
Comparing Constraints Mined From Execution
Logs to Understand Software Evolution

Thomas Krismayer∗†, Michael Vierhauser†, Rick Rabiser∗†, Paul Grünbacher∗†
∗Christian Doppler Laboratory MEVSS, †Institute for Software Systems Engineering

Johannes Kepler University Linz, Austria
{thomas.krismayer, michael.vierhauser, rick.rabiser, paul.gruenbacher}@jku.at

Abstract—Complex software systems evolve frequently, e.g.,
when introducing new features or fixing bugs during mainte-
nance. However, understanding the impact of such changes on
system behavior is often difficult. Many approaches have thus
been proposed that analyze systems before and after changes,
e.g., by comparing source code, model-based representations, or
system execution logs. In this paper, we propose an approach
for comparing run-time constraints, synthesized by a constraint
mining algorithm, based on execution logs recorded before and
after changes. Specifically, automatically mined constraints define
the expected timing and order of recurring events and the values
of data elements attached to events. Our approach presents the
differences of the mined constraints to users, thereby providing
a higher-level view on software evolution and supporting the
analysis of the impact of changes on system behavior. We present
a motivating example and a preliminary evaluation based on a
cyber-physical system controlling unmanned aerial vehicles. The
results of our preliminary evaluation show that our approach
can help to analyze changed behavior and thus contributes to
understanding software evolution.

Index Terms—Software evolution, constraint mining, dynamic
analysis.

I. INTRODUCTION

The full behavior of large-scale systems such as software-
intensive and cyber-physical systems (CPS) typically only
fully emerges at run time. It has been shown that intentional
changes, such as adding new features or fixing bugs, often
lead to unintentional changes with further side-effects [16].
Even small changes may significantly affect the overall system
behavior. In the field of software maintenance and evolution
a variety of approaches have thus been introduced to analyze
changes and to better understand evolution. For instance, many
approaches analyze the change impact by comparing source
code [6], [10], [2] or model-based representations [14], [1],
often supported by information extracted from version control
systems [5], [3]. Due to limitations of static analyses for de-
termining the change impact on run-time behavior, techniques
have been developed to analyze and compare execution logs
produced by systems at run time [15], [11], [13].

In this paper, we propose a new approach for determining
the change impact by applying our existing constraint min-
ing algorithm [8] to analyze the execution logs of multiple
software versions. Our mining technique detects and analyzes
recurring event patterns to extract constraints on event oc-
currence, timing, and event data (as well as combinations of
these types). It presents the identified candidate constraints

to users in a domain-specific language (DSL) [12] and offers
a range of filtering and ranking strategies [7]. The approach
presented in this paper uses constraint mining to re-mine
constraints after changes to the system and then compares the
constraint sets. Differences are analyzed to highlight important
changes in system behavior to the users, thereby lifting the
level of abstraction from source code and execution logs to
differences of constraints in a DSL. Specifically, changes in
behavior become visible by constraints only found before
or after the change, constraints with different values (e.g.,
different intervals for allowed values of event data items), or
constraints changed in other ways (e.g., changed event names).
Obviously, constraints may also remain identical in both sets.

In the remainder of this paper we use a motivating example
from the domain of unmanned aerial vehicles (UAVs) and
discuss how the behavior of a cyber-physical UAV control
system can change due to maintenance and evolution. We
briefly describe the constraint mining technique we build on
and then introduce our evolution analysis approach. We further
present a preliminary evaluation of our approach by applying
it to the UAV control system. We conclude with a discussion
of the status and an outlook on future research.

II. MOTIVATING EXAMPLE

Dronology [4] is a CPS providing a research environment
for managing, monitoring, and coordinating the flights of
multiple UAVs, i.e., drones. The system provides features to
assign missions and to simultaneously control multiple UAVs
of different types. It can interact with real hardware (the
flying physical UAVs) and with a fully-fledged, high-fidelity
Software-in-the-Loop simulator that enables experimentation
with virtual UAVs. Both physical and virtual UAVs are con-
trolled by a dedicated ground-control station that handles
commands sent to, and messages received from the UAV.

For example, when a new UAV connects to Dronology, it
sends a PHYSICAL_UAV_ACTIVATED event with the current
position of the drone. After activation each connected UAV
once per second sends a state event containing its position,
speed, battery status, flight mode, etc. Dronology allows to
define routes consisting of multiple waypoints and assign
them to one of the connected UAVs. When starting and
finishing a route, and at each waypoint, the system creates
the respective events (PLAN_ACTIVATED, PLAN_FINISHED,
WAYPOINT_REACHED).

ar
X

iv
:2

00
1.

