
Department of Electrical and Computer Engineering
McGill University, Montréal

Improving the Robustness and E�ciency of

Continuous Integration and Deployment

Ph.D. Thesis

Keheliya Gallaba

October 2021

A thesis submitted to McGill University in partial ful�llment
of the requirements of the degree of Doctor of Philosophy

© Keheliya Gallaba, 2021

Abstract

Modern software is developed at a rapid pace. To sustain that rapid pace, organizations rely
heavily on automated build, test, and release steps. To that end, Continuous Integration and
Continuous Deployment (CI/CD) services take the incremental codebase changes that are pro-
duced by developers, compile, link, and package them into software deliverables, verify their
functionality, and deliver them to end users.

While CI/CD processes provide mission-critical features, if they are miscon�gured or poorly
operated, the pace of development may be slowed or even halted. To prevent such issues, in
this thesis, we set out to study and improve the robustness and e�ciency of CI/CD processes.

First, we present two empirical studies that focus on robust con�guration of CI/CD pro-
cesses. To understand the ways in which CI/CD features are being used, we analyze a curated
sample of 9,312 open source projects that are hosted on GitHub and have adopted the popu-
lar Travis CI service. We �nd that explicit deployment code is rare. Then, to analyze feature
misuse, we propose Hansel—an anti-pattern detection tool for Travis CI speci�cations. We
de�ne four anti-patterns and Hansel detects anti-patterns in the Travis CI speci�cations of
894 projects (10%) in the corpus. Furthermore, we propose Gretel—an anti-pattern removal
tool for Travis CI speci�cations, which can remove 70% of the most frequently occurring
anti-pattern automatically.

Our third empirical study focuses on robust CI/CD outcome data. In this work, we use
openly available project metadata and CI/CD results of 1,276 GitHub projects that use Travis
CI, to better understand the extent to which noise and heterogeneity are present in CI/CD
outcome data. We �nd that: (1) 12% of passing builds have an actively ignored failure; (2) 9%
of builds have a misleading or incorrect outcome on average; and (3) at least in 44% of the
broken builds, the breakage is local to a subset of build variants.

Our fourth empirical study focuses on improving the e�ciency of CI/CD services. We pro-
pose a programming language-agnostic approach to infer data from which build acceleration
decisions can be made without relying upon build speci�cations. After inferring this data,
our approach accelerates CI builds by caching the build environment and skipping una�ected

i

build steps. To evaluate our approach, we mine 14,364 historical CI build records spanning
three proprietary and seven open-source software projects. We �nd that accelerated builds
achieve a substantial speed-up (two-fold in 74% of accelerated builds) with minimal resource
overhead (i.e.,< 1% median CPU usage, 2 MB – 2.2 GB median memory usage, and 0.4 GB –
5.2 GB median storage overhead).

Our �nal empirical study identi�es opportunities for service providers to improve robust-

ness and e�ciency of CI/CD processes by analyzing signal-generating builds (i.e., builds that
pass or fail due to project factors) and non-signal-generating builds (e.g., incompleted builds
due to provider infrastructure issues). In this study, we analyze 23.3 million builds spanning
7,795 open source projects that used the CircleCI service from 2012 to 2020. Our observations
demonstrate the ways in which existing research breakthroughs (e.g., build acceleration, au-
tomated program repair) may bene�t CI/CD providers, as well as the ways in which these
approaches should be tailored to generate the most value. For example, since the heaviest
users account for a growing proportion of the build activity and resources over the stud-
ied time period (measures of inequality like the Gini coe�cient growing from 14% to 98%),
approaches that are catered to optimizing these projects will likely generate more value for
service providers than blanket solutions. Furthermore, e�ciency in CI pipelines can be im-
proved by reducing bottlenecks in the compilation and testing stages of signal-generating
builds. Addressing con�guration and resource allocation issues will reduce the number of
non-signal-generating builds, increasing the robustness of CI pipelines.

ii

Abrégé

Les logiciels modernes sont développés à un rythme rapide. Pour maintenir ce rythme, les
organisations qui développe des logiciels s’appuient fortement sur l’automatisation de la con-
struction, des tests, et de la di�usion de logiciels. à cette �n, les services d’intégration con-
tinue et de déploiement continu (CI/CD) prennent les modi�cations de code incrémentielles
produites par les développeurs, les compilent, les relient et les regroupent dans des logiciels
livrables, véri�ent leur fonctionnalité, et les livrent aux utilisateurs.

Bien que les processus CI/CD fournissent des fonctionnalités critiques, s’ils sont mal con-
�gurés ou mal exploités, le rythme de développement peut être ralenti, voire arrêté. Pour éviter
de tels problèmes, dans cette thèse, nous avons entrepris d’étudier et d’améliorer la robustesse
et l’e�cacité des processus CI/CD.

Premièrement, nous présentons deux études empiriques qui se concentrent sur la con�g-
uration robuste des processus CI/CD. Pour comprendre la manière dont les fonctionnalités
CI/CD sont utilisées, nous analysons un échantillon de 9,312 projets à code source ouvert,
hébergés sur GitHub, et ayant adopté le service Travis CI. Nous constatons que le code de
déploiement est rarement explicite. Ensuite, pour analyser les erreurs dans l’utilisation des
fonctionnalités de Travis CI, nous proposons Hansel, un outil de détection d’anti-modèle
pour les spéci�cations de Travis CI. Nous dé�nissons quatre anti-modèles. Hansel détecte
ces anti-modèles dans les spéci�cations Travis CI de 894 projets (10%) du corpus. De plus,
nous proposons Gretel, un outil de suppression d’anti-modèle pour les spéci�cations Travis
CI, qui peut supprimer automatiquement 70 % des anti-modèles les plus fréquents.

Notre troisième étude empirique se concentre sur les données de CI/CD qui produisent
des résultats robustes. Ce travail utilise des métadonnées de projet librement disponibles et
les résultats CI/CD de 1,276 projets GitHub qui utilisent Travis CI. Nous utilisons ces projets
a�n de mieux comprendre dans quelle mesure le bruit de fond et l’hétérogénéité sont présents
dans les données de résultats CI/CD. Nous constatons que : (1) 12% des construction de logi-
cielle réussis ont un échec qui est activement ignoré ; (2) en moyenne, 9% des construction
de logicielle ont un résultat trompeur ou incorrect; et (3) dans au moins 44% des construction

iii

de logicielle défectueuses, la défectuosité est locale et dans un sous-ensemble de variantes de
construction.

Notre quatrième étude empirique porte sur l’amélioration de l’e�cacité des services CI/CD.
Nous proposons une approche indépendante du langage de programmation pour déduire des
données à partir desquelles des décisions d’accélération de construction de logiciels peuvent
être prises sans se �er aux spéci�cations de construction de logiciel. Après avoir déduit ces
données, notre approche accélère les systèmes de construction de logiciel CI en mettant en
cache l’environnement du système de construction et en sautant les étapes qui n’a�ecte pas le
système de construction. Pour évaluer notre approche, nous extrayons 14,364 archives de con-
struction de logiciels de systèmes CI couvrant trois projets logiciels propriétaires et sept logi-
ciels à code source ouvert. Nous constatons que les construction logiciel accélérés atteignent
une accélération substantielle (deux fois plus rapides dans 74% des construction logiciel ac-
célérés) avec une surcharge de ressources minimale (c. < 1% d’utilisation médiane du pro-
cesseur, 2 Mo à 2.2 Go d’utilisation médiane de mémoire, et 0.4 Go à 5.2 Go de surcharge
médiane de stockage).

Notre étude empirique �nale identi�e des opportunités pour les fournisseurs de services
pour améliorer la robustesse et l’e�cacité de leurs processus CI/CD en analysant les construc-
tion logiciel générant des signaux (c. construction logiciel qui réussissent ou échoue en raison
de facteurs inhérents aux projets des utilisateurs). Dans cette étude, nous analysons 23,3 mil-
lions de constructions de logiciel couvrant 7,795 projets à code source ouvert qui ont utilisé le
service CircleCI de 2012 à 2020. Nos observations démontrent les façons dont les percées de
recherche existantes (par exemple, l’accélération des systèmes de construction logiciel, la ré-
paration automatisée des programmes) peuvent béné�cier les fournisseurs de CI/CD, ainsi que
les manières dont ces approches devraient être adaptées pour générer le plus de valeur possi-
ble pour ces fournisseurs. Par exemple, étant donné que les plus gros utilisateurs représentent
une proportion croissante de l’activité de construction de logiciel et des ressources au cours de
la période étudiée (mesures d’inégalité comme le coe�cient de Gini passant de 14% à 98%), les
approches conçues pour optimiser ces projets génèrent plus de valeur pour les fournisseurs
de services que les solutions globales. De plus, l’e�cacité des pipelines CI peut être améliorée
en réduisant les obstacles dans les étapes de compilation et de test pour la construction de
logiciel générant des signaux. La résolution des problèmes de con�guration et d’allocation
des ressources réduira le nombre de constructions logiciel qui ne génère pas de signal, aug-
mentant ainsi la robustesse des pipelines CI.

iv

Acknowledgements

As I near the end of my journey as a Ph.D. student at McGill University, I would like to express
my gratitude to everyone who made my stay in the beautiful city of Montréal a memorable
and productive one. I would like to give special thanks to the following people who made this
thesis possible.

Ph.D. Advisor. I owe special gratitude to my advisor Professor Shane McIntosh for the
excellent guidance and continuous support.

Ph.D. Committee Members. My thanks go out to Professor Martin Robillard, Professor
Gunter Mussbacher, and Professor Benjamin Fung for the helpful feedback and insights.

Colleagues. I would like to thank the fellow Rebels at the Software Repository Excavation
and Build Engineering Labs: Ray, Shivashree, Christophe, Farida, Noam, Mehran, and Farshad.
I extend my sincere thanks to Márton Búr for o�ering assistance and sharing the experiences.

Collaborators. It was an honour to work with an amazing network of researchers from
di�erent parts of the world to solve challenging problems. I am particularly grateful to the
collaborators who co-wrote publications related to the content of this thesis (Christian Macho,
Martin Pinzger, Yves Junqueira, John Ewart, and Maxime Lamothe) and the co-authors on
topics outside of the scope of this thesis (Yash, Yusaira, Marco, Eduardo, Rahul, Andrés, Noam,
Michael, Sadnan, Durham, Oliver, and Matthew).

Funding. I am deeply grateful for the generous �nancial support provided by the McGill
Engineering Doctoral Award (MEDA) and the FRQNT Doctoral Research Award. Furthermore,
by providing funds to conduct research abroad, Mitacs Accelerate International Award and
McGill Graduate Mobility Award helped me expand my research horizons.

