
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained 
for all other uses, in any current or future media, including reprinting/republishing this material 

for advertising or promotional purposes, creating new collective works, for resale or 

redistribution to servers or lists, or reuse of any copyrighted component of this work in other 

works. 



Interactive Traceability Links Visualization using
Hierarchical Trace Map

Thazin Win Win Aung, Huan Huo, Yulei Sui
University of Technology Sydney

Sydney, Australia
thazinwinwin.aung@student.uts.edu.au

{huan.huo,yulei.sui}@uts.edu.au

Abstract—Traceability links between various software artifacts
of a system aid software engineers in system comprehension,
verification and change impact analysis. Establishing trace links
between software artifacts manually is an error-prone and costly
task. Recently, studies in automated traceability link recovery
area have received broad attention in the software maintenance
community aiming to overcome the challenges of manual trace
links maintenance process. In these studies, the trace links
results generated by an automated trace recovery approach
are presented either in a bland textual matrix format (e.g.,
tabular format) or two-dimensional graphical formats (e.g. tree
view, hierarchical leaf node). Therefore, it is challenging for
software engineers to explore the inter-relationships between
various artifacts at once (e.g., which test cases and source code
files/methods are related to a particular requirement). In this
position paper, we propose a hierarchical trace map visualization
technique to explore inter-relationships between various artifacts
at once naturally and intuitively.

Index Terms—Traceability, Information Retrieval, Visualiza-
tion

I. INTRODUCTION

Traceability has been mentioned in many software devel-
opment methodologies as part of software engineering prac-
tice. Maintaining the trace links between software artifacts
is crucial to perform various software engineering activities
including change impact analysis [1], requirements coverage
analysis [2], requirements verification and validation [3], test
case selection [4], compliance verification [5], issue assign-
ment [6] and bug localization [7]. Over the last few decades,
researchers have attempted to recover trace links automatically
using Information Retrieval (IR) techniques. The idea behind
such techniques is based on the assumption that most software
artifacts such as requirements, use cases, interaction diagrams,
source code, and test cases contain textual descriptions and
meaningful source code identifiers [8]. IR techniques recover
traceability links based on the similarity between the text
contained in two related artifacts of different types [9], [10].
Traditionally, trace links are presented either in two or multi-
dimensional matrix formats, which are commonly known as
a Requirements Traceability Matrix (RTM) [11]. Likewise,
tabular grid style formatting has been used in automatic trace
recovery tools [12], [13] to present result sets for analyst
verification. Even though the tabular format is applicable
for small dataset verification; it is hard to explore inter-
relationships between artifacts conveniently. Recent graphical-

based approaches like hierarchical leaf node [14], tree view
[15], [16], Sunburst [17], and Netmap [17] can only present
the coarse-grain view of traceability between two artifacts at a
time. The main drawback of these approaches is that they fail
to explore relationships between multiple artifacts interactively
to comprehend the overall structure of a system. Therefore,
it is time-consuming and resource-intensive to explore and
interpret the system. Traceability tools like Traceclipse [18]
and TraceViz [19] are platform dependent and specific for
JAVA development environment. In [20], researchers imple-
ment on manual trace links maintenance approach and cypher
query language to retrieve the trace links between various re-
quirement artifacts. However, tracing implementation artifacts
such as source code is not included in their experiments. In
this paper, we propose a hierarchical trace map visualization
approach to support system comprehension and change impact
analysis interactively. The main contributions of our approach
are as follows:

• We propose a stand-alone interactive traceability links
visualization approach which can consume data from ex-
ternal data storage and recover trace links automatically.

• Our hierarchical trace map visualization can assist in
system comprehension and change impact analysis in-
teractively by providing a visual trace links exploration
space.

In the next section, we present how our raw hierarchical trace
map visualization approach is used to present the artifacts
relationships interactively. We designed our conceptual model
based on the standard components of the IR-based traceability
recovery process [21]. Due to space limitations, we presented
our model in Github 1. To explore our conceptual model, we
developed the WebTrace 2 application and evaluated it with the
EasyClinic dataset due to the availability of various software
artifacts, including use cases, interaction diagram, test cases
and source code class descriptions.