02
46

7v
1

 [
cs

.S
E

]
 8

 J
an

 2
02

0

Accepted for publication at the 2019 IEEE Int’l Conf. on Software Maintenance and Evolution
Final Version available at: https://doi.org/10.1109/ICSME.2019.00082

As the system evolves, new features are introduced, bugs
are fixed, and new functionality is added to accommodate
additional application scenarios. This inevitably results in new
or changed events, as well as different event data elements and
data values attached to events. Furthermore, changes to the
UAV hardware, for example, adding new sensors, or the use of
new UAV models with different physical characteristics (e.g.,
hexcopter vs. quadcopter) can have a big impact on system
behavior, which in turn affects the events and data collected at
run time. Such differences are not always the result of changes
in the system, but can also result from executing different
tasks. For example, a new maximum flight altitude might be
the result of different routes assigned to the UAVs.

III. BACKGROUND: CONSTRAINT MINING

Our existing constraint mining approach [8] extracts the
behavior of a software system by analyzing execution logs
collected during system runs. These logs contain complex
events consisting of an event type, a timestamp, and (op-
tionally) event data elements, such as sensor values or status
messages. The mined constraints can then be monitored to
detect unexpected behavior in future runs. Specifically, the
mining approach extracts three types of constraints:

Temporal constraints define the order of multiple events
and their timing. An example from Dronology is “if event
PLAN_ACTIVATED occurs event PLAN_FINISHED occurs
within 1 min”.

Value constraints check the validity of one or multiple
data elements attached to events of one particular type.
An example from Dronology is the constraint “if event
WAYPOINT_REACHED occurs data("location.z") >= 10”.
It checks that a drone is at least 10 m above the ground at
every waypoint.

Hybrid constraints combine temporal and value con-
straints, i.e., they check the correct order and timing of
multiple events as well as the validity of one or more values
from event data items. An example of a hybrid constraint
is “if event PHYSICAL_UAV_ACTIVATED occurs event
state where PHYSICAL_UAV_ACTIVATED.data("x") ==
state.data("location.x") occurs within 1 s”.

After the preparatory step of parsing execution logs the min-
ing approach extracts these types of constraints in three main
steps. It then filters, groups, and ranks the mined constraints
in a fourth step before presenting them to the users:

Detecting event sequences. The algorithm first detects event
sequences, i.e., recurring patterns of events that usually appear
together. One example of such a sequence in Dronology is that
PLAN_ACTIVATED is followed by PLAN_FINISHED. The
sequences detected in this step are temporal constraints.

Creating feature vectors. The algorithm then creates feature
vectors for each instance of the found sequences, i.e., groups of
events in the input log matching the respective pattern. Each
vector contains the values of all event data elements of the
events of the sequence instance. Event data elements that have
the same value for all vectors are extracted as value constraints
and hybrid constraints before being removed from the vectors.

Figure 1. Evolution analysis approach.

Analyzing feature vectors. Finally, the algorithm analyzes
the feature vectors for each of the sequence types. Value
and hybrid constraints are generated for event data elements
that have the same value for the majority of the vectors, for
intervals that contain the values for one event data element (not
including outliers), and for multiple event data elements with
equal values for all vectors.

Filtering, grouping, and ranking constraints. The mined
constraints are then filtered, i.e., an algorithm eliminates
duplicate and highly similar constraints. The algorithm also
removes constraints with low confidence, i.e., the rate of
positive evaluations among all evaluations, and (optionally)
low support, i.e., the absolute number of positive evalua-
tions [9]. The algorithm groups the remaining constraints,
ranks them (e.g., based on their confidence), and presents them
to domain experts who select the ones to be used for system
monitoring or other applications [7].

IV. EVOLUTION ANALYSIS APPROACH

Our approach aims to support evolution by detecting and
analyzing changes in the behavior of a system. These changes
are reflected in disparities of the constraints mined from two
different system versions. The approach shown in Figure 1
comprises steps for mining constraints and for comparing,
analyzing, and presenting the mining results.

Step 0: Extracting and preparing datasets. The input re-
quired for the mining approach are system execution logs
recorded from a system before and after the changes to be
investigated. Each log represents a particular system version.
It can be a simple log file as produced by most systems today
or a more advanced execution log format.