Friends and family. Amma, Appachchi, Nangi, and Thamali, I am deeply indebted to you
for making me who I am today with your encouragement, support, and love. Thank you to all
my friends, old and new, for the stimulating conversations during this journey.

v

Related Publications

Each of my contributions presented henceforth is a result of the research conducted at the De-
partment of Electrical and Computer Engineering at McGill University under the supervision
of Dr. Shane McIntosh. A detailed description of the contributions is presented in Section 1.3.

• Keheliya Gallaba and Shane McIntosh. Use and misuse of continuous integration fea-
tures: an empirical study of projects that (mis)use Travis CI. IEEE Transactions on Soft-

ware Engineering (TSE), 2018, pp. 33–50. doi: 10.1109/tse.2018.2838131. (Chapter 4
and Chapter 5)

• Keheliya Gallaba, Christian Macho, Martin Pinzger, and Shane McIntosh. Noise and het-
erogeneity in historical build data: an empirical study of Travis CI. In: Proceedings of the
33rd International Conference on Automated Software Engineering (ASE), pp. 87–97. 2018.
doi: 10.1145/3238147.3238171. (Chapter 6)

• Keheliya Gallaba. Improving the robustness and e�ciency of continuous integration
and deployment. In: Proceedings of the 35th International Conference on Software Main-

tenance and Evolution (ICSME), Doctoral Symposium, pp. 619–623. IEEE, 2019. doi: 10.
1109/icsme.2019.00099.

• Keheliya Gallaba, Yves Junqueira, John Ewart, and Shane Mcintosh. Accelerating con-
tinuous integration by caching environments and inferring dependencies. IEEE Trans-

actions on Software Engineering (TSE), 2020. doi: 10.1109/TSE.2020.3048335. (Chap-
ter 8)

The following publications are not directly related to the material in this thesis, but were
produced in parallel to the research performed for this thesis.

• Yash Gupta, Yusaira Khan, Keheliya Gallaba, and Shane McIntosh. The impact of the
adoption of continuous integration on developer attraction and retention. In: Proceed-
ings of the 14th International Conference on Mining Software Repositories (MSR), Mining

Challenge, pp. 491–494. IEEE, 2017. doi: 10.1109/msr.2017.37.
• Marco Manglaviti, Eduardo Coronado-Montoya, Keheliya Gallaba, and Shane McIntosh.

An empirical study of the personnel overhead of continuous integration. In: Proceedings

vi

https://doi.org/10.1109/tse.2018.2838131
https://doi.org/10.1145/3238147.3238171
https://doi.org/10.1109/icsme.2019.00099
https://doi.org/10.1109/icsme.2019.00099
https://doi.org/10.1109/TSE.2020.3048335
https://doi.org/10.1109/msr.2017.37

of the 14th International Conference on Mining Software Repositories (MSR), Mining Chal-

lenge, pp. 471–474. IEEE, 2017. doi: 10.1109/msr.2017.31.
• Rahul Amlekar, Andrés Felipe Rincón Gamboa, Keheliya Gallaba, and Shane McIntosh.

Do software engineers use autocompletion features di�erently than other developers?
In: Proceedings of the 15th International Conference onMining Software Repositories (MSR),

Mining Challenge, pp. 86–89. ACM, 2018. doi: 10.1145/3196398.3196471.
• Noam Rabbani, Michael S. Harvey, Sadnan Saquif, Keheliya Gallaba, and Shane McIn-

tosh. Revisiting "programmers’ build errors" in the visual studio context. In: Proceedings
of the 15th International Conference on Mining Software Repositories (MSR), Mining Chal-

lenge, pp. 98–101. ACM, 2018. doi: 10.1145/3196398.3196469.
• Durham Abric, Oliver E. Clark, Matthew Caminiti, Keheliya Gallaba, and Shane McIn-

tosh. Can duplicate questions on Stack Over�ow bene�t the software development com-
munity? In: Proceedings of the 16th International Conference on Mining Software Reposi-

tories (MSR), Mining Challenge, pp. 230–234. 2019. doi: 10.1109/MSR.2019.00046.

vii

https://doi.org/10.1109/msr.2017.31
https://doi.org/10.1145/3196398.3196471
https://doi.org/10.1145/3196398.3196469
https://doi.org/10.1109/MSR.2019.00046

Contents

Abstract i

Abrégé iii

Acknowledgements v

Related Publications vi

List of Figures xii

List of Tables xv

I Preliminaries 1

1 Introduction 2

1.1 Problem Statement . 2
1.2 Thesis Overview . 4
1.3 Thesis Contributions . 6
1.4 Structure of the Thesis . 7

2 Background and De�nitions 8

2.1 Modern CI/CD Process . 8
2.2 Cloud-Based CI/CD Services . 10
2.3 Con�guring Cloud-Based CI/CD Services . 11

2.3.1 Node Con�guration . 11
2.3.2 Build Process Con�guration . 13

2.4 The Anatomy of a CI/CD Build . 14

3 Related Work 15

3.1 Continuous Integration . 15
3.2 Software Con�guration Smells . 16
3.3 Build Breakage . 18

viii

3.4 Analysis of CI Datasets . 19
3.5 Slow CI/CD Feedback and its Remedies . 20
3.6 Continuous Deployment . 21

II Robustness in CI/CD Services 23

4 Usage of Features in CI/CD Environments 24

4.1 Introduction . 24
4.2 CI/CD Feature Usage . 26
4.3 Study Design . 27

4.3.1 Corpus of Candidate Systems . 27
4.3.2 Data Filtering . 27
4.3.3 Domain of the Subject Systems . 30

4.4 Study Results . 31
4.5 Threats to Validity . 39

4.5.1 Internal Validity . 39
4.5.2 External Validity . 39
4.5.3 Construct Validity . 39

4.6 Chapter Summary . 40

5 Misuse of Features in CI/CD Environments 41

5.1 Introduction . 41
5.2 Anti-patterns in CI/CD Speci�cations . 42

5.2.1 Research Questions . 43
5.3 Study Design . 43
5.4 Study Results . 47
5.5 Further Insights into CI/CD Misuse . 56

5.5.1 Dependence on Default Behaviour . 56
5.5.2 Storage of Sensitive Data . 57
5.5.3 Dependence on External Scripts . 57
5.5.4 Applicability to Other CI/CD Services 58

5.6 Threats to Validity . 59
5.6.1 Internal Validity . 59

ix

5.6.2 External Validity . 60
5.6.3 Construct Validity . 60

5.7 Chapter Summary . 60

6 Noise and Heterogeneity in CI/CD Build Data 62

6.1 Introduction . 62
6.2 Study Design . 65

6.2.1 Corpus of Candidate Systems . 65
6.2.2 Retrieve Raw Data . 65
6.2.3 Clean and Process Raw Data . 66
6.2.4 Construct Meaningful Metrics . 66
6.2.5 Analyze and Present Results . 67

6.3 Noise in Build Breakage Data . 67
6.3.1 Actively Ignored by Developers . 67
6.3.2 Passively Ignored by Developers . 69
6.3.3 Staleness of Breakage . 73
6.3.4 Signal-To-Noise Ratio . 74

6.4 Heterogeneity in Build Breakage Data . 75
6.4.1 Matrix Breakage Purity . 75
6.4.2 Reason for Breakage . 77
6.4.3 Type of contributor . 80

6.5 Implications . 82
6.5.1 Research Community . 82
6.5.2 Tool Builders . 82

6.6 Threats to Validity . 83
6.7 Chapter Summary . 83

III E�ciency in CI/CD Services 85

7 CI/CD Service Providers’ Perspective 86

7.1 Introduction . 86
7.2 Core Concepts in Modern CI . 88

7.2.1 CI Build Outcomes . 89

x

7.2.2 CI Indicators . 90
7.3 Study Design . 91

7.3.1 Subject Systems/Communities . 92
7.4 Study Results . 93
7.5 Practical Implications . 106
7.6 Threats to Validity . 107

7.6.1 Construct Validity . 107
7.6.2 Internal Validity . 107
7.6.3 External Validity . 107

7.7 Chapter Summary . 108

8 Accelerating Continuous Integration & Continuous Delivery 109

8.1 Introduction . 109
8.2 Motivating Example . 112
8.3 The Kotinos Approach . 113

8.3.1 Caching of the Build Environment (L1) 115
8.3.2 Skipping of Una�ected Build Steps (L2) 116

8.4 RQ1: How often are accelerations activated in practice? 120
8.5 RQ2: How much time do the proposed accelerations save? 123

8.5.1 Overall Statistical Analysis . 123
8.5.2 Longitudinal Analysis . 124
8.5.3 Replay Analysis . 127

8.6 RQ3: What are the costs of the proposed accelerations? 128
8.6.1 Resource Utilization . 130
8.6.2 Correctness . 132

8.7 Implications . 132
8.8 Threats to Validity . 133
8.9 Chapter Summary . 134

9 Final Conclusion & Future Work 136

9.1 Thesis Summary . 136
9.1.1 Usage of Features in CI/CD Environments 136
9.1.2 Misuse of Features in CI/CD Environments 137

xi

9.1.3 Noise and Heterogeneity in CI/CD Build Data 137
9.1.4 CI/CD Service Providers’ Perspective 137
9.1.5 Accelerating Continuous Integration / Continuous Delivery 138

9.2 Future Work . 138

Bibliography 140

xii

List of Figures

1.1 An overview of the scope of this thesis. 4

2.1 Main components of a continuous integration system: Build job creation, pro-
cessing, and reporting. 9

2.2 A .travis.yml con�guration �le and how it maps to the Travis CI life cycle. 12

4.1 An overview of our data �ltering approach for the CI feature usage study . . . 27
4.2 Threshold plot for commit activity. 28
4.3 Threshold plot for project size. 28
4.4 A histogram of the maximum commit similarity among the candidate reposi-

tories. 30
4.5 The percentage of the corpus that uses the ten most popular languages. 33
4.6 Line counts in each section of the .travis.yml �le. 37

a The distribution for all projects. 37
b The distribution after removing zero-length sections. 37

4.7 The churn of each section in the .travis.yml �le. 38
a The distribution for all projects. 38
b The distribution after removing zero-length sections. 38

