
ar
X

iv
:1

91
0.

08
90

8v
1

 [
cs

.S
E

]
 2

0
O

ct
 2

01
9

Processing Large Datasets of
Fined Grained Source Code Changes

Stanislav Levin
The Blavatnik School of Computer Science

Tel Aviv University
Tel-Aviv, Israel

stas.levin@cs.tau.ac.il

Amiram Yehudai
The Blavatnik School of Computer Science

Tel Aviv University
Tel-Aviv, Israel

amiramy@tau.ac.il

Abstract—In the era of Big Code, when researchers seek to
study an increasingly large number of repositories to support
their findings, the data processing stage may require manipulat-
ing millions and more of records.

In this work we focus on studies involving fine-grained AST
level source code changes. We present how we extended the
CodeDistillery source code mining framework with data manip-
ulation capabilities, aimed to alleviate the processing of large
datasets of fine grained source code changes. The capabilities
we have introduced allow researchers to highly automate their
repository mining process and streamline the data acquisition
and processing phases. These capabilities have been successfully
used to conduct a number of studies, in the course of which
dozens of millions of fine-grained source code changes have been
processed.

I. INTRODUCTION

Fine-grained AST level source code changes play an impor-
tant role in improving our understanding of software main-
tenance and its evolution [1–8]. In the era of Big Code,
researchers seek to study an increasingly large number of
repositories to support their findings. Consequently, their data
acquisition stage, where fine-grained source code changes are
mined from software repositories, may yield a large dataset
of fine-grained source code changes. These datasets can reach
millions and more of records.

In light of the resources (time, memory, etc.) it takes to load,
let alone manipulate such large datasets, the task of processing
them goes beyond spreadsheets or even the R environment [9].
In fact, addressing the challenges involved in processing large
datasets is one of the driving forces behind many tools and
frameworks in the Big Data [10] ecosystem.

In this work we seek to alleviate this task and present the
analytical layer we have built and integrated into the CodeDis-
tillery [11] source code mining framework. Given an input
dataset of raw fine-grained source code changes produced
by CodeDistillery, our analytical layer produces an output
dataset consisting of detailed, commit level records. Each
record consists of information such as: fine-grained change
type frequencies, number of tests suits changed, number of test
methods changed, associated task id (if detected) and so on.
The output schema is described in detail on CodeDistillery’s
home page [11].

To effectively process large datasets, our analytical layer
leverages Apache Spark [12] (henceforth Spark), a widely
popular distributed computation engine. The analytical layer
we suggest has been successfully used to conduct a number of
studies in the field of software maintenance and evolution [6–
8]. This leads us to believe it can be useful for researchers con-
ducting studies that involve fine-grained source code changes.

II. RELATED WORK

Projects such as GH Archive [13], GH Torrent [14],
Boa [15], and GitHub API, seek to create scalable services
for querying rich source control data. While these tools pro-
vide access to commit metadata and even source code, they
do not easily support a complex computation such as AST
differencing over entire commit histories.

The work that relates most closely to ours, is the experience
report by Shang et al. [16], who used MapReduce [17] and
Pig [18] for scaling software repository mining tools. In
contrast to Shang et al. [16], we chose to scale our processing
using Spark, a modern distributed computation framework.
Our choice is motivated by the advantages Spark offers to
its users. In particular, Spark is considered to be more perfor-
mant [19], and puts forth a simple, yet powerful programming
model [20].

III. OBTAINING FINE GRAINED SOURCE CODE CHANGES

In order to obtain raw fine grained source code changes
we use CodeDistillery [11], a framework built to address
the challenges involved in mining fine-grained source code
change at scale. Given a list of Git repository paths (on the
filesystem) as an input, CodeDistillery produces an output
dataset, consisting of the fine-grained source code changes
mined from the specified repositories. This output is generated
by replaying the commit history, and recording the AST
changes (if any) between consecutive source code revisions
(see also the pseudo code in Listing 1). In order to record
AST changes, CodeDistillery utilizes the ChangeDistiller AST
differencing tool [21]. The output also contains additional
metadata extracted from the commit and the source code files
that were processed. Using CodeDistillery we were able to
gain a 3x performance improvement, compared to sequentially
applying ChangeDistiller.