Step 1: Mining constraints for datasets. The approach then
uses constraint mining [8] to extract constraints in an existing
DSL [12] for both datasets. This step uses all the constraints
produced by the constraint mining algorithm with a confidence
of at least 90% (based on initial experiments) to filter irrelevant
constraints and therefore does not require user input.

Step 2: Comparing resulting constraint sets. Our algorithm
then compares the two resulting constraint sets to detect
differences as illustrated in Algorithm 1. Specifically, it detects
identical constraints, constraints with updated values, con-
straints with major changes (e.g., renamed events/event data
elements or changes in the event sequence), and constraints
only mined for one of the datasets. First, the algorithm detects

2

Accepted for publication at the 2019 IEEE Int’l Conf. on Software Maintenance and Evolution
Final Version available at: https://doi.org/10.1109/ICSME.2019.00082

Algorithm 1 Compare constraint sets.
1: function DETECTDIFFERENCES(A,B)
2: Identical ← {(a, b) | (a, b) ∈ A×B ∧ a = b}
3: DifferentVal ← {(a, b) | (a, b) ∈ A×B ∧

structure(a) = structure(b)∧
values(a) 6= values(b)}

4: A← A\{a | (∃b | (a, b) ∈ Identical∪DifferentVal)}
5: B ← B\{b | (∃a | (a, b) ∈ Identical∪DifferentVal)}
6: Different ← {(a, b) | (a, b) ∈ A×B ∧

similarity(a, b) > 0.5 ∧ (@c | c ∈ B ∧
similarity(a, c) > similarity(a, b))}

7: Missing ← A \ {a | (∃b | (a, b) ∈ Different)}
8: New ← B \ {b | (∃a | (a, b) ∈ Different)}
9: return Identical ,DifferentVal ,Different ,

Missing ,New
10: end function

identical constraints appearing in both sets and constraint pairs
with the same structure (same type, events, and event data
element names) but different values (e.g., different thresholds
for data values or duration); cf. lines 2 and 3 in Algorithm 1.
These constraint pairs are then removed from the sets used for
further analyses (line 4–5).

The third group of constraint pairs are those with major
differences, e.g., differences in the event sequence or renamed
events and event data elements. For this type of matching we
calculate a similarity score between all remaining constraints
from the two lists and only match two constraints, if the
similarity between them is above 0.5. If one constraint could
be matched to multiple constraints in the other list, the one
with the highest similarity is chosen (cf. line 6 in Algorithm 1).
The similarity is calculated based on the type of the event
that triggers the constraint evaluation, the overall sequence
alignment, the duration values, and the types and values of
the event data elements of two constraints.

The remaining constraints are then representing behavior
that is only found for one of the two datasets. In the case
of logs recorded from different versions of the same software
system these constraints thus indicate behavior only observed
before or after the update, i.e., missing and new constraints (cf.
lines 7–8 in Algorithm 1).

Step 3: Analyzing, ranking and presenting the results. In
the final step we present the lists of matched constraints to
the user. To make the results easier to evaluate we present
the constraints as separate lists (identical, different values,
different, missing, and new) and additionally show the eval-
uation results (positive and total number of evaluations and
confidence) on both datasets for each constraint.

We further rank the lists based on different criteria. The list
of identical constraints is ranked based on the total number of
positive evaluations. We sort the constraint pairs with different
values and the constraints with major differences based on
the similarity of the pairs (higher similarity is ranked higher).
Finally, the two lists with unmatched constraints, i.e., missing
and new constraints, are ranked such that constraints with

high confidence for the dataset they are mined from and low
confidence for the other dataset are ranked highest.

V. EVALUATION

The goal of our preliminary evaluation is to demonstrate the
basic feasibility and usefulness of our approach. We recorded
two different runs from the Dronology simulator with five
UAVs flying ten distinct routes (each consisting of two to
five waypoints) at a dedicated flying field. Each route was
randomly assigned twice to one of the drones. For the two
runs, two different sets of routes were randomly generated.
After the assigned routes were completed the drones returned
to their starting location.

We used these two datasets to investigate two research
questions in two experiments:

Baseline Comparison (RQ1): Does our approach discover
expected minor differences in logs of two executions of the
same software version? In the first experiment, we directly
used the two execution logs as input and compared the
constraints mined from them. Since both datasets contained
logs from the same system with no actual changes made to
the system, we expected to find only minor differences in the
mined constraints resulting from differences in values, e.g.,
different flying altitude and routes of drones. Experiment 1
was thus aimed to show the basic feasibility of our approach.