5.1 An example where a state-altering command a�ects the removal of an anti-
pattern. 53

6.1 An overview of our data analysis approach for the empirical study of noise
and heterogeneity . 64

6.2 Percentage of ignored failed jobs in passing builds that had at least one ignored
failed job across all projects. 69

6.3 Percentage of broken builds at branch points and broken builds that continued
to be broken after branching. 71

6.4 The maximum and median durations that each project’s build remained bro-
ken, ordered by the maximum duration. 72

6.5 Percentage of stale breakages in each project can range from 7% to 96%. . . . 73
6.6 For every 11 builds there is at least one build with an incorrect status. 75

xiii

6.7 Percentage of impure build breakages increases with the number of jobs in
each build. 76

6.8 Percentage of broken and passing builds classi�ed by contributor type. 81
6.9 Build breakages caused by peripheral contributors remain broken signi�cantly

longer than those of core contributors. 81
a Chains of consecutive breakages caused by peripheral contributors

tend to be longer. 81
b Build breakages caused by peripheral contributors take more time to

repair. 81

7.1 An overview of our data analysis approach for studying CircleCI 91
7.2 The growth of CircleCI usage during the period of 2012–2020. 94
7.3 Number of builds on CircleCI platforms 1 and 2 during the 2012–2020 time

period. 96
7.4 The evolution of four CI indicators during the period of 2012–2020 in CircleCI. 97

a Build Duration . 97
b Mean Time to Recovery (MTTR) . 97
c Success Rate . 97
d Throughput . 97

7.5 Gini coe�cient computed using throughput and total build time during the
2012–2020 time period. 98

7.6 Runtime percentage of each action type in signal-generating builds. 100
7.7 Distribution of median monthly build time consumption. 101
7.8 Runtime percentage of each action type in signal-generating builds in heavy

CI users vs others. 103

8.1 An example of commits in chronological order. 114
8.2 An example of how the Build Dependency Graph is used to identify which

steps to skip. 119
8.3 Distribution of durations in accelerated and non-accelerated builds across the

three subject systems. 124
8.4 Warm build duration as a percentage of cold build duration in each project’s

main job. 125
a Project A . 125
b Project B . 125
c Project C . 125

8.5 The kernel probability density of warm build durations as a percentage of cold
builds across the three subject systems. 126

xiv

8.6 Median build time for each acceleration level in the open source subjects. . . . 129
8.7 The likelihood of each acceleration technique appearing in the top rank. . . . 130

xv

List of Tables

4.1 Domains in a sub-sample of our subject systems. 31
4.2 CI usage by programming language. 32
4.3 The identi�ed build node con�guration tags. 34
4.4 The popularity of .travis.yml sections, as well as their length and propor-

tion of lines in our corpus. 35

5.1 Well-bounded commands at each phase. 47
5.2 Examples of irrelevant properties that we observed in .travis.yml �les. . . . 51
5.3 Commands that appear in unrelated phases. 51
5.4 Sensitive data in .travis.yml �les. 58

6.1 Distribution of Build Breakages in Maven Projects based on the Categories
proposed by Vassallo et al. [8]. and Rausch et al. [56]. 79

7.1 Top �ve CI services used by projects that became inactive on CircleCI. 95
7.2 Distribution of Build Outcome. Global percentage of each category is shown

in brackets. 99
7.3 Domains of projects that heavily use CircleCI. 102

8.1 The duration of build steps in a proprietary system. 112
8.2 Overview of the subject systems. 121
8.3 The frequency of activated build accelerations. 122
8.4 CPU and memory usage of Kotinos during the builds of seven open source

systems. 131
8.5 Storage overhead of Kotinos build images. 131

xvi

Part I

Preliminaries

1

Chapter1
Introduction

Software today is developed at an accelerated pace. For example, the Facebook Android mobile
application has increased their release frequency to one deployment every week [1], while
Flickr web application is deployed to production more than ten times a day [2]. The IMVU
chat application is released up to 50 times per day [3].

The in�uence of agile development and the contemporary “continuous” development ap-
proaches have enabled the accelerated pace of modern software development. Continuous
Integration (CI) [4] is one such software development practice where changes to a codebase
are integrated into upstream repositories after being built and veri�ed by an automated work-
�ow. Continuous Deployment (CD) takes this a step further, ensuring that the software can
be reliably released at any time by automating the deployment and release work�ows as well.
Prior work [5–17] has shown that CI/CD is broadly adopted by open source and proprietary
software teams (e.g., Mozilla, Google, Microsoft, and ING). The adoption of CI/CD has been
linked to increased developer productivity [9], speeding up development [10], and improving
software quality [7, 11]. Due to the popularity of CI/CD, cloud-based CI/CD service providers
(e.g., Travis CI, CircleCI, Jenkins, and AppVeyor) have also emerged, making CI/CD avail-
able to the masses.

1.1 Problem Statement

Software teams often encounter di�culties when adopting CI/CD in their organizations, lead-
ing to unstable software delivery pipelines and wasted resources. For example, a suboptimal
con�guration of Mozilla’s CI service was in�ating the operating cost of their CI service by

2

1.1. Problem Statement

16%.1 Moreover, a typo in the CI speci�cation of the geoscixyz/gpgLabs2 project halted deploy-
ment of new releases.3 In our work, we tackle three problems that relate to CI/CD services:

Miscon�guration of CI/CD Environments. A typical CI/CD service has di�erent nodes
for creating build jobs, processing them, and reporting on the outcome. While con�gur-
ing job creation and job reporting nodes is relatively simple (e.g., reporting only needs
a contact method like an email address and a triggering event type like build failures),
con�guring job processing nodes is complex, being typically decomposed into install,
script, and deploy phases, which are further divided into more speci�c sub-phases (e.g.,
before install, after script, after deploy). Miscon�guration of CI/CD environments may
yield suboptimal build performance (e.g., violating the semantics of CI/CD speci�ca-
tions hinders the runtime optimizations that CI/CD operators can perform) or conceal
faults (e.g., misspelled properties and their associated commands are silently ignored by
popular CI/CD runtime environments such as Travis CI).

Misinterpretation of CI/CD Results. In the recent literature [12], build outcomes are con-
sidered to be free of noise. However, we �nd that in practice, some builds that are marked
as successful contain breakages that need attention yet are ignored. Furthermore, there
are builds that are marked as broken. However, since they do not receive the imme-
diate attention of the development team, they may not be as distracting as previously
assumed. In prior work, builds are also considered to be homogeneous. However, builds
vary in terms of the number of executed jobs and the number of supported build-time
con�gurations. Unawareness of the noise and di�erences in builds adversely a�ects the
decision making in research and practice.

Ine�cient Use of CI/CD Resources. A key goal of CI/CD is to provide rapid feedback to
software teams and releases to users throughout the development process. Software
organizations invest resources in the operation and maintenance of CI/CD services in
order to bene�t from such a rapid feedback and release cycle. However, ine�cient exe-
cution and long job durations can lead to wasted resources.

1https://oduinn.com/2013/12/13/the-financial-cost-of-a-checkin-part-2/
2https://github.com/geoscixyz/gpgLabs
3https://github.com/geoscixyz/gpgLabs/issues/72

3

https://oduinn.com/2013/12/13/the-financial-cost-of-a-checkin-part-2/
https://github.com/geoscixyz/gpgLabs
https://github.com/geoscixyz/gpgLabs/issues/72

1.2. Thesis Overview

Research
Themes

(RT2)
Efficiency in CI/CD Services

(RT1)
Robustness in CI/CD Services

Empirical
Studies

Outcomes

Chapter 8
Can CI/CD be

accelerated without
relying on an explicit
dependency graph?

Tools for Accelerating CI/CD
 by Caching Environments

and Inferring
Dependencies

Chapter 4
How are features

in CI/CD
environments
being used?

Chapter 5
How are features

 in CI/CD
environments

being misused?

Chapter 6
To what extent are

noise and heterogeneity
present in off-the-shelf
CI/CD outcome data?

Chapter 7
What CI/CD inefficiencies

can be be identified
by analyzing

historical CI/CD data?

Tools for
Detection and

Removal of
Feature Misuses

Tools and
Recommendations

for Mitigating
Noise in CI/CD Data

Guidance for
Development and
Maintenance of

CI/CD Specifications

Recommendations
to use existing

research techiniques
in CI/CD services

Limitations in Current CI/CD
Tools and Services

Misinterpretation of
CI/CD Results

Inefficient Use of
CI/CD Resources

Misconfiguration of
CI/CD Environments

Figure 1.1: An overview of the scope of this thesis.

This thesis aims to address the di�culties that we outline above in order to help develop-
ment teams to reap the most bene�t from CI/CD processes. More speci�cally, we evaluate the
following research hypothesis:

Hypothesis. Defect-prone and slow CI/CD pipelines can lead to consider-
able amounts of wasted resources for CI/CD adopters and service
providers. Speci�cations and outcome data from CI/CD services can
be leveraged to increase the robustness and e�ciency of CI/CD.

In the next section, we present the overview of our approach for evaluating the hypothesis.

1.2 Thesis Overview

Figure 1.1 provides an overview of the scope of this thesis. We have two main research themes
(red boxes) discussed in this thesis. Our research themes are motivated by three main limita-
tions in state-of-the-art CI/CD environments (yellow boxes). To tackle these limitations, we
conduct a series of empirical studies (cyan boxes). Finally, we describe potential outcomes
that result from each empirical study (magenta boxes). Each empirical study is presented in
its own chapter. We introduce our two research themes and the empirical studies below.

(RT1) Robustness in CI/CD Services

Robustness is related to making the infrastructure resilient to unexpected events or mistakes.
In terms of the robustness of CI/CD services, misuse of con�guration a�ects CI/CD users,

4

1.2. Thesis Overview

while misinterpretation of outcome data may negatively impact stakeholders such as CI/CD
tool builders and researchers.

Like programming languages, con�guration languages also o�er features, which can be
used or misused. For example, Travis CI users can use features like branches, which specify
which VCS branches to monitor for commit activity. Commits that appear on the monitored
branches will trigger build jobs. CI/CD con�guration can also be misused, e.g., when unsup-
ported or deprecated commands are used.

In this thesis, we conduct two empirical studies to investigate how CI/CD features are
being used and misused:

Chapter 4: Usage of Features in CI/CD Environments

To study how features in CI/CD speci�cation �les are being used, we analyze a cu-
rated sample of 9,312 open source projects that are hosted on GitHub and have
adopted the popular Travis CI service.

Chapter 5: Misuse of Features in CI/CD Environments

In this work, we de�ne CI/CD miscon�guration patterns. Then, we create develop-
ment tools that can automatically detect and remove them.

CI/CD outcome data is used by software practitioners and researchers when building tools
and proposing techniques to solve software engineering problems. However, it may be harm-
ful to use this data “o� the shelf” without checking for noise and complexities. Our next em-
pirical study characterizes CI/CD outcome data according to harmful assumptions that one
may make about its cleanliness and homogeneity.

