates
that the model is able to learn the correct syntax rules from
the abstracted representation we use as input/output of the
model. While we do not report statistics on the compilabil-
ity of the mutants, we can assume that the ∼20% perfect
predictions generated by the models are compilable, since
they correspond to actual buggy code that was committed to
software repositories. This means that the compilability rate
of the mutants generated by our models is at least around
20%. This is a very conservative estimation that does not
consider the mutated predictions. Brown et al. [22] achieved
a compilability rate of 14%. Moreover, “the majority of failed
compilations (64%) arise from simple parsing errors” [22],
whereas we achieve a better-estimated compilability and a high
percentage of syntactically correct predictions.

Token-based Operations. Table IV shows the classification
of predictions based on the token-based operations performed
by the models. GMident and GMident−lit generated pre-
dictions that resulted in the insertion of tokens in 1% of
the cases, changed nodes in 5% and 3% of the cases, and
deletion of tokens in 63% and 69%, respectively. While most
of the predictions resulted in token deletions, it is important to
highlight that our models are able to generate predictions that
insert and change tokens. We investigated whether these results
were in-line with the actual data, or whether this was due
to a drawback of our learning. We found that the operations
performed in the bug-fixes we collected are: 72% insertion, 8%
deletion, and 20% changes. This means that bug-fixes mostly
tend to perform insert operations (e.g., adding an if statement
to check for an exceptional condition), which means that when
learning to inject bugs by mutating the code, it is expected to



TABLE IV: Token-based Operations

Model Insertion Changes Deletion None

GMident 97 (1%) 624 (5%) 7,290 (63%) 3,548 (31%)
GMident−lit 125 (1%) 264 (3%) 6,983 (70%) 2,644 (26%)

M1 11 (0%) 30 (1%) 2,807 (93%) 190 (6%)
M2 27 (4%) 11 (2%) 662 (94%) 1 (0%)
M3 42 (2%) 217 (7%) 1,100 (37%) 1,603 (54%)
M4 87 (3%) 123 (5%) 1,964 (78%) 358 (14%)
M5 25 (2%) 20 (2%) 1,002 (93%) 33 (3%)

TABLE V: AST-based Operations

Model Same Operation Set Same Operation List

GMident 16.02% 13.90%
GMident−lit 24.44% 21.90%

M1 54.46% 48.66%
M2 11.18% 10.23%
M3 15.20% 14.27%
M4 31.65% 29.24%
M5 41.55% 37.44%

observe a vast majority of delete operations (see Table IV).
AST-based Operations. Table V reports the percentage of

mutated predictions that share the same set or list of operations
that would have led to the actual buggy code. GMident and
GMident−lit generate a significant amount of mutated predic-
tions which perform the same set (16% and 24% respectively)
or the same type and frequency (14% and 21%) of operations
w.r.t. the buggy code. This shows that our models can still
generate mutated code that is similar to the actual buggy code.

Summary for RQ1. Our models are able to learn from
bug-fixes how to mutate source code. The general models
generate mutants that perfectly correspond to the original
buggy code in ∼20% of the cases. The mutants generated are
mostly syntactically correct (>98%) and with an estimated
compilability rate of at least 20%.

RQ2: Can we train different mutation models? We
present the performance of the cluster models M1,..,M5 based
on the metrics introduced before. Each model has been trained
and evaluated on the corresponding cluster of TPs, with
respective sizes of C1 = 30,385, C2 = 7,016, C3 = 29,625,
C4 = 25,320, and C5 = 10,798.

BLEU Score. Table I shows the BLEU scores obtained by
the five models. The BLEU scores for these models (mutation
column) are relatively high, between 77.73 and 83.15 (with
exception of model M2), meaning that the mutated code
generated by such models is a very close translation of the
actual buggy code. Looking at the distribution of the deltas,
we can notice that all the 2.5th percentiles are greater than
zero, meaning that the models achieve a BLEU score which
is statistically better than the baselines. Even in the case of
M2, for which the global BLEU score is slightly lower than
the baseline when the comparison is performed over 2,000
random samples, it outperforms the baseline.

Prediction Classification. Table II shows the raw numbers
and percentages of predictions falling in the three categories
we defined. Model M1 achieves the highest percentage of
Perfect predictions (44%), followed by model M5 (33%) and
model M4 (28%). This means that, given a fixed code, it is
very likely that at least one of the models would predict the

actual buggy code, as well as other interesting mutants. At
the same time, the percentages of Bad predictions decreased
significantly (except for M3) w.r.t. the general models.