1

http://arxiv.org/abs/1910.08908v1

Listing 1: Mining fine-grained changes from a repository

mineSingleRepo (repo , outputDir):

revisions = revisionsOf (repo)

for (current ,next) in pairsOf(revisions)

changedFiles = fileDiff (current ,next)

for file in changedFiles

srcBefore = read (file ,current)

srcAfter = read (file ,next)

astDiff = treeDiff (srcBefore ,srcAfter)

write(astDiff ,outputDir)

IV. PROCESSING LARGE DATASETS OF FINE GRAINED

SOURCE CODE CHANGES

Once a dataset of raw fine-grained source code changes has
been acquired, researchers are likely to explore and manipulate
it in various ways to pursue insights. In the following sections
we share our experience manipulating large datasets of fine-
grained source code changes (acquired using CodeDistillery),
and present the capabilities we have built to automate this task.

The analytical layer we have built is implemented in Scala,
as a Spark job. One of the fundamental abstractions in Spark
is the resilient distributed dataset (RDD) [22]. Spark evaluates
resilient distributed datasets lazily, allowing them to find an
efficient plan for the user’s computation. In the code snippets
to follow, Spark transformations are highlighted in blue, type
annotations are highlighted in violet, and type aliases are in
teal. Type annotations for local variables are often omitted in
Scala, we explicitly provide them in some of the cases for the
sake of clarity.

We begin with reading all the fine-grained source code
change datasets which were previously acquired using
CodeDistillery, see Listing 2. The way these datasets are
organized on disk may vary (e.g., a dataset file per project,
a dataset file per a number of projects, etc.), however, the
methods we describe hold just the same since the schema
of these datasets is consistent. That is, each row (a line in
a data file) in any of these datasets has the same format and
column structure (as per CodeDistillery’s design). For the sake
of demonstration we assume that there is a single dataset file
per project, holding all the fine-grained source code changes
mined from that software repository.

The variable projects (see bookmark 1 in Listing 2) is a
collection of project names, over which we iterate and apply
a map transformation that builds a resilient distributed dataset
from each project’s data file using Spark’s textFile() API.
The data files we read were produced by CodeDistillery, which
uses a CSV format with a “#” (pound) sign as a separator
between values. We therefore split each line by the pound
sign (see bookmark 2 in Listing 2) to parse the original
line into individual values. This parsing results in each line
transformed into an Array[String], which we type-alias as
ParsedLine. Each element in a ParsedLine is an individual
value parsed from a given line of a given data file. Since
the example deals with multiple projects, the perProjectData
variable ends up being Set[RDD[Array[String]]], which we
type-alias as MultiDataset. This MultiDataset is then flattened

Listing 2: Reading input data

type ParsedLine = Array[String]

type Dataset = RDD[ParsedLine]

type MultiDataset = Set[Dataset]

val sparkContext =

new SparkContext (

new SparkConf (). setMaster (" local [*]"))

val perProjectData : MultiDataset =

1 projects

.map(prj =>

sc.textFile (dataOf(prj))

2 .map(line => line .split ("#")))

val fineGrainedChanges : Dataset =

3 sc.union(perProjectData .toSeq)

Listing 3: Computing per commit change type frequencies

val perCommitFrequencies :

RDD[(String , Map[String , Int])] =

fineGrainedChanges

// aggregate per COMMIT_ID

1 .groupBy(vals => vals (COMMIT_ID))

// compute change types ’ frequencies

2 .mapValues (countChangeTypes)

into a Dataset using the union operation provided by Spark’s
API (see bookmark 3 in Listing 2). Each element in the
flattened Dataset is a ParsedLine. Since resilient distributed
datasets are lazy data structures, no actual processing has been
done yet. It will only take place once an action (e.g., printing,
counting, etc.) is invoked on the fineGrainedChanges resilient
distributed dataset.

Once the data reading specification is complete, fine-grained
source code change frequencies per commit can be computed.
That is, how many times each fine-grained source code change
type (of the 48 different change types suggested by Fluri and
Gall [21], e.g., “ADDITIONAL_CLASS”, “DOC_INSERT”), appeared
in a given commit (see Listing 3).