Chapter 6: Noise and Heterogeneity in CI/CD Build Data

In this work, we analyze CI/CD outcome data from large software projects to quantify
the noise and characterize their nuances. For this purpose, we use openly available
project metadata and CI/CD results of 1,276 GitHub projects that use Travis CI.

(RT2) E�ciency in CI/CD Services

Developers adopt CI/CD with the intention of speeding up development [11]. However, the
results of the CI/CD builds could be delayed due to bottlenecks in the execution of CI/CD jobs
and other ine�ciencies during the operation of CI/CD services. Identifying opportunities for

5

1.3. Thesis Contributions

managing resources e�ciently will help CI service providers to keep operational costs low
while delivering fast and reliable CI/CD services.

Chapter 7: CI/CD Service Providers’ Perspective

To study CI/CD from the perspective of service providers, we conduct a case study
of CircleCI– one of the most popular CI service providers for projects hosted on
GitHub. Our dataset includes 23.3 million builds spanning 7,795 open source projects
that use the CircleCI service during the period of 2012–2020.

Build tools that have been proposed to reduce build duration by executing incremental
builds have two key limitations. These build tools rely upon a graph of build dependencies
that is speci�ed by developers in build con�guration �les (e.g., Bazel BUILD �les). Moreover,
the accelerated build tools are designed to replace existing build tools, increasing the barrier
to entry.

Chapter 8: Accelerating Continuous Integration / Continuous Delivery

To address existing limitations, we propose a build acceleration approach for CI/CD
services that disentangles build acceleration from the underlying build tool. We eval-
uate our approach by mining 14,364 historical CI/CD build records spanning ten soft-
ware projects (three proprietary and seven open source) and nine programming lan-
guages. Our evaluation focuses on assessing the frequency of activated accelerations,
the savings gained by these accelerations, and the computational cost.

1.3 Thesis Contributions

This thesis demonstrates that:

• Research and tooling for CI/CD con�guration would have the most immediate impact
if it were focused on supporting the con�guration of job processing nodes or reducing
the complexity of deployment con�guration. Moreover, research and tooling for CI/CD
con�guration should focus on the creation of an initial speci�cation rather than sup-
porting speci�cation maintenance because the con�guration �les are rarely modi�ed in
practice. (Chapter 4)

• Developers misuse and miscon�gure CI/CD speci�cations. The antipatterns that we de-
�ne can expose a system to security vulnerabilities, cause unintended CI/CD behaviour,
or delay SQA activities until after deployment. Gretel, our antipattern detector, can
detect misuse and miscon�guration of CI/CD speci�cations. (Chapter 5)

6

1.4. Structure of the Thesis

• O�-the-shelf CI/CD build outcome data is noisy and build breakages vary with respect
to the number of impacted jobs and the causes of breakage. Researchers should make
sure that noise is �ltered out and heterogeneity is accounted for before subsequent anal-
yses are conducted on CI/CD build outcome data. Build reporting tools should consider
providing richer interfaces to better represent the nuances of build outcome data. (Chap-
ter 6)

• CI/CD services may bene�t from research breakthroughs in the areas of build acceler-
ation and automated program repair. Approaches to make testing and compiling faster
will bene�t a large proportion of CI/CD users. The heaviest users (and CI/CD providers
as a consequence) will bene�t most from additional bandwidth during dependency in-
stallation. (Chapter 7)

• CI/CD builds can be accelerated by caching the build environment and skipping unaf-
fected build steps. Since our build acceleration approach is agnostic of the programming
languages and build tools being used, teams can bene�t without requiring considerable
build migration e�ort. Moreover, our approach can accelerate builds with minimal CPU,
memory, and storage overhead. (Chapter 8)

1.4 Structure of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 provides background informa-
tion on the modern CI/CD process and de�nes key terms. Chapter 3 presents prior research
related to improving the robustness and e�ciency of CI/CD. Chapters 4 and 5 present the
results of our analyses of the use and misuse of CI/CD features, respectively. In Chapter 6,
we present our study of the noise and heterogeneity in CI/CD build data. Chapter 7 discusses
CI/CD service providers’ perspective. Chapter 8 presents the results of our study of accelerat-
ing CI/CD. Finally, Chapter 9 draws conclusions and discusses promising avenues for future
work.

7

Chapter2
Background and Definitions

In this chapter, we de�ne the core concepts of modern CI/CD that are useful for understanding
our work. To be consistent with practice, we adhere to the terminology common to popular
CI/CD services, using Travis CI as a concrete example where applicable.

2.1 Modern CI/CD Process

The main goal of CI/CD is automating the integration of software as soon as it is developed
so that it can be released rapidly and reliably [4]. Figure 2.1 provides an overview of the cycle.
We describe each step below.

Build-triggering events

In projects that adopt CI/CD, the cycle begins with a build-triggering event. These events can
occur in the development, review, or integration stages of code change development. While
a feature is being developed, builds can be triggered manually by the developer to try out
the feature under development. Later, when the code is submitted to be reviewed, builds are
triggered to avoid wasting the reviewer’s time on patches that do not compile. Finally, when
the change is integrated into the project VCS, a build is triggered to ensure that the change
does not introduce regression errors.

Build job creation service

When a build-triggering event occurs, a build job creation node will add a job to the queue
of pending build jobs if certain criteria are met. For example, in Travis CI, developers can
specify the VCS branches on which commits should (or should not) generate build jobs.

8

2.1. Modern CI/CD Process

Run Builds

Figure 2.1: Main components of a continuous integration system: Build job creation, processing, and

reporting.

Build job processing service

Build jobs in the pending queue will be allocated to build job processing nodes for execution.
The job processing node will �rst download the latest version of the source code and apply
the change under consideration. Next, the job processing node will initiate the build process,
which will compile the system (if necessary), execute a suite of automated unit and integration
tests to check for regression, and in the case of Continuous Delivery (CD) [10], make the
updated system available for users to download or interact with. Finally, the job processing
node will add the results of the build job to the reporting queue.

Build job reporting service

In this �nal stage, build job results in the reporting queue will be communicated to the devel-
opment team. Reporting preferences can be con�gured such that particular recipients receive
noti�cations when build jobs are marked as successful, unsuccessful, or irrespective of the

9

2.2. Cloud-Based CI/CD Services

job status. Traditionally, these results were shared via mailing lists or IRC channels; however,
other communication media are also popular nowadays (e.g., Slack, web dashboards).

Operating and maintaining CI/CD infrastructure is a burden for modern software organi-
zations. As organizations grow, their CI/CD infrastructure needs to scale up in order to handle
the increased load that larger teams will generate. Moreover, if additional platforms are added
(e.g., to attract more users), this too will generate additional CI/CD load.

2.2 Cloud-Based CI/CD Services

Instead of investing in on-site CI/CD infrastructure, modern organizations use cloud-based
CI/CD services, such as Travis CI and CircleCI. These service providers enable organiza-
tions to have scalable CI/CD services without operating and maintaining CI/CD infrastructure
internally.

Travis CI and CircleCI, the two CI services that we closely analyze in this thesis, o�er
similar features to their user base. Apart from the cloud-based o�ering, both services o�er
an on-premise solution with security and con�guration for running CI/CD builds in a private
cloud or a data center. Both services can be con�gured with a YAML �le, which is placed in
the root directory of the project repository. Both o�er running builds on Windows, Linux,
Android, iOS, and macOS operating systems. Software projects developed in over 30 popular
programming languages can run their CI builds on these services. Furthermore, both Travis
CI and CircleCI can integrate with popular version control systems such as GitHub and Bit-
bucket. Both services support plugins and third-party integration for software development
tasks such as static analysis, code coverage, testing, deployment, and monitoring. Travis CI
and CircleCI both support parallel testing.

In terms of di�erences, CircleCI has some advanced developer-friendly features compared
to Travis CI. For debugging build failures CircleCI users have the option of connecting to
build servers via SSH. Moreover, CircleCI users can choose to parallelize their tests using
multiple criteria such as past timing data. CircleCI also supports ‘Orbs’, which are reusable
environment con�gurations that help to automate repetitive processes, and speed-up the ini-
tial setup. Furthermore, while open source projects can run their CI builds free of charge on
CircleCI (up to 400,000 credits per month), Travis CI has terminated the free plan for open
source projects since November 2020.

10

2.3. Con�guring Cloud-Based CI/CD Services

Recently, version control service providers have also started o�ering CI/CD services (e.g.,
GitHub Actions,1 GitLab CI/CD,2 and BitBucket Pipelines3) focusing on the convenience
of the users to trigger CI/CD work�ows via version control activity. Furthermore, major public
cloud vendors are also providing CI/CD capabilities (e.g., Microsoft Azure DevOps,4 AWS
CodeStar,5 and Google Cloud Build6) with features to facilitate the entire continuous de-
livery toolchain.

2.3 Con�guring Cloud-Based CI/CD Services

Cloud-Based CI/CD service users can de�ne which tools are needed and the order in which
they must be executed to complete a build job. These con�guration details are typically stored
in a �le (e.g., .circleci/config.yml for CircleCI, .travis.yml for Travis CI) using a
YAML-based DSL, which appears in the root directory of a GitHub repository. The con�gu-
ration �le can also specify programming language runtimes, and other environment con�gu-
ration settings that are needed to execute build jobs. As a concrete example to illustrate, we
use the .travis.yml �le of Travis CI below. However, note that equivalents are available in
CircleCI and other cloud-Based CI/CD services.

Figure 2.2 shows that .travis.yml �les consist of node con�guration and build process
con�guration sections. We describe each section below.

2.3.1 Node Con�guration

This section speci�es how CI/CD nodes should be prepared before building commences.

• Build job creation nodes: In this subsection, nodes that are responsible for creating
build jobs can be con�gured. For example, the branches property speci�es the VCS
branches where changes that land should generate build jobs.

• Build job processing nodes: In this subsection, nodes that are responsible for process-
ing build jobs can be con�gured. For example, since di�erent programming languages
have di�erent basic toolchain requirements (e.g., Python projects require the python

interpreter to be installed, while Node.js projects require the node interpreter to be in-
1https://github.com/features/actions
2https://docs.gitlab.com/ee/ci/
3https://bitbucket.org/product/features/pipelines
4https://azure.microsoft.com/en-us/services/devops/
5https://aws.amazon.com/codestar/
6https://cloud.google.com/build

11

https://github.com/features/actions
https://docs.gitlab.com/ee/ci/
https://bitbucket.org/product/features/pipelines
https://azure.microsoft.com/en-us/services/devops/
https://aws.amazon.com/codestar/
https://cloud.google.com/build

2.3. Con�guring Cloud-Based CI/CD Services

Figure 2.2: A .travis.yml configuration file and how it maps to the Travis CI life cycle.