The high percentage of bad predictions for M3 can be
partially explained by looking at the actual data in the cluster.
The TPs in C3 exhibits small transformations of the code.
This is also noticeable from Table I, which shows a baseline
BLEU score of 81.89 (the highest baseline value), which
means that the input fixed code is already a close translation of
the corresponding buggy code. This may have led the model
to fall in a local minimum where the mutation of the fixed
code is the fixed code itself. Solutions for this problem may
include: (i) further partitioning the cluster into more cohesive
sub-clusters; (ii) allowing more training times/epochs for such
models; (iii) implementing changes in the training/inference
that we discussed previously.

Syntactic Correctness. Table III reports the percentage of
syntactically correct predictions performed by the models.
Overall, the cluster model results are in-line with what was
found for the general models, with an overall syntactic cor-
rectness between 94.63% and 98.18%. When focusing only
on the mutated predictions, we still obtain very high syntactic
correctness, between 91% and 97%. In terms of compilability,
we could expect even better results for these models, given
the higher rate of perfect predictions (which are likely to be
compilable) generated by the cluster models.

Token-based Operations. Table IV shows the classification
of predictions based on the token-based operations performed
by the models. The results for the cluster models are similar
to what we found for general models, with higher percentages
of deletions. In the next sections, we will look more into the
differences among the operations performed by each model.

AST-based Operations. Table V reports the percentage of
mutated predictions sharing the same set or list of operations
w.r.t. the target buggy code. Cluster models, trained on cohe-
sive sets of examples, generate a higher percentage of mutated
predictions sharing the same set or list of operations as the
target buggy code, as compared to the general models. The
results for M1, M4, and M5 are particularly good as they
generate mutants with the same set of operations in 54%, 31%,
and 41% of the cases, respectively, and with the same list of
operations in 48%, 29%, and 37%, respectively.

Unique Mutants Generated. The distribution of unique mu-
tants generated by the five models has the 1st Qu. and Median
values equal to 4, the mean equal to 4.2, and the 3rd Qu. equal
to 5. Thus, the distribution appears to be skewed towards the
maximum value (5). This demonstrates that we are able to
train different mutation models that generate diverse mutants
given the same input code.

Generate Multiple Mutants. We showed that clusters mod-
els are able to generate a diverse set of mutants, however it is
also possible – for each single model – to generate k different
mutants for a given piece of code via beam search decoding. In
a preliminary investigation we performed, we found that each
model can generate more than 50 diverse mutants for a single
method, with an impressive ∼80% syntactic correctness.



Perfect prediction generated by the general models
1
2

Mutated prediction generated by the general models
public boolean isFound (Calculation currentElement, Object expectedElement ) { return currentElement.equals ( expectedElement ) ; }
public boolean isFound (Calculation currentElement, Object expectedElement ) { return (currentElement) == ( expectedElement ) ; }

3
4

Diverse mutants generated by the cluster models
private void addPhotoFace ( int x , int y ) { int rowCount = 0 ; while ( rowCount < ( y - 1 ) ) { addRow ( rowCount , x ) ; rowCount ++ ; } }
private void addPhotoFace ( int x , int y ) { int rowCount = 0 ; while ( rowCount < ( y - 1 ) ) { addRow ( rowCount , x ) ; rowCount ++ ; } }
private void addPhotoFace ( int x , int y ) { }
private void addPhotoFace ( int x , int y ) { int rowCount = 0 ; while ( rowCount < ( y - 1 ) ) { addRow ( rowCount , x ) ; } }
private void addPhotoFace ( int x , int y ) { int rowCount = 0 ; while ( rowCount < ( y - 1 ) ) { addRow ( rowCount , x ) ; rowCount = 1 ; } }
private void addPhotoFace ( int x , int y ) { while ( rowCount < y ) ) { addRow ( rowCount , x ) ; } }

F
M1
M2
M3
M4
M5

public TYPE_1 remove ( int index ) { TYPE_2 < TYPE_1 > VAR_1 = this . VAR_2 . remove ( index ) ; return null != VAR_1 ? VAR_1 . get ( ) : null ; }
public TYPE_1 remove ( int index ) { return this . VAR_2 . remove ( index ) . get ( ) ; }

Fig. 2: Qualitative Examples
add method-call

delete method-call
delete multiple method-calls

replace method-call
delete assignment

replace var assignment
replace var definition

change return value
change return value to null

delete return value
add argument in method-call

delete argument in method-call
replace argument in method-call

delete else block
delete if-block

delete math expr
delete try-catch

delete method body completely
M1 M2 M3 M4 M5

Fig. 3: Cluster Models Operations

Summary for RQ2. The cluster models generate a high
percentage of perfect predictions (between 9% and 45%) with
syntactic correctness between 94% and 98%. Even when the
models generate mutants that are not perfect predictions, they
usually apply a similar set of operations w.r.t. the buggy code.
Furthermore, the trained models generate diverse mutants.