The per commit change type frequency computation (List-
ing 3) uses the groupBy and mapValues transformations. The
groupBy transformation takes an element from the RDD it
is applied on, i.e., fineGrainedChanges, and extracts a key
that is used to group all elements with the same key into
a single group. Since we would like to compute the fre-
quencies of the different fine-grained source code changes
per commit, we specify the key to be the commit id (a.k.a.
"commit hash") by passing the groupBy a function that ex-
tracts the commit id given an element from the RDD (see
bookmark 1 in Listing 3). The groupBy transformation de-
rives a new RDD where each element is a pair of type
(String, Iterable[Array[String]]). The first component in
this tuple (a.k.a. “key”) is the commit id, and the second (a.k.a.
“value”) is a collection of all the elements which have this
particular key. Then, the mapValues transformation is applied
(see bookmark 2 in Listing 3) on these tuples, which applies
a given transformation on each tuple’s second component
(leaving the tuple’s first component unchanged). The argument

2

passed to mapValues (see bookmark 2 in Listing 3) is the
function to be applied on these tuples’ values. It calculates
the frequencies of each fine-grained source code change type
(see the countChangeTypes() function as detailed in Listing 4).

Listing 4: Computing change type frequencies

def countChangeTypes (

parsedLines : Iterable [ParsedLine]):

Map[String , Int] =

parsedLines

1 .map(parsedLine =>

parsedLine (CHANGE_TYPE))

2 .groupBy (identity)

3 .mapValues (_.size)

The countChangeTypes function (see Listing 4) receives
an iterable of parsed lines, where each item represents a
change performed in a given commit. It returns a a dictio-
nary (Map[String, Int]) between the fine-grained source code
change type (e.g., “ADDITIONAL_CLASS”) and its frequency.
Note that countChangeTypes does not operate on RDDs but
on Scala’s native collections.

One of the benefits of using Spark’s Scala API is that it
is consistent with Scala’s native collections. In particular, the
name and semantics of the mapValues and groupBy transforma-
tions for Scala collections and Spark RDDs are the same.

The countChangeTypes function first transforms each parsed
line to its corresponding fine-grained source code change type
(bookmark 1 in Listing 4), and then all the resulting values are
grouped using the identity key extractor (bookmark 2 in List-
ing 4). This operation forms a dictionary data structure, where
the key is a fine-grained source code type and the value is a
collection of all its instances. We then transform these tuples’
second component (bookmark 3 in Listing 4) by counting
the number of instances associated with its key (the change
type). Therefore, countChangeTypes returns a dictionary data
structure, where the key is a fine-grained source code change
type, and the value is this change type’s frequency (e.g., “AD-

DITIONAL_CLASS” → 3). Consequently, perCommitFrequencies
(see Listing 3) will hold a resilient distributed dataset of
tuples, where the first component is a commit id, and the
second component is the returned value of countChangeTypes,
i.e., the various change types and their frequencies. The
perCommitFrequencies RDD (see Listing 3) will therefore
contain elements of the following form:

1a2b3c→ {PARAMETER_INSERT → 3, DOC_DELETE → 1}

V. DISCUSSION

In the course of our studies [6–8], the data processing stage
typically included the following aggregations: commit level;
developer level; project level; global statistics. The analytical
layer we present allows researchers to produce commit level
aggregations (see Listing 5) and obtain statistics such as:
change type frequencies, number of test case (test method)
addition/removal/modification, number of test suite (test class)
addition/removal/modification, associated ticket id, number of
test files, and non test files in a given commit.

Listing 5: The new commit level aggregation capability

// ds1 & ds2 were produced by CodeDistillery

PerCommit .aggregate (Set(ds1 , ds2), output)

As software analytics [23] studies seek to distill large
amounts of low-value data into small chunks of very high-
value information [24], we believe that a commit level aggre-
gation strikes the balance for a number of reasons:

• The per commit aggregation contains the most informa-
tion, as some statistics cannot be sensibly computed in the
context of per contributor and/or per project aggregations
unless transformed.