II. VISUAL SUPPORT FOR TRACEABILITY LINKS
VISUALIZATION

The main goal of our Hierarchical Trace Map is to provide
visual support in exploring the overall structure of the system

1https://github.com/thazin31086/WebTrace/blob/master/HTM.svg.
2http://www.webtrace.tech/Home/VisualizeTraceLinks.

 https://github.com/thazin31086/WebTrace/blob/master/HTM.svg 
http://www.webtrace.tech/Home/VisualizeTraceLinks 


Fig. 1. Unfiltered view of Hierarchical Trace Map

in one area to reduce the tasks of cross-referencing and
connecting multiple trace link results. It intends to provide an
explicit dependency between artifacts of the system. Figure 1
presents the unfiltered view of use case, test case and source
code artifact relations from EasyClinic dataset. Each artifact is
formatted in different colours for easy differentiation between
artifacts (e.g., Orange –Use Case, Red –Source Code, Green
–Test Case). Each node represents an artifact and supports a
browse-able filtered view of an artifact by either clicking on
each node or using free-text search features. The line repre-
sents the relationships between artifacts. The high-level trace
map view can assist an analyst in various software engineering
tasks, including system comprehension and change impact
analysis.

We positioned the source artifact on the top layer and its
target artifacts on the lower layer to demonstrate hierarchical
layer view of the system. In this view, the line represents
one-to-many relations between the source and target artifact.
Therefore, if there is no line between the source and target
artifact, it means missing links. In Figure 1, some of the last
section and middle section of use case artifacts are missing
lines in test cases. By using this diagram, we can visually
comprehend that some use cases do not have corresponding
test cases. To switch from unfiltered view to filtered view, we
included a node clicking feature and free-text search feature
in our design to support the interactive visual exploration of
the system. Free-text search features can search by file name
or content.

Figure 2 presents the associations between a source and
two target artifacts. We draw the size of the nodes based
on either the textual volume of the artifact or the number
of source code functions. However, we are still finalising on
size measurement definition at this point. For change impact
analysis, a developer can use this diagram to visually inspect
the impact areas of source codes and test cases intuitively
without cross-referencing multiple trace links results.

Figure 3 presents the filtered view between a target and
source artifacts. For source code artifacts, we displayed the

Fig. 2. Filtered view of a source artifact and two target artifacts relation

Fig. 3. Filtered view of a target artifact and source artifacts relation

list of corresponding functions to assist in identifying change
impact area effectively.

III. CONCLUSIONS

In this paper, we propose a hierarchical trace map visual-
ization approach to assist system comprehension and change
impact analysis tasks. Our overarching aim is to enhance the
usability of trace link results with the support of interactive
visualization techniques. In our future work, we intend to add a
more detailed level of abstraction on the structure (e.g., filter
feature for missing links artifacts, recover links feature for
missing links, draw the size of the node based on an artifact
content variation, display the number of associated artifacts)
to assist in system comprehension and change impact analysis
tasks. We plan to replace our current IR engine processing
phase with deep learning techniques to leverage the accuracy
of results. In terms of evaluation, we intend to explore our
approach in an industrial dataset to explore effectiveness in a
real-world software maintenance approach.

REFERENCES

[1] N. Niu and A. Mahmoud, “Enhancing candidate link generation for
requirements tracing: The cluster hypothesis revisited,” in 2012 20th



IEEE International Requirements Engineering Conference (RE), Sep.
2012, pp. 81–90.

[2] G. Bavota, L. Colangelo, A. De Lucia, S. Fusco, R. Oliveto, and
A. Panichella, “Traceme: Traceability management in eclipse,” in 2012
28th IEEE International Conference on Software Maintenance (ICSM),
Sep. 2012, pp. 642–645.

[3] K. Mahmood, H. Takahashi, and M. Alobaidi, “A semantic approach
for traceability link recovery in aerospace requirements management
system,” in 2015 IEEE Twelfth International Symposium on Autonomous
Decentralized Systems, March 2015, pp. 217–222.

[4] M. Rahimi, W. Goss, and J. Cleland-Huang, “Evolving requirements-
to-code trace links across versions of a software system,” in 2016
IEEE International Conference on Software Maintenance and Evolution
(ICSME), Oct 2016, pp. 99–109.

[5] J. Guo, M. Gibiec, and J. Cleland-Huang, “Tackling the term-mismatch
problem in automated trace retrieval,” Empirical Software Engineering,
vol. 22, no. 3, pp. 1103–1142, 2017.