RQ3: What are the characteristics of the mutants
generated by the models? Fig. 2 shows examples of perfect
and mutated predictions generated by the general models, as
well as diverse mutants generated by the cluster models for
the same input code. At the top, each example shows the input
code (fixed) followed by the generated mutated code.

The first example is a perfect prediction generated by the
general model. The top line is the abstracted fixed code fed
to the model, and the bottom line represents the output of
the model, which perfectly corresponds to the target buggy
code. The fixed code first removes the element at index
from VAR_2, assigning it to the VAR_1, and then, if the
newly defined variable is not null, it invokes the method get
and returns its value, otherwise it returns null. The general
model was able to apply different transformations of the code
to generate the original buggy code, which invokes all the
methods in sequence and returns the value. If the removed
element is null, the buggy code will throw an exception when
invoking the method get. This transformation of the code
does not fit in any existing mutation operator category.

Next, we report an interesting case of mutated prediction.
In this case, we used the mapping M to automatically map
back every identifier and literal, showing the ability to gen-
erate actual source code from the output of the model. The
model replaced the equals() method call with an equality
expression (==). This shows how the model was able to
learn common bugs introduced by developers when comparing

objects. Note that the method name equals is an idiom,
which allowed the model to learn this transformation.

Finally, the bottom part of Fig. 2 shows the five mutants
generated by the cluster models for the same fixed code (F)
provided as input. In this case, we used the mapping M
to retrieve the source code from the output of the models.
M1 was not able to generate a mutant and returned the
same input code (bad prediction). M2 generated a mutant by
removing the entire method body. While this appears like a
trivial mutation, it is still meaningful as the method is not
supposed to return a value, but only perform computations
that will result in some side-effects in the class. This means
that the test suite should carefully evaluate the state of the
class after the invocation of the mutant. Mutants generated
by M3 and M4 are the most interesting. They both introduce
an infinite-loop, but in two different ways. M3 deletes the
increment of the rowCount variable, whereas M4 resets its
value to 1 at each iteration. Finally, M5 changes the if
condition and introduces an infinite loop similarly to the
model M3. However, it also deletes the variable definition
statement for rowCount, making the mutant not compilable.
All the predictions (including perfect, mutated, and diverse)
are available in our appendix [38].

In the manual evaluation, three judges analyzed a total of
430 samples (90, 82, 86, 89, and 83 from M1, M2, M3,
M4, M5, respectively). In all cases except one, the judges
agreed that the mutation code had a different behavior than the
original code. The controversial case was related to a mutant
which was created by deleting a print function call, which
(only) indeed changed the method’s output.

Fig. 3 shows a heatmap of the frequency of mutation
operations for each trained model. The intensity of the color
represents the frequency with which a particular operation
(specified by the row) was performed by the particular cluster
model (columns). Due to space constraints, the rows of the
heatmap contain only a subset of the 85 unique types of
operations performed by the models, i.e., only those performed
in at least 5% of the mutations by at least one model.

We also highlighted in red boxes the peculiar, most frequent
operations performed by each model. M1 appears to focus on
deletion of method calls; M3 on deletion and replacement
of an argument in a method call; M4 mostly operates on
if-else blocks and its logical conditions; M5 focuses on
deleting and replacing variable assignments. Finally, it is
worth noting the large variety of operations performed by M2,
ranging from addition, deletion, and replacement of method
calls, variable assignments, arguments, etc.. This might also



explain the lower BLEU score achieved by the latter model,
which performs large and more complex operations w.r.t.
the other models which tend to focus on a smaller set of
operations. Differences among the mutation models can also
be appreciated by the number of different mutation operations
performed for each mutant. The models M1, M2, M3, M4,
M5 performed 1.19, 3.48, 1.42, 1.93, 2.02 average number of
operations for each mutant, respectively.

Summary for RQ3. The mutation models are capable of
performing a diverse set of operations to mutate source code.