• The per commit aggregation can be used to derive per
contributor, and per project aggregations by performing
further grouping.

• The per commit aggregation produces a significantly
reduced dataset compared to raw fine-grained source code
changes. More often than not, it is already sufficiently
compact to be further explored and manipulated in inter-
active environments such as R.

We performed a preliminary benchmark where a per commit
aggregation was applied on a dataset consisting of fine-grained
source code changes acquired from 4 popular open source
software repositories: Apache Beam, Apache Hadoop, Apache
Camel, and RxJava. This dataset was acquired using CodeDis-
tillery, and consisted of 3,211,933 records with a total size of
2.1 GB. Our analytical layer was able to complete a commit
level aggregation in 73 seconds. In a vanilla R environment
(without specialized libraries such as SparkR [25]), performing
a commit level aggregation required 193 seconds, 2.6x slower.
The benchmarks were conducted on macOS Sierra 10.12.6,
Intel i7-7820HQ CPU (2.90GHz), and 16 GB RAM (2133
MHz).

VI. CONCLUSION AND FUTURE WORK

In this work we presented the analytical layer we built to
support the processing of large datasets of fine-grained source
code changes. We also demonstrated how researchers can
obtain commit level aggregations and accumulative statistics
from raw datasets produced by the CodeDistillery framework.

Our analytical layer has been successfully used to conduct
a number of studies in the field of software evolution and
maintenance [6–8]. In the course of these studies it has
processed dozens of millions of records.

Future direction may include the exploration of additional
analytical layers to be provided on top of the CodeDistillery
framework. For example, it could be beneficial to facilitate,
or even automate, the building of predictive models using
CodeDistillery. Currently, such a task would typically require
manual intervention and labour at various points along the
way.

ACKNOWLEDGEMENTS

We thank Dr. Boris Levin for his valuable comments and
constructive criticism of the manuscript.

3

REFERENCES

[1] D. Romano, P. Raila, M. Pinzger, and F. Khomh, “An-
alyzing the impact of antipatterns on change-proneness
using fine-grained source code changes,” in 2012 19th

Working Conference on Reverse Engineering. IEEE,
2012, pp. 437–446.

[2] E. Giger, M. Pinzger, and H. C. Gall, “Comparing fine-
grained source code changes and code churn for bug pre-
diction,” in Proceedings of the 8th Working Conference

on Mining Software Repositories. ACM, 2011, pp. 83–
92.

[3] B. Fluri, H. C. Gall, and M. Pinzger, “Fine-grained anal-
ysis of change couplings,” in Fifth IEEE International

Workshop on Source Code Analysis and Manipulation

(SCAM’05). IEEE, 2005, pp. 66–74.
[4] B. Fluri, M. Würsch, E. Giger, and H. C. Gall, “Ana-

lyzing the co-evolution of comments and source code,”
Software Quality Journal, vol. 17, no. 4, pp. 367–394,
2009.

[5] C. Marsavina, D. Romano, and A. Zaidman, “Study-
ing fine-grained co-evolution patterns of production and
test code,” in Source Code Analysis and Manipulation

(SCAM), 2014 IEEE 14th International Working Confer-

ence on. IEEE, 2014, pp. 195–204.
[6] S. Levin and A. Yehudai, “Using temporal and semantic

developer-level information to predict maintenance activ-
ity profiles,” in Proc. ICSME. IEEE, 2016, pp. 463–468.

[7] S. Levin and A. Yehudai, “Boosting automatic
commit classification into maintenance activities by
utilizing source code changes,” in Proceedings of

the 13th International Conference on Predictive

Models and Data Analytics in Software Engineering

(PROMISE). ACM, 2017, pp. 97–106. [Online].
Available: http://doi.acm.org/10.1145/3127005.3127016

[8] S. Levin and A. Yehudai, “The co-evolution of test
maintenance and code maintenance through the lens
of fine-grained semantic changes,” in 2017 IEEE

International Conference on Software Maintenance and

Evolution, ICSME 2017, Shanghai, China, September

20-22, 2017, 2017, pp. 35–46. [Online]. Available:
https://doi.org/10.1109/ICSME.2017.9

[9] R Development Core Team, R: A Language

and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria,
2008, ISBN 3-900051-07-0. [Online]. Available:
http://www.R-project.org

[10] F. X. Diebold, “On the origin (s) and development of the
term Big Data,” PIER Working Paper, 2012.