[6] K. Nishikawa, H. Washizaki, Y. Fukazawa, K. Oshima, and R. Mibe,
“Recovering transitive traceability links among software artifacts,” in
2015 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 2015, pp. 576–580.

[7] K. C. Youm, J. Ahn, J. Kim, and E. Lee, “Bug localization based on
code change histories and bug reports,” in 2015 Asia-Pacific Software
Engineering Conference (APSEC), Dec 2015, pp. 190–197.

[8] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo,
“Recovering traceability links between code and documentation,” IEEE
transactions on software engineering, vol. 28, no. 10, pp. 970–983, 2002.

[9] A. D. Lucia, F. Fasano, R. Oliveto, and G. Tortora, “Recovering trace-
ability links in software artifact management systems using information
retrieval methods,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 16, no. 4, p. 13, 2007.

[10] C. Mills and S. Haiduc, “A machine learning approach for determining
the validity of traceability links,” in Proceedings of the 39th
International Conference on Software Engineering Companion, ser.
ICSE-C ’17. Piscataway, NJ, USA: IEEE Press, 2017, pp. 121–123.
[Online]. Available: https://doi.org/10.1109/ICSE-C.2017.86

[11] C. Ziftci and I. Krüger, “Getting more from requirements traceability:
Requirements testing progress,” in 2013 7th International Workshop
on Traceability in Emerging Forms of Software Engineering (TEFSE).
IEEE, 2013, pp. 12–18.

[12] J. H. Hayes, A. Dekhtyar, S. K. Sundaram, E. A. Holbrook, S. Vadla-
mudi, and A. April, “Requirements tracing on target (retro): improving
software maintenance through traceability recovery,” Innovations in
Systems and Software Engineering, vol. 3, no. 3, pp. 193–202, 2007.

[13] A. De Lucia, R. Oliveto, and G. Tortora, “Adams re-trace: Traceability
link recovery via latent semantic indexing,” in Proceedings of the
30th International Conference on Software Engineering, ser. ICSE ’08.
New York, NY, USA: ACM, 2008, pp. 839–842. [Online]. Available:
http://doi.acm.org/10.1145/1368088.1368216

[14] J. Cleland-Huang and R. Habrat, “Visual support in automated tracing,”
in Second International Workshop on Requirements Engineering Visu-
alization (REV 2007), Oct 2007, pp. 4–4.

[15] X. Chen, J. Hosking, and J. Grundy, “Visualizing traceability links
between source code and documentation,” in 2012 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC), Sep.
2012, pp. 119–126.

[16] A. Panichella, C. McMillan, E. Moritz, D. Palmieri, R. Oliveto,
D. Poshyvanyk, and A. De Lucia, “When and how using structural
information to improve ir-based traceability recovery,” in 2013 17th
European Conference on Software Maintenance and Reengineering,
March 2013, pp. 199–208.

[17] T. Merten, D. Jppner, and A. Delater, “Improved representation of
traceability links in requirements engineering knowledge using sunburst
and netmap visualizations,” in 2011 4th International Workshop on
Managing Requirements Knowledge, Aug 2011, pp. 17–21.

[18] S. Klock, M. Gethers, B. Dit, and D. Poshyvanyk, “Traceclipse: an
eclipse plug-in for traceability link recovery and management,” in Pro-
ceedings of the 6th international workshop on traceability in emerging
forms of software engineering. ACM, 2011, pp. 24–30.

[19] A. Marcus, X. Xie, and D. Poshyvanyk, “When and how to visualize
traceability links?” in Proceedings of the 3rd international workshop on
Traceability in emerging forms of software engineering. ACM, 2005,
pp. 56–61.

[20] R. Elamin and R. Osman, “Implementing traceability repositories as
graph databases for software quality improvement,” in 2018 IEEE
International Conference on Software Quality, Reliability and Security
(QRS). IEEE, 2018, pp. 269–276.

[21] A. De Lucia, A. Marcus, R. Oliveto, and D. Poshyvanyk, “Information
retrieval methods for automated traceability recovery,” in Software and
systems traceability. Springer, 2012, pp. 71–98.

https://doi.org/10.1109/ICSE-C.2017.86
http://doi.acm.org/10.1145/1368088.1368216

	Introduction
	Visual Support for Traceability Links Visualization
	Conclusions
	References