12

2.3. Con�guring Cloud-Based CI/CD Services

stalled), specifying the language property allows the Travis CI runtime to con�gure
processing nodes appropriately. Moreover, if there are libraries and services that need to
be installed on the job processing nodes prior to build execution, they can be speci�ed
using the services property. The environment variables that need to be set prior to
build execution can be con�gured using the env property. In practice, CI services rely
on existing containers (e.g., Docker) to set up certain services/environments.

• Build job reporting nodes: In this subsection, nodes that are responsible for reporting
on the status of build jobs can be con�gured. Noti�cation services, such as e-mail and
Slack, are con�gured to notify the development team about the status of build jobs.
For example, using the notifications property, Travis CI users can specify the list
of recipients of build status reports (recipients) and the scenarios under which they
should be noti�ed (on_success, on_failure).

2.3.2 Build Process Con�guration

This section is comprised of install, script, and deploy phases, which each consists of
sub-phases. These sub-phases check pre- and post-conditions before (before_X) and after
(after_X) executing the main phase.

• The install phase prepares job processing nodes for build job execution, and has
install_apt_addons, before_install, and install sub-phases. Unless speci�ed,
the phase runs a default command for the speci�ed programming language. For exam-
ple, Travis CI runs npm install by default for Node.js projects.

• The script phase executes the bulk of the build job, and has before_script, script,
after_success, after_failure, and after_script sub-phases. In this phase, sys-
tems are compiled, tested, scanned by static code analyzers, and packaged for deploy-
ment. Similar to the install phase, script runs default commands for the speci�ed
programming language, unless otherwise speci�ed. For example, Travis CI runs npm

test by default for Node.js projects.
• The deploy phase makes newly produced deliverables visible to system users, and has
before_deploy, deploy, and after_deploy sub-phases. When this phase is present,
the CI process is transformed into a continuous delivery process [10], where regression-
free changes are released to system users.

13

2.4. The Anatomy of a CI/CD Build

2.4 The Anatomy of a CI/CD Build

In a typical CI/CD service, a build is comprised of one or more jobs. For example, a build can
have multiple jobs, each of which tests the project with a di�erent variant of the development
or runtime environment. Once all of the jobs in the build are �nished, the build is also �nished.

For each job, cloud-based CI/CD providers report one of four outcomes:

• Passed. The project was built successfully and passed all tests. All phases terminate
with an exit code of zero.

• Errored. If any of the commands that are speci�ed in the before_install, install, or be-
fore_script phases of the build lifecycle terminate with a non-zero exit code, the build is
labelled as errored and stops immediately. Sometimes CI/CD providers will experience
infrastructure failures due to issues that are unrelated to the build. Builds that were
running during these incidents will also be labelled as errored.

• Failed. If a command in the script phase terminates with a non-zero exit code, the build
is labelled as failed, but execution continues with the after_failure phase.

• Cancelled. A Travis CI user with su�cient permissions can abort the build using the
web interface or the API. Such builds are labelled as cancelled.

14

Chapter3
Related Work

This chapter provides an overview of the current state-of-the-art in six general topics covering
the �elds relevant to the subsequent chapters of this thesis.

3.1 Continuous Integration

With the practice of CI becoming ubiquitous among practitioners, the topic has been exten-
sively studied by software engineering researchers [3].

Recent work has characterized CI practices and outcomes along di�erent dimensions.
Meyer [13] discussed features of the CI tools that were used by practitioners. He emphasizes
the importance of good tooling, fully automated builds, fast test suites, feature-toggling, and
monitoring for CI. Ståhl and Bosch [14] also provided a systematic overview of CI practices
and their di�erences from a technical perspective. Vasilescu et al. [9] studied quality and pro-
ductivity outcomes of using CI. They �nd that teams that are using CI are signi�cantly more
e�ective at merging the pull requests of core members.

In addition to positive outcomes, challenges and limitations of CI have been pointed out by
researchers [11, 15]. For example, Hilton et al. [2] analyzed open source projects from GitHub
and surveyed developers to understand which CI systems developers use, how developers use
CI, and reasons for using CI (or not). They conclude that the main reason why open source
projects choose not to use CI is that the developers are not familiar enough with it. Similarly,
Elazhary et al. [16] have studied the CI practice at three software organizations based on
a mixed methods approach to identify bene�ts and challenges experienced by the software
teams during CI adoption. In a recent qualitative study, Hilton et al. [17] also found that,

15

3.2. Software Con�guration Smells

when adopting CI, developers face trade-o�s between speed and certainty, accessibility and
security, and con�gurability and ease of use.

Other works focus on improving speci�c stages of the CI process. Beller et al. [18] studied
testing practices in CI, particularly focusing on Java and Ruby projects. They conclude testing
is an established and integral part in the CI process of open source software. However, Beller
et al. [18] also observe a latency of more than 20 minutes between writing code and receiving
test feedback from CI when compared to the fast-paced nature of testing in the local envi-
ronments. They suggest that low test failure rates from CI are a sign that developers submit
pre-tested contributions to CI. Similarly, Elbaum et al. [19] propose algorithms based on test
case selection and prioritization techniques to make CI processes more cost e�ective. Other
work has studied how to improve the e�ectiveness of automated testing in CI [20, 30] and
how CI can be extended to include additional performance and robustness tests when stan-
dard testing frameworks are insu�cient for highly concurrent, real-time applications [22].

The goal of our work explained in detail in Chapter 4 of this thesis is to characterize the
usage of CI features by analyzing a large corpus of existing CI speci�cations. Our work is
complementary to prior studies, contributing to a larger understanding of how CI tools and
techniques are being adopted in real-world projects.

3.2 Software Con�guration Smells

To the best of our knowledge, our work on CI misuse discussed in Chapter 5 is the �rst to de-
�ne, detect, and remove anti-patterns in CI speci�cations; however, prior work has explored
anti-patterns in the context of other con�guration �les. Brown et al. [23] published a catalog of
anti-patterns and patterns for software con�guration management. Shambaugh et al. [24] pro-
posed Rehearsal, a veri�cation tool for Puppet con�gurations. Sharma et al. [25] have also
recently explored smells that are related to the Puppet con�guration management language.
They presented a set of implementation and design con�guration smells that violate recom-
mended best practices. Bent et al. [26] surveyed developers and used the �ndings to develop
a Puppet code quality analysis tool. Rahman and Williams [27] applied text mining tech-
niques to identify defects in Puppet scripts, identifying �le system operations, infrastructure
provisioning, and user account management properties as characteristics of defective Puppet
scripts. Jha et al. [28] proposed a static analysis tool for detecting errors in con�guration �les
of Android apps. In an exploratory empirical study, Cito et al. [29] assessed the quality of
Docker con�guration �les on GitHub, observing that they violate 3.1 linter rules on average.

16

3.2. Software Con�guration Smells

Recently, similar to our work, more studies have found that CI speci�cations [30] and pro-
cesses [31] are susceptible to anti-patterns [23] that impact their maintainability, performance,
and security. To tackle these CI adoption and maintenance problems, the research community
has provided tools that improve the transparency and maintainability of the CI pipeline such
as identifying reasons for build breakage in CI [8]. Techniques for automatically �xing build
breakages have also been proposed [32–43]. Moreover, recent tools like CI-Odor [30] and
CD-Linter [35] suggest �xes for common anti-patterns in CI/CD pipelines. We take a similar
approach with our Hansel & Gretel tools (Chapter 5).

Another related concept is architectural or design smells. Marinescu [36] has de�ned de-
tection strategies for capturing important �aws of object-oriented design that were reported
in the literature. Garcia et al. [37] have de�ned architectural bad smells as architectural design
decisions that negatively impact the understandability, testability, extensibility, and reusability
of a software system. Moha et al. [38] de�ne smells as poor solutions to recurring implemen-
tation and design problems. They also specify four well-known design smells and de�ne their
detection algorithms.

The anti-patterns that we propose in Chapter 5 of our thesis share similarities with con-
�guration smells de�ned in prior work. For example, since externally-hosted scripts are not
analyzed by the Travis CI runtime, anti-pattern 1 (redirecting scripts into interpreters) can
lead to non-deterministic errors and non-idempotence problems that were identi�ed by Sham-
baugh et al. [24]. Alicherry and Keromytis [39] showed that trusting SSH hosts keys (also
known as trust-on-�rst-use) exposes hosts to man-in-the-middle attacks. Our anti-pattern 2
also detects instances where users bypass ssh security measures by disabling SSH host key
checking. Similar to our work, Rahman et al. [40] have proposed Security Linter, a static
analysis tool to identify seven security smells in Infrastructure as Code (IaC) scripts. Our anti-
pattern 3 (using irrelevant properties) is similar to the Invalid Property Value and Deprecated

Statement Usage con�guration smells proposed by Sharma et al. [25] and the Silent Failure

problem proposed by Shambaugh et al. [24]. Finally, our anti-pattern 4 (commands unrelated
to the phase) is similar to Sharma et al.’s Misplaced Attribute and Multifaceted Abstraction con-
�guration smells [25]. Indeed, if dependency installation, compilation, and testing commands
are all included in the Script phase, the tasks in that phase are not cohesive, violating the single
responsibility principle.

In summary, expanding on prior work in software con�guration smells, we report on CI
anti-patterns in Chapter 5 of our thesis. Our work provides value for software teams by helping

17

3.3. Build Breakage

them to identify instances that can introduce build correctness, performance, and security
problems during the CI process.

3.3 Build Breakage

Build breakage, which refers to the errors and failures that can occur during the process of cre-
ating executable software packages from source code, has attracted the attention of software
engineering researchers at many occasions during the past decade.

The rate at which builds are broken has been explored in the past. Kerzazi et al. [41] have
conducted an empirical study in a large software company analyzing 3,214 builds that were
executed over a period of six months to measure the impact of build breakages, observing a
build breakage rate of 17.9%, which generates an estimated cost of 904.64 to 2034.92 person
hours. Seo et al. [6] studied nine months of build data at Google, �nding that 29.7% and 37.4%
of Java and C++ builds were broken, respectively. Tufano et al. [42] found only 38% of the
change history of 100 subject systems is successfully compilable and that broken snapshots
occur in 96% of the studied projects. Hassan et al. [43] showed that at least 57% of the broken
builds from the top-200 Java projects on GitHub can be automatically resolved.