[11] S. Levin, “CodeDistillery github repository,”
https://github.com/staslev/CodeDistillery, 2019, [Online;
accessed 27-March-2019].

[12] “Lightning-fast cluster computing,”
http://spark.apache.org/, 2014, [Online; accessed
11-April-2016].

[13] I. Grigorik, “GH Archive,” https://www.gharchive.org/,

2012, [Online; accessed 27-March-2019].
[14] G. Gousios, “The ghtorrent dataset and tool

suite,” in Proceedings of the 10th Working

Conference on Mining Software Repositories,
ser. MSR ’13. Piscataway, NJ, USA: IEEE
Press, 2013, pp. 233–236. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2487085.2487132

[15] R. Dyer, H. Rajan, H. A. Nguyen, and T. N. Nguyen,
“Mining billions of ast nodes to study actual and potential
usage of java language features,” in Proceedings of the

36th International Conference on Software Engineering.
ACM, 2014, pp. 779–790.

[16] W. Shang, B. Adams, and A. E. Hassan, “An experience
report on scaling tools for mining software repositories
using mapreduce,” in Proceedings of the IEEE/ACM

international conference on Automated software engi-

neering. ACM, 2010, pp. 275–284.
[17] J. Dean and S. Ghemawat, “Mapreduce: simplified data

processing on large clusters,” Communications of the

ACM, vol. 51, no. 1, pp. 107–113, 2008.
[18] C. Olston, B. Reed, U. Srivastava, R. Kumar, and

A. Tomkins, “Pig latin: a not-so-foreign language for data
processing,” in Proceedings of the 2008 ACM SIGMOD

international conference on Management of data. ACM,
2008, pp. 1099–1110.

[19] J. Shi, Y. Qiu, U. F. Minhas, L. Jiao, C. Wang, B. Rein-
wald, and F. Özcan, “Clash of the titans: Mapreduce vs.
spark for large scale data analytics,” Proceedings of the

VLDB Endowment, vol. 8, no. 13, pp. 2110–2121, 2015.
[20] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust,

A. Dave, X. Meng, J. Rosen, S. Venkataraman, M. J.
Franklin et al., “Apache spark: a unified engine for big
data processing,” Communications of the ACM, vol. 59,
no. 11, pp. 56–65, 2016.

[21] B. Fluri and H. C. Gall, “Classifying change types for
qualifying change couplings,” in Program Comprehen-

sion, 2006. ICPC 2006. 14th IEEE International Con-

ference on. IEEE, 2006, pp. 35–45.
[22] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,

M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica,
“Resilient distributed datasets: A fault-tolerant abstrac-
tion for in-memory cluster computing,” in Proceedings

of the 9th USENIX conference on Networked Systems

Design and Implementation. USENIX Association,
2012, pp. 2–2.

[23] T. Menzies and T. Zimmermann, “Software analytics: so
what?” IEEE Software, no. 4, pp. 31–37, 2013.

[24] T. Menzies and M. Shepperd, ““bad smells” in software
analytics papers,” Information and Software Technology,
2019.

[25] Apache Software Foundation (ASF), “SparkR,”
https://spark.apache.org/docs/latest/sparkr.html#overview,
[Online; accessed 11-April-2019].

4

http://doi.acm.org/10.1145/3127005.3127016
https://doi.org/10.1109/ICSME.2017.9
http://www.R-project.org
https://github.com/staslev/CodeDistillery
http://spark.apache.org/
https://www.gharchive.org/
http://dl.acm.org/citation.cfm?id=2487085.2487132
https://spark.apache.org/docs/latest/sparkr.html#overview

	I Introduction
	II Related Work
	III Obtaining fine grained source code changes
	IV Processing large datasets of fine grained source code changes
	V Discussion
	VI Conclusion and Future Work