Seeded Changes Comparison (RQ2): Does our approach
discover differences in logs of two executions of different soft-
ware versions simulated via seeded changes in one dataset?
In the second experiment, we introduced a number of changes
to the events in the second log. These changes simulate
different types of modifications made to the source code of the
system (e.g., renaming events in the log statements) and in the
behavior of the UAVs (e.g., different maximum flight altitude).
Specifically, we expected our approach to discover identical
constraints, new constraints and missing constraints, as well
as constraints with major differences and with differences only
in data values. Experiment 2 thus aimed to show the feasibility
and usefulness of our approach by demonstrating that it can
discover different types of changes by analyzing differences
in two logs of executions of a changed software system.

A. Experiment 1: Baseline Comparison

Comparing the two datasets revealed that 44 of the mined
constraints were identical while 36 exhibited differences in
values. Table I provides examples of one identically mined
constraint (#1) and two constraints with changed values:
#2 with MAX as 14.25 for the first dataset and 14.089 for
the second dataset and #3 with T being 1 s for the first dataset
and 2 s for the second dataset. One temporal constraint was
detected as changed, because in the sequence the monitoring
and state event were swapped. These two events are both
sent approximately once per second and it is impossible to
tell which will arrive first. Such minor differences could be
expected when comparing two different executions of the same
software with slightly different tasks.

3

Accepted for publication at the 2019 IEEE Int’l Conf. on Software Maintenance and Evolution
Final Version available at: https://doi.org/10.1109/ICSME.2019.00082

Table I
EXAMPLES OF CONSTRAINTS MINED IN EXPERIMENT 1.

Nr Constraint

1 if event monitoring occurs
data("voltage") >= 12.094 and data("voltage") <= 12.587

2 if event monitoring occurs
data("groundspeed") >= 0.0 and data("groundspeed") <= MAX

3 if event "PLAN_COMPLETE" occurs
event "state" where data("status") == "ACTIVE" occurs within T

4 trigger = if event "state" occurs data("mode") == "GUIDED"

Table II
CHANGES APPLIED TO THE SECOND DATASET.

Nr Seeded change Observed differences

1 added new event data element “rnd” one new constraintwith random values to state events

2 increase value of data element one constraint with
“location.z” in state events by 5% different values

3 increase value of data element one constraint with
“altitude” in monitoring events by 5% different values

4 WAYPOINT_REACHED event
renamed to waypoint

ten changed constraints,
one missing constraint,
three new constraints

5 delete data element “n_satellites” from one missing constraintmonitoring events

6 rename data element “start-time” in one changed constraintPLAN_COMPLETE events to “begin”

None of the mined constraints appeared only in the first
dataset, while ten constraints could only be found in the second
dataset. As it turns out all of these constraints were not mined
for the first dataset, because their confidence was below 90%.
An example for such a constraint is #4 in Table I, which has a
confidence of 90.5% for the second dataset, but only 81.9% for
the first one. Such different confidence levels can be expected
due to the different scenarios and resulting actual behavior
during the two executions, in this case the different flying
times (in GUIDED mode) vs. idle times.

These observations show that our approach is capable of
discovering (expected) differences in two logs of executions
of the same software.

B. Experiment 2: Seeded Changes Comparison

For this experiment we seeded six changes to the sec-
ond execution log (cf. Table II) and compared the mined
constraints. Our algorithm found 35 identical constraints, 33
constraints with different values, eleven constraints with major
differences, two constraints only mined for the first dataset,
and 13 constraints only mined for the second dataset.

Our first change was to add an additional event data element
to the events of type state. This change is equivalent to
reporting an additional sensor value or a value related to an
internal state. The data element was correctly extracted as a
new value constraint, cf. constraint #1 in Table III.

The second and third change applied to the dataset affected
the altitude values of both state and monitoring events, i.e.,
simulating that the drones fly higher. A change in the source

Table III
EXAMPLES OF CONSTRAINTS MINED IN EXPERIMENT 2.

Nr Constraint Change type

1 if event state occurs newdata("rnd") >= 0.01 and data("rnd") <= 0.989

2 if event monitoring occurs different valuedata("alt") >= 0.0 AND data("alt") <= MAX

3
if event state occurs

different valuedata("location/z") >= MIN
and data("location/z") <= MAX

4
if event waypoint occurs

differentstate where data("status") == "ACTIVE"
occurs within 2 s

5 if event monitoring occurs missingdata("n_satellites") == 10

6
if event PLAN_COMPLETE occurs

differentdata("start-time") >= 1559562125924
and data("start-time") <= 1559562873612

code that would lead to the same differences could be a
bugfix for the calculation of the altitude from the sensor values
or updated geographic location data. The different altitude
could also result from a different maximum altitude allowed
for a new drone type or a different regulation for the flying
field. Both changes were detected in the form of matching
constraints with different values, cf. constraints #2 and #3 in
Table III. For #2 MAX is 28.3 for the first dataset and 31.049
for the second dataset; for #3 the intervals are [-0.069; 28.285]
for the first dataset and [-0.072; 31.035] for the second dataset.