V. THREATS TO VALIDITY

Construct validity. To have enough training data, we mined
bug-fixes in GitHub, rather than using curated datasets. We
disregarded large commits that might refer to tangled changes.

Internal validity. In assessing whether the generated mu-
tants change the behavior of the code, we analyzed the mutated
method in isolation (i.e., not in the context of its system). This
might have introduced imprecisions that were mitigated by
assigning multiple evaluators to the analysis of each mutant.

External validity. We only focused on Java code. However,
the learning process is language-independent and can be
instantiated for other languages by replacing the lexer, parser,
and AST diff tools. We only focused on methods having no
more than 50 tokens. We also report experimental results on
larger methods (50-100 tokens) using the same configuration
of the network and training epochs [38]. The model was still
able to generate ∼6% of perfect predictions. More training
time and parameters’ tuning can lead to better results.

VI. RELATED WORK

Brown et al. [22] leveraged bug-fixes to extract syntactic-
mutation patterns from the diffs of patches. Our approach is
novel and differs from Brown et al. in several aspects:
• Rather than extracting all possible mutation operators from
syntactic diffs, we automatically learn mutations from the data;
• Rather than focusing, in isolation, on contiguous lines of
code changed in the diff, we are capable to learn which
mutation operator is effective in a given context;
• Our approach can automatically mutate identifiers and literal
by inserting idioms in the new mutant. When the model
suggests to mutate a literal with another unknown literal,
it is generated randomly. Brown’s et al. approach does not
contemplate the synthesis of new identifiers (see Sec. 2.3 [22]);
• Rather than extracting a single mutation pattern, we can
learn co-occurrences and combinations of multiple mutations;
• While the approach by Brown et al. randomly applies mu-
tation operators to any code location unless the user specifies
a rule for that, our approach automatically applies, for a given
piece of code, the mutation(s) that according to the learning
might reflect likely bugs occurring in such a location. While
limiting mutants only to the most suitable ones for each
location might not be always necessary, because one can apply
as many mutants as possible to increase fault detection, this
could lead to an overestimate of a test suite effectiveness or
to more effort to unnecessarily augment a test suite. In a view

of test suite optimization, an approach that learns where and
how to mutate code is therefore desirable.

Different general-purpose mutation frameworks have been
defined in the literature, including µJava [59], Jester [60],
Major [10], Jumble [61], PIT [62], and javaLanche [63].
The main novelty of our work over those approaches is the
automation of the learning and application of the mutation.

Relevant to our work are also studies investigating the
relationship between mutants and real faults. Andrews et
al. [7], [8] showed that carefully selected mutants can provide
a good assessment of a test suite’s ability to catch real faults
and hand-seeded faults can underestimate the test suite’s bug
detection capability. Daran and Thévenod-Fosse [9] found that
the set of errors produced by carefully selected mutants and
real faults with a given test suite are quite similar, while Just
et al. [13] reported that some types of real faults are not
coupled to mutants and highlighted the need for new mutation
operators. Chekham et al. [14] showed that strong mutation
testing yields high fault revelation, while this is not the case for
weak mutation testing. Our work builds on these studies: we
avoid the need for manually selecting the mutants, to increase
the chances of generating mutants representative of real bugs.

Allamanis et al. [64] generated tailored mutants, e.g., ex-
ploiting API calls occurring elsewhere in the project and show
that tailored mutants are well-coupled to real bugs. Differently
from them, we automatically learn how to mutate code from
an existing dataset of bugs rather than using heuristics.

Tufano et al. proposed the use of NMT for automated pro-
gram repair [23], [24]. While mutation also requires learning
from existing fixes, learning mutants is different because (i)
it requires to abstract recurring mutants from multiple fixes
(Sec. II-B5) rather than learning and proposing specific fixes,
and (ii) the learning happens in the opposite direction.

VII. CONCLUSION

We presented the first NMT-based approach to automatically
learn mutants from existing bug fixes. The generated mutants
are similar to real bugs, with 9% to 45% of them (depending
on the model) reintroducing in the fixed code (provided as an
input) the actual bug. Moreover, our models are able to learn
the correct code syntax, without the need for syntax rules as
input. We release data and source code, so that researchers
can use them for learning other transformations of code [38].
Future work includes (i) additional fine-tuning of the RNN’s
parameters, and (ii) the creation of a mutation testing tool
built on top of our approach. Indeed, while we achieved
promising results in the challenging task of automatically
learning mutants, it is worth noting that a whole infrastructure
must be developed to automatically inject the learned mutants,
making our approach usable by software developers.
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