To better understand and predict build breakage, past studies have �t prediction models.
Hassan and Zhang [44] have demonstrated that decision trees based on change and project
attributes can be used to predict the certi�cation result of a build. Wolf et al. [45] used a
predictive model that leverages measures of developer communication networks to predict
build breakage. Similarly, Kwan et al. [46] used measures of socio-technical congruence, i.e.,
the agreement of the coordination needs established by the technical domain with the actual
coordination activities carried out by project members, to predict the build outcome in a glob-
ally distributed software team. In recent work, Luo et al. [12] have used the TravisTorrent
dataset to predict the result of a build based on 27 features. They found that the number of
commits in a build is the most important factor that can impact the build result. Dimitropou-
los et al. [47] use the same dataset to study the factors that have the largest impact on build
outcome based on K-means clustering and logistic regression.

For communicating the current status of the build, Downs et al. [48] proposed the use
of ambient awareness technologies. They have observed by providing a separate, easily per-
ceived communication channel distinct from the standard team work�ow for communicating
build status information, the total number of builds increased substantially, and the duration

18

3.4. Analysis of CI Datasets

of broken builds decreased. To help developers to debug build breakage, Vassallo et al. [32]
propose a summarization technique to reduce the volume of build logs. For mitigating the
impact of build breakage in the context of component-based software development, van der
Storm [49] have shown how backtracking can be used to ensure that a working version is
always available, even in the face of failure.

Broadly speaking, prior work has treated build breakage as a boolean, pass or fail label. In
our work on noise and heterogeneity in CI build data, discussed in Chapter 6 of this thesis,
we advocate for a more nuanced interpretation of build breakage that recognizes the noise
in build outcome data and heterogeneity of build executions. Recently, complementing to our
work, Zolfagharinia et al. [50] report on the CI build in�ation in the Perl ecosystem using
30 million builds from the CPAN repository. Moreover, expanding on the theme, Ghaleb et
al. [51] measure the impact of noises in build breakage data on modeling build breakages.

In summary, characterizing build outcome data helps software practitioners and researchers
when building tools and proposing techniques to solve software engineering problems. While
prior work makes important observations, understanding the nuances and complexities of
build outcome data has not received su�cient attention by software engineering researchers.
To support the interpretation of build outcome data, in Chapter 6 of our thesis, we characterize
build outcome data according to harmful assumptions that one may make.

3.4 Analysis of CI Datasets

Researchers have used TravisTorrent,1 a dataset of 2.6 million Travis CI builds curated by
Beller et al. [52] to explore di�erent aspects of CI such as noise in build outcomes [53] and long
build durations [54]. Hilton et al. [2] also analyzed 1.5 million Travis CI builds to understand
how developers use CI. Similarly, Durieux et al. [55] have curated a dataset of 35 million
Travis CI jobs. Rausch et al. [56] analyzed Travis CI build failures from 14 open source Java
projects and identi�ed 14 error categories where test failures was the most common category.
Their analysis shows that Perl packages may fail di�erently on di�erent runtime environment
and operating system combinations and therefore build results should be treated di�erently.
Vassallo et al. [30] have studied build logs of popular Java projects on Travis CI to identify
anti-patterns that reduce bene�ts of CI. Felidré et al. [57] have also used Travis CI build data
to identify four bad practices in CI, namely: (1) infrequent commits, (2) poor test coverage, (3)

1https://travistorrent.testroots.org/

19

https://travistorrent.testroots.org/

3.5. Slow CI/CD Feedback and its Remedies

builds staying broken for long periods, and (4) builds taking too long to run. Zhao et al. [58]
study the impact of CI on other software development practices by using GitHub projects
that use Travis CI and report that more pull requests are successfully closed, even though the
requests take longer to be closed with the introduction of CI.

The broad adoption of CI services has presented new opportunities for research on CI/CD.
Researchers have interpreted the data generated by CI providers from the perspective of the
CI users, discussing challenges and bene�ts of adopting CI. However, the perspective of the CI
provider has remained largely unexplored. Improving the usability of the service by making
use of research �ndings can help to attract new users and to retain existing ones. Therefore,
in contrast to the existing literature, in Chapter 7 of this thesis we analyze CI data from the
service provider’s perspective and report on the CircleCI service broadening the focus to
more ecosystems.

3.5 Slow CI/CD Feedback and its Remedies

In a recent literature survey, Widder et al. [59] summarize multiple studies about the implica-
tions of slow CI builds. According to the diverse populations that were studied, slow CI builds
is one of the key barriers to adoption of CI for software teams. The latency introduced by
slow CI builds can delay pull request assessments [58, 60], hindering the premise of rapid CI
feedback [56]. Developers also complain about the cost of computational resources and the
di�culty of debugging software with a slow CI cycle [17, 61].

Felidré et al. [57] studied the CI build durations of 1,270 open source projects and found
that 16% of the projects have build durations that exceed the 10-minute rule of thumb for
which past literature [17, 62] has advocated. Furthermore, 78% of the participants in the study
by Hilton et al. [17] stated that they actively allocate resources to reduce the duration of their
CI builds. This further illustrates the practical importance of making improvements to CI build
speed.

Due to its importance to practitioners, there have been several recent approaches proposed
to tackle slow CI builds. Ghaleb et al. [54] studied the reasons behind long build durations, ob-
serving that caching content that rarely changes is a cost-e�ective way of speeding up builds.
Cao et al. [63] use a timing-annotated build dependency graph to forecast build duration. Tu-
fano et al. [64] propose an approach to alert developers about the impact that code changes

20

3.6. Continuous Deployment

may have on future CI build speeds. While these techniques help developers to cope with slow
CI builds, we propose a set of approaches to automatically accelerate CI builds in Chapter 8.

In prior work, several approaches have been proposed to reduce the time taken by CI
builds. Abdalkareem et al. [65, 75] suggest to skip CI altogether for commits that do not a�ect
source code. Esfahani et al. [67] describe the CloudBuild distributed build service, which uses
content-based caching to skip build steps, saving time and compute resources at Microsoft. Li
et al. [68] propose test case selection [69] during CI by using static dependencies and dynamic
execution rules. Many other approaches have been proposed to reduce test execution time by
minimization, selection, and prioritization (e.g., [19, 70, 80]).

The past work highlights the e�ectiveness of CI build acceleration solutions that skip build
steps based on a shared cache of build outputs, as well as the selection of tests that are im-
pacted by a software change. However, a key limitation of prior approaches is a reliance upon
developer annotation and/or (largely) manually speci�ed build con�guration �les. The manual
speci�cation of build dependencies is error-prone [72–84]. Moreover, since organizations may
already have non-trivial build speci�cations that were written for existing build tools, migrat-
ing to a new build tool requires a large investment of e�ort [76, 86]. Therefore, in Chapter 8,
we strive to accelerate builds without relying on explicitly speci�ed build dependencies. To
simplify the adoption of our approach, we leverage existing CI pipeline speci�cations where
available. Broadly speaking, we strive to deliver a language-agnostic solution so that existing
code bases can immediately bene�t from our approach with minimal investment of migration
e�ort.

3.6 Continuous Deployment

Although not as common as continuous integration, there have been several studies on how
continuous deployment services are designed and operated at scale. Schermann and Leit-
ner [78] propose to use genetic algorithms for scheduling experiments when continuous de-
ployment is practiced in a software organization. Similarly, Günalp et al. [79] present Rondo,
a tool suite for continuous deployment of service-oriented applications, which aims for a de-
terministic and idempotent deployment process.

Going beyond the research experiments, practitioners also report on state-of-the-art De-
vOps platforms developed at large-scale software organizations to serve their internal use-
cases. Esfahani et al. [67] describe how Microsoft’s internal distributed build service was de-

21

3.6. Continuous Deployment

signed to speed up the CI/CD work�ow of their existing projects. Gupta et al. [80] report
on how a large-scale online experimentation platform was designed at Microsoft to provide
trustworthy results for internal users in their controlled experiments in a scalable manner. An
experience report by Savor et al. [81] present observations from the adoption of a continuous
deployment process for cloud-based software at Facebook and OANDA. Similarly, Rossi et
al. [1] describe how continuous deployment is practiced during mobile software development
at Facebook. Laukkanen et al. [82] surveyed the recent literature for the problems, causes, and
solutions when adopting continuous delivery. They point out large commits, merge con�icts,
broken builds, and slow integration approval as problems that are related to integration. By in-
terviewing practitioners in 15 ICT companies, Leppänen et al. [83] found that domain-imposed
restrictions, resistance to change, customer needs, and developers’ skill and con�dence are
adoption obstacles for continuous deployment.

While prior work focuses on designing and maintaining deployment infrastructure for
internal users, exposing the service to external users may also present unique challenges.
Focusing on build data from the perspective of CI service providers is important for capac-
ity planning and identifying opportunities to improve existing provider solutions. Identifying
opportunities for managing resources e�ciently will help CI service providers to keep oper-
ational costs low while delivering fast and reliable CI services. Therefore, in Chapter 7 of our
thesis we look into the challenges in providing CI/CD services for external users.

22

Part II

Robustness in CI/CD Services

23

Chapter4
Usage of Features in CI/CD

Environments

Note. An earlier version of the work in this chapter appears in the IEEE Transactions on

Software Engineering (TSE) journal [84].

4.1 Introduction

A typical CI service is composed of three types of nodes. First, build job creation nodes queue
up new build jobs when con�gured build events occur, e.g., a new change appears in the
project Version Control System (VCS). Next, a set of build job processing nodes process build
jobs from the queue, adding job results to another queue. Finally, build job reporting nodes
process job results, updating team members of the build status using web dashboards, emails,
or other communication channels (e.g., Slack1).

In the past, organizations needed to provision, operate, and maintain the build job creation,
processing, and reporting nodes themselves. To accomplish this, developers used general pur-
pose scripting languages and automation tools (e.g., Ansible2). Since these general purpose
tools are not aware of the phases in the CI process, boilerplate features such as progress track-
ing, error handling, and noti�cation were repeated for each project. Dedicated CI tools such

1https://slack.com/
2https://www.ansible.com/

24

https://slack.com/
https://www.ansible.com/

4.1. Introduction

as Bamboo,3 Jenkins,4 and TeamCity5 emerged to provide basic CI functionality; however,
these CI tools still require that infrastructure is internally operated and maintained.

Nowadays, cloud-based providers such as Travis CI,6 o�er hosted CI services to software
projects. Users of these CI services inform the service provider about how build jobs should
be processed using a con�guration �le. This �le speci�es the tools that are needed during the
build job process and the order in which these tools must be invoked to perform build jobs in
a repeatable manner.

Like other software artifacts, this CI con�guration �le is stored in the VCS of the project.
Like programming languages, con�guration languages also o�er features, which can be used
or misused. For example, Travis CI users can use features like branches, which speci�es
which VCS branches to monitor for commit activity. Commits that appear on the monitored
branches will trigger build jobs.