Changing the type WAYPOINT_REACHED to waypoint—
the fourth change from Table II—simulates, e.g., an update
in the logging, a change in the process, or a refactoring.
As a result ten constraints were detected as constraints with
major differences (one example is #4 in Table III, which uses
waypoint instead of WAYPOINT_REACHED), one constraint
only found for the first dataset, and three constraints only
found for the second dataset.

The fifth change, i.e., deleting the event data element
n_satellites from all events of type monitoring, could result
from removing a data element in the source code or from
a sensor or a measurement that is no longer available. This
change lead to a missing constraint, i.e., constraint #5 from
Table III was only mined for the first dataset.

Renaming the event data element start-time to begin, the last
change listed in Table II, could result from renaming a field
in the source code or changing the name in the logger. This
change resulted in one constraint (#6 in Table III) with major
differences. Not only the name of the event data element has
changed, but also the upper and lower bound for its values—
resulting from the different execution times of the two runs.

These observations confirm that our approach can discover
differences in two execution logs of changed software, demon-
strated via seeded changes.

C. Threats to Validity

One threat to validity is the use of a single application
scenario with seeded changes. However, even our preliminary

4

Accepted for publication at the 2019 IEEE Int’l Conf. on Software Maintenance and Evolution
Final Version available at: https://doi.org/10.1109/ICSME.2019.00082

evaluation based on two experiments allowed us to assess all
possible types of differences in two sets of mined constraints
and the results indicate the basic feasibility of our approach.
Also, the seeded changes affect the events in the same way
as specific changes to the source code would. Another threat
to validity is that our detection relies on lists of constraints
mined for the input datasets. These lists could be incomplete
and could contain irrelevant constraints, i.e., in the context of
this paper we assume the mining is correct. While the sets
of mined constraints may not be perfect, we still argue that
they can give a good overview of the relevant behavior of
the software system and can be used to detect many changes
between two system versions. Domain experts have confirmed
the usefulness—e.g., for actually monitoring their systems—of
the mined constraints in past experiments [8].

VI. STATUS AND NEXT STEPS

We presented an approach to detect changes in the behavior
of a software system based on automatically mined constraints.
Our preliminary evaluation showed that the approach correctly
matches mined constraints and finds diverse kinds of dif-
ferences, thereby indicating basic feasibility and usefulness.
However, there are several opportunities to improve our cur-
rent implementation:

Our approach currently works without any user involvement.
In the future we plan to experiment with a feature allowing
domain experts to provide feedback on the usefulness of the
initially mined constraints. Utilizing their ratings would allow
the algorithm to focus on the most relevant differences.

Usually some of the constraints mined for a system need to
be slightly modified before being used for run-time monitor-
ing. Such modifications include adapting thresholds or inter-
vals allowed for certain data values or the time allowed for a
specific sequence of events. For example, the mining algorithm
extracts the maximum duration of a UAV executing one route
as four minutes. However, in practice this duration might be
allowed to be longer in some situations. This information, i.e.,
adapted constraints, can also be utilized in the comparison.

Furthermore, we plan to extend the configuration options
of the approach including different ranking algorithms and
search capabilities to further support the users in analyzing
and selecting relevant constraints.

While sorting the lists can ease the task for the users, this
still requires some usability improvements for large numbers
of constraints. We thus also plan to implement tool support
for presenting the output of our comparison algorithm.

To further evaluate the approach we plan to apply the
algorithm to other domains and systems. Specifically, we
will experiment with different types of systems producing
other kinds of execution logs. For example, while Dronology
produces many events in a short time, other systems produce
fewer events over longer periods of time, which might have
an effect on the mined constraints and the comparison results.

We also plan to use our approach to detect differences
between constraints mined for different scenarios and appli-
cations of a software system. This information might help

to understand how the behavior of the system and certain
requirements change depending on the scenario.

Finally, we plan to improve the constraint matching based
on previous feedback, e.g., using machine learning techniques.