In this chapter, we set out to study how features in CI con�guration �les are being used.
While the most popular CI service might di�er from one source code hosting platform to
another, prior work has shown that Travis CI is the most popular CI service on GitHub [2],
accounting for roughly 50% of the market share.7 Thus, we begin by selecting a corpus of
9,312 open source projects that are hosted on GitHub and have adopted the popular Travis
CI service. Through empirical analysis of the CI con�guration �les of the studied projects, we
address the following research questions about feature usage:

• RQ1 What are the commonly used languages in Travis CI projects?

Despite being the default Travis CI language, Ruby is only the sixth most popular lan-
guage in our data set. Node.js is the most popular language in our corpus.

• RQ2 How are statements in CI speci�cations distributed among di�erent sections?

We �nd that 48.16% of the studied Travis CI con�guration code applies to build job

processing nodes. Explicit deployment code is rare (2%). This shows that although the
developers are using tools to integrate changes into their repositories, they rarely use
these tools to implement continuous delivery [10]—the process of automatically releasing
code that integrates cleanly.

3https://www.atlassian.com/software/bamboo
4https://jenkins.io/
5https://www.jetbrains.com/teamcity/
6https://travis-ci.com/
7https://github.com/blog/2463-github-welcomes-all-ci-tools

25

https://www.atlassian.com/software/bamboo
https://jenkins.io/
https://www.jetbrains.com/teamcity/
https://travis-ci.com/
https://github.com/blog/2463-github-welcomes-all-ci-tools

4.2. CI/CD Feature Usage

• RQ3 Which sections in the CI speci�cations induce the most churn?

Most CI con�guration �les, once committed, rarely change. The sections that are related
to the con�guration of job processing nodes account for the most modi�cations. In the
projects that are modi�ed, all sections are likely to be modi�ed an equal number of
times. Similar to RQ2, this again suggests that deployment-related features in CI tools
are not being used.

Our study of CI feature usage leads us to conclude that future CI research and tooling
would have the most immediate impact if it targets the con�guration of job processing nodes.

The remainder of the chapter is organized as follows. Section 4.2 outlines the motivation
of our study of CI feature usage. Section 4.3 outlines the design of our study of CI feature
usage, while Section 4.4 presents the results. Section 4.5 discusses the threats to the validity
of our study. Finally, Section 4.6 draws conclusions.

4.2 CI/CD Feature Usage

As a community, knowing how CI is being used in reality is important for several reasons.
First, CI service providers will be able to make data-driven decisions about how to evolve
their products, e.g., where to focus feature development to maximize (or minimize) impact.
Second, researchers will be able to target elements of CI that are of greater impact to users
of CI. Finally, individuals and companies who provide products and services that depend on
or are related to CI (such as Hansel & Gretel) will be able to tailor their solutions to �t the
needs of target users.

Hilton et al. [2] analyzed a broad spectrum of properties of CI speci�cations. We aim to
complement the prior work by studying how features within CI speci�cations are used to
con�gure their build nodes and jobs. To do so, we conduct an empirical study of 9,312 GitHub
projects that use Travis CI, addressing the following research questions:

• RQ1 What are the commonly used languages in Travis CI projects?

We �rst aim to understand whether projects that are developed in certain languages
are more common among the Travis CI user base. This will help future tool developers
and researchers studying CI processes to identify potential target languages and tech-
nologies. This will also help to identify programming language features that can impact
CI/CD con�guration and adoption.

26

4.3. Study Design

Data Filtering

Select
Active
and

Large
Projects

Select
Non-Forked

Projects
Google

BigQuery

2,991,522 145,876 Select
Projects
that use
Travis CI

56,947 Select
Non-Duplicated

Projects

12,153
9,312

Subject
Systems

DF1: DF2: DF3: DF4:

Figure 4.1: An overview of our data filtering approach.

• RQ2 How are statements in CI speci�cations distributed among di�erent sections?

To develop an understanding of the spread of CI con�guration code across sections, we
are interested in the quantity of code that appears within each section.

• RQ3 Which sections in the CI speci�cations induce the most churn?

While RQ2 provides a high-level view of which sections in CI speci�cations require the
most code, it does not help in understanding which sections require the most change. To
complete the picture, we set out to study how the churn is dispersed among the sections.

4.3 Study Design

In this section, we provide our rationale for studying GitHub projects and explain our data
�ltering approach.

4.3.1 Corpus of Candidate Systems

In order to arrive at reliable conclusions, it is important to select a large and diverse set of
software projects. With this in mind, we begin our analysis with systems that are hosted on
the popular GitHub platform.

We start by querying the public GitHub dataset on Google BigQuery8 for project activity
(i.e., the number of commits) and project size heuristics (i.e., the number of �les). This query
returns 4,022,651,601 commits and 2,133,880,097 �les spanning 2,991,522 GitHub repositories.

4.3.2 Data Filtering

While GitHub is a large corpus, it is known to contain projects that have not yet reached
maturity [85]. To prevent the bulk of immature projects from impacting our conclusions, we

8https://cloud.google.com/bigquery/public-data/github

27

https://cloud.google.com/bigquery/public-data/github

4.3. Study Design

0 × 100

1 × 106

2 × 106

3 × 106

10 100 1,000 10,000 100,000
Threshold (# of commits)

of

 P
ro

je
ct

s

Figure 4.2: Threshold plot for commit activity.

0 × 100

1 × 105

2 × 105

3 × 105

4 × 105

5 × 105

6 × 105

10 100 1,000 10,000 100,000
Threshold (# of files)

of

 P
ro

je
ct

s

Figure 4.3: Threshold plot for project size.

�rst apply a set of �lters to our GitHub data. Figure 4.1 provides an overview of our data
�ltering approach. We describe each step in the approach below.

DF1: Select Active and Large Projects

We �rst remove inactive projects from our corpus. To detect such projects, Figure 4.2 plots
threshold values against the number of surviving systems. Selecting a threshold of 100 com-
mits reduces the corpus to 574,325 projects.

Next, we remove small projects from our corpus. To detect such projects, Figure 4.3 again
plots threshold values against the number of surviving systems. Selecting a threshold of 500
�les further reduces the corpus to 145,876 projects.

28

4.3. Study Design

DF2: Select Projects that use Travis CI

We focus our study on users of the Travis CI service for two reasons. First, while other CI
services are available, Travis CI is the most popular, accounting for roughly 50% of the CI
market on GitHub.7 CircleCI ranks second with roughly 25%, while Jenkins (a CI tool rather
than a service) ranks third with roughly 10%. Second, since other CI services have a similar
con�guration syntax (YAML-based DSL), it is likely that our observations will be applicable
to other CI services. We elaborate on this in Section 5.5.4.

To identify GitHub projects that use Travis CI, we check for a .travis.yml con�gura-
tion �le in the root directory. This �lter reduces the corpus to 56,947 projects.

DF3: Select Non-Forked Projects

Forking
9 allows GitHub users to duplicate a repository in order to make changes without

a�ecting the original project. Developers working on forked repositories can submit Pull Re-
quests to contribute changes to the original project.

Forks should not be analyzed individually, since they are primarily duplicates of the forked
repository. If forks are not removed from the corpus, the same development activity will be
counted multiple times. We detect forks using the GitHub API. Repositories that are �agged
as forks according to this API are removed from our corpus. This �lter reduces the corpus to
12,153 projects.

DF4: Select Non-Duplicated Projects

The DF3 �lter only removes explicitly forked repositories that were created using the GitHub
fork feature. Repositories may also be re-uploaded under a di�erent owner and/or name with-
out using the fork feature.

To detect these duplicated repositories, we extract the list of commit hashes (SHAs) in
each of the candidate repositories that survive the prior �lters. If any two repositories share
more than 70% of the same commit SHAs, we label both repositories as duplicates. Since we
cannot automatically detect which of the duplicated repositories is the original repository and
which ones are the copies, we remove all duplicated repositories from our corpus. 9,312 candi-

9https://help.github.com/articles/fork-a-repo/

29

https://help.github.com/articles/fork-a-repo/

4.3. Study Design

140 73 2,768

0

2500

5000

7500

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Max. Similarity with Another Project

P
ro

je
ct

 C
ou

nt

Figure 4.4: A histogram of the maximum commit similarity among the candidate repositories.

date repositories survive this �nal �lter and are selected as subject systems for the following
analyses.

To check if the selected similarity threshold for �ltering out duplicated projects is suitable,
for each project that survives the DF1–DF3 �lters, we compute all pairwise commit similarity
percentages. Then, for each project, we select the maximum similarity percentage. Figure 4.4
shows the histogram of these maximum similarity percentages. We observe a largely bimodal
distribution where many projects are either distinct (similarity = 0%) or almost identical to
another project in terms of commit SHAs (similarity ≈ 100%). Indeed, a more stringent 60%
threshold only removes 140 more projects (1.50%) and a more lenient threshold of 80% only
adds 73 projects (0.78%), indicating that sample does not depend heavily upon the threshold
value.

4.3.3 Domain of the Subject Systems

To understand the domain of subject systems, we need to classify each subject system by
inspecting their source and documentation. Since this is impractical in our context, we analyze
a randomly selected subset of 152 subject systems. Table 4.1 shows that our corpus contains
a broad variety of subject systems, including games, and web and mobile apps. Projects that
have the functionality of multiple domains (e.g., Development tools vs DevOps) have been
categorized under the domain that is covered by the largest number of features in the project.
Since we previously selected active and large projects for our analysis, in this sub-sample,
the lower bounds for the number of commits and number of �les thresholds are 111 and 503,
respectively.

30

4.4. Study Results

Table 4.1: Domains in a sub-sample of our subject systems.

Type # Projects Percentage

Web Application 23 15.13
Graphics/Visualization 21 13.82
Application Framework/Library 15 9.87
Development Tools 15 9.87
Communication/Collaboration Tool 13 8.55
DevOps 10 6.58
Scienti�c Computing 10 6.58
Games/Game Engine 8 5.26
Mobile Application 7 4.61
Other 30 19.74
Total 152 100.00

4.4 Study Results

In this section, we present the results of our CI usage study with respect to our three research
questions. For each research question, we �rst present our approach for addressing it, followed
by the results that we observe.

(RQ1) What are the commonly used languages in Travis CI projects?

Approach. We identify the commonly used languages in Travis CI projects by detecting the
setting of the language property in the Travis CI con�guration �le.