ACKNOWLEDGEMENTS

The financial support by the Austrian Federal Ministry for
Digital and Economic Affairs, the National Foundation for Re-
search, Technology and Development, Primetals Technologies,
and the Austrian Science Fund (FWF) under Grant No. J3998-
N31 is gratefully acknowledged.

REFERENCES

[1] Marcus Alanen and Ivan Porres. Difference and union of models.
In Proc. Int’l Conf. on the Unified Modeling Language, pages 2–17.
Springer, 2003.

[2] Ira D Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and
Lorraine Bier. Clone detection using abstract syntax trees. In Proc. Int’l
Conf. on Software Maintenance, pages 368–377. IEEE, 1998.

[3] Gerardo Canfora, Luigi Cerulo, and Massimiliano Di Penta. Identifying
changed source code lines from version repositories. In Proc. 4th Int’l
WS on Mining Software Repositories, pages 14–14. IEEE, 2007.

[4] Jane Cleland-Huang, Michael Vierhauser, and Sean Bayley. Dronology:
An incubator for cyber-physical systems research. In Proc. 40th Int’l
Conf. on Software Engineering: New Ideas and Emerging Results, pages
109–112. ACM, 2018.

[5] Nicolas Dintzner, Arie van Deursen, and Martin Pinzger. FEVER:
extracting feature-oriented changes from commits. In Proc. 13th Int’l
Conf. on Mining Software Repositories, pages 85–96. ACM, 2016.

[6] Beat Fluri, Michael Wuersch, Martin Pinzger, and Harald Gall. Change
distilling: Tree differencing for fine-grained source code change ex-
traction. IEEE Transactions on Software Engineering, 33(11):725–743,
2007.

[7] Thomas Krismayer, Peter Kronberger, Rick Rabiser, and Paul Grün-
bacher. Supporting the selection of constraints for requirements monitor-
ing from automatically mined constraint candidates. In Proc. 25th Int’l
Working Conf. on Requirements Engineering: Foundation for Software
Quality, pages 193–208. Springer, 2019.

[8] Thomas Krismayer, Rick Rabiser, and Paul Grünbacher. A constraint
mining approach to support monitoring cyber-physical systems. In Proc.
31st Int’l Conf. on Advanced Information Systems Engineering, pages
659–674. Springer, 2019.

[9] David Lo and Shahar Maoz. Scenario-based and value-based spec-
ification mining: better together. Automated Software Engineering,
19(4):423–458, 2012.

[10] Jonathan I Maletic and Michael L Collard. Supporting source code
difference analysis. In Proc. 20th IEEE Int’l Conf. on Software
Maintenance, pages 210–219. IEEE, 2004.

[11] Andriy V Miranskyy, Matthew Davison, R Mark Reesor, and Syed Shari-
yar Murtaza. Using entropy measures for comparison of software traces.
Information Sciences, 203:59–72, 2012.

[12] Rick Rabiser, Jürgen Thanhofer-Pilisch, Michael Vierhauser, Paul Grün-
bacher, and Alexander Egyed. Developing and Evolving a DSL-Based
Approach for Runtime Monitoring of Systems of Systems. Automated
Software Engineering, 25(4):875–915, 2018.

[13] Steven P Reiss and Manos Renieris. Encoding program executions. In
Proc. 23rd Int’l Conf. on Software Engineering, pages 221–230. IEEE,
2001.

[14] Martín Soto and Jürgen Münch. Process model difference analysis for
supporting process evolution. In Proc. European Conf. on Software
Process Improvement, pages 123–134. Springer, 2006.

[15] Jürgen Thanhofer-Pilisch, Rick Rabiser, Thomas Krismayer, Michael
Vierhauser, Paul Grünbacher, Stefan Wallner, Klaus Seyerlehner, and
Helmut Zeisel. An event-based capture-and-compare approach to sup-
port the evolution of systems of systems. In Proc. 11th ACM Int’l Conf.
on Distributed and Event-Based Systems, pages 261–270. ACM, 2017.

[16] Stefan Wagner, Asim Abdulkhaleq, Kamer Kaya, and Alexander Paar.
On the relationship of inconsistent software clones and faults: an em-
pirical study. In Proc. 23rd Int’l Conf. on Software Analysis, Evolution,
and Reengineering, pages 79–89. IEEE, 2016.

5

	I Introduction
	II Motivating Example
	III Background: Constraint Mining
	IV Evolution Analysis Approach
	V Evaluation
	V-A Experiment 1: Baseline Comparison
	V-B Experiment 2: Seeded Changes Comparison
	V-C Threats to Validity

	VI Status and Next Steps
	References