Results. Table 4.2 shows the ten most popular languages in our corpus of studied projects.
Hilton et al. [2] explored the rate at which users of particular languages adopt CI, observing
higher rates of adoption in projects that are primarily implemented using dynamic languages.
Six of the top ten languages with the highest rates of CI adoption [2] appear in our list, i.e.,
JavaScript (Node.js in our setting), Ruby, Go, Python, PHP, and C++. The four languages
from the Hilton et al. setting that do not appear in our sample (i.e., Scala, CoffeeScript,
Clojure, and Emacs Lisp) are infrequently used, altogether appearing in 5.8% of the projects
in the top ten languages in their setting.

When compared with the language statistics released by GitHub,10 we �nd nine of our
top ten languages are among the ten most popular languages on GitHub (by opened pull

10https://octoverse.github.com/

31

https://octoverse.github.com/

4.4. Study Results

Table 4.2: CI usage by programming language.

Language # Projects %
Node.js 1,460 15.68
Java 1,337 14.36
PHP 1,163 12.49
Python 1,122 12.05
C++ 995 10.69
Ruby 811 8.71
C 702 7.54
Go 290 3.11
Objective-C 250 2.68
Android 195 2.09
Other 987 10.60

requests). Android does not appear in the list by GitHub because applications for the An-
droid platform are developed in Java programming language and therefore grouped with Java
projects. C# appears in GitHub’s top ten, but not ours. Although not shown, C# appears in
149 projects, and would rank eleventh.

Observation 1: Despite being the default Travis CI language, Ruby is not the most popu-

lar language in our corpus of studied systems. Table 4.2 shows that 811 projects are labelled
explicitly as Ruby projects, making Ruby the sixth ranked language in our corpus. There are
an additional 421 projects that do not specify a language property. In this case, the Travis CI
execution environment assumes that the project is using Ruby. Even if all 421 of these unla-
belled projects are indeed Ruby projects, this would only increase the Ruby project count to
1,232, which would rank third.

Observation 2: Node.js is the most popular language in our corpus of studied systems. Ta-
ble 4.2 shows that there are 1,460 projects (16%) that are labelled explicitly as Node.js projects
in our corpus. Our study is not the only context in which the popularity of Node.js has been
observed. For example, according to a recent StackOver�ow survey11 of 64,000 developers,
Node.js was the most commonly used framework. Moreover, the recent left-pad debacle,
where the removal of an npm package for left-padding strings had a ripple e�ect that crip-
pled several popular e-commerce websites,12 highlights the pivotal role that Node.js plays in
the development stacks of several prominent web applications.

11http://stackoverflow.com/insights/survey/2017
12https://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/

32

http://stackoverflow.com/insights/survey/2017
https://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos/

4.4. Study Results

0%

5%

10%

15%

N
od

e.
js

Ja
va

*P
yt

ho
n

*R
ub

y

*P
H

P

*C
+

+ C

G
o

O
bj

ec
tiv

e−
C

A
nd

ro
id

P
er

ce
nt

ag
e

of
 C

or
pu

s

File Threshold 200 300 400 500

Figure 4.5: The percentage of the corpus that uses the ten most popular languages. Asterisks (*) denote

languages that change ranks when the file count threshold changes (DF1).

Since some languages may require more �les than others, we repeat our analysis with four
�le count threshold values (DF1). Figure 4.5 shows that while the third through sixth ranked
languages vary, six ranks are resilient to threshold changes and Node.js remains the most
popular language.

Summary: Although Ruby is the default language in Travis CI, Node.js is more popular

in our sample.

Implications: Since language popularity �uctuates, CI service providers should carefully

consider whether a popular language of the day should be implicit when no language is

declared explicitly.

(RQ2) How are statements in CI speci�cations distributed among dif-

ferent sections?

Approach. To answer this research question, we �rst label each property in the .travis.yml
�le as related to CI node con�guration or build process con�guration. The tags that specify
the phases in the CI process are labelled as build process con�guration. The tags that are
related to CI node con�guration are further divided into four sub-categories depending on
the type of CI nodes that are being con�gured, i.e., build job creation, build job processing,

33

4.4. Study Results

Table 4.3: The identified build node configuration tags.

Sub-category Key

Creation branches
Processing addons, android,

bundler_args, compiler,
cran, d, dart, dist,
dotnet, elixir, env,
gemfile, ghc, git, go,
haxe, jdk, julia, language,
lein, matrix, mono, node,
node_js, nodejs, os,
osx_image, otp_release,
perl, php, podfile, python,
r, r_binary_packages,
r_build_args, r_check_args,
r_github_packages,
r_packages, repos, ruby,
rust, rvm, sbt_args,
scala, services, smalltalk,
solution, sudo, virtualenv,
warnings_are_errors,
with_content_shell,
xcode_scheme, xcode_sdk,
xcode_workspace,
xcode_project

Noti�cation notifications
Other before_cache, cache, group,

source_key

build status noti�cation, or other. Table 4.3 shows our mapping of .travis.yml tags to these
subcategories. There is a large number of processing node con�guration tags compared to
other subcategories to support con�guration options speci�c to various language tool chains.

We then parse the .travis.yml �les of our subject systems. We use the parsed output to
count lines in each of the sections of each �le. Finally, we apply the Scott-Knott E�ect Size
Di�erence (ESD) test [86]—an enhancement to the Scott-Knott test [87], which also considers
the e�ect size when clustering CI sections into statistically distinct ranks.

Results. Table 4.4 shows the popularity of the sections, as well as their overall length and
proportion within the corpus. Tags belonging to some categories do not appear in the con�g-

34

4.4. Study Results

Table 4.4: The popularity of .travis.yml sections, as well as their length and proportion of lines in

our corpus.

Section # Projects # lines % lines

CI
N

od
e

Co
n�

g. creation 1,441 2,236 1.45
processing 8,852 74,285 48.16
reporting 2,914 7,361 4.77
other 1,836 3,500 2.27

Bu
ild

Pr
oc

es
s

Co
n�

g.

before_install 3,551 14,452 9.37
install 3,519 11,895 7.71
before_script 3,863 14,597 9.46
script 7,122 18,972 12.30
after_script 626 1,111 0.72
before_deploy 115 362 0.23
deploy 343 2,918 1.89
after_deploy 23 41 0.03
after_failure 223 391 0.25
after_success 1,243 2,113 1.37

uration of all projects. In those situations, the default behaviour for that tag is performed. For
example, branches tag related to job creation con�guration is only speci�ed in 1,441 projects.
In projects that the branches tag is not speci�ed, build jobs are created for all branches except
the gh-pages branch by default.

Observation 3: For CI node con�guration, sections that are related to job processing nodes

appear in the most projects. Table 4.4 shows that 8,852 (95.06%) of the studied .travis.yml

�les include job processing. Moreover, 48.16% of the CI code is in the job processing node
con�guration section.

Observation 4: For build process con�guration, sections that are related to the script phase
appeared in the most projects. Table 4.4 shows that 7,122 (76.48%) of the studied projects have
script commands in their .travis.yml �les. Moreover, 12.30% of the CI code appears in the
script phase.

Observation 5: Job processing con�guration and script phase con�guration appear in

statistically distinct ranks when compared to other sections. Figure 4.6a shows the distribution
of commands in each section. The sections are ordered according to the ranks from the Scott-
Knott ESD test. For example, the jruby/activerecord-jdbc-adapter project,13 a database adapter

13https://github.com/jruby/activerecord-jdbc-adapter

35

https://github.com/jruby/activerecord-jdbc-adapter

4.4. Study Results

for Ruby on Rails, uses 400 lines for job processing con�guration. Most of the lines in this
case are used for specifying di�erent JDK and JRuby version combinations to be installed on
the job processing nodes. Moreover, in the joshuarowley42/BigBox-Pro-Marlinr project,14 (3D
printer �rmware) 109 lines appear in the script phase.

Observation 6: Although the deploy phase only appears in 343 (4%) of all projects, the

median number of commands is high when compared to other sections. Since it is not mandatory
to specify commands for all of the sections, it is rare that all valid sections appear in any
given con�guration �le. Figure 4.6b shows the distribution of commands after removing zero-
length sections. The di�erence in the deploy phases in Figure 4.6a (with zeros) and Figure 4.6b
(without zeros) is striking. It appears that when the deploy phase is included, it tends to
require plenty of .travis.yml con�guration code. For example, the oden-lang/oden project15

requires 42 lines of code to describe their deployment process. These lines of code describe
how to deploy the release artifacts for a speci�c release and the current commit on the master
branch to Amazon S3. Indeed, it may be the case that organizations avoid using deploy phase
features because it requires lengthy and complex con�guration.

The .travis.yml �le supports con�guration of deployment to many popular cloud ser-
vices including AWS, Azure, Google App Engine, and Heroku. So it is unlikely that the
reason for developers not using Travis CI for deployment is lack of platform support. Since
Ansible is a popular tool used by developers for the automation of deployments, we study
the use of Ansible as an alternative to the deployment features of Travis CI in our corpus
by searching for syntactically valid Ansible playbooks. Unfortunately, we �nd only 109 (1%)
projects where Ansible is being used. Further studies are needed to identify why deployment
features of Travis CI are rarely used.

Summary: Although code for con�guring job processing nodes is most common (48.16%),

and deployment code is rare (1.89%), when present, deployment code accounts for a large

proportion of the CI speci�cation.

Implications: Research and tooling for CI con�guration would have the most immediate

impact if it were focused on supporting the con�guration of job processing nodes or reducing

the complexity of deployment con�guration.

14https://github.com/joshuarowley42/BigBox-Pro-Marlin
15https://github.com/oden-lang/oden

36

https://github.com/joshuarowley42/BigBox-Pro-Marlin
https://github.com/oden-lang/oden

4.4. Study Results

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●
●
●
●●

●

●

●●●
●

●
●●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●
●●

●

●

●

●
●
●●●
●●
●
●

●

●

●
●●

●

●●
●

●

●
●●●
●
●

●●●

●

●

●

●
●
●

●

●
●
●●
●

●

●

●
●●●●●
●

●
●
●●
●

●

●
●

●

●

●

●

●●

●

●
●
●●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●●

●
●●●

●

●●

●

●

●●●●
●●●
●
●

●

●
●

●●●●
●
●
●
●●

●

●

●

●

●

●

●●
●
●

●

●

●

●●

●

●

●

●
●

●
●
●

●
●

●

●●
●

●

●

●

●●

●

●●
●

●

●●

●

●●

●

●
●
●

●

●

●

●
●
●
●●●●●●●
●

●

●

●●

●●
●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●●●●

●

●●●

●

●

●

●●●●

●
●

●

●

●

●

●

●
●

●

●

●●●●●

●

●●●●

●

●●●

●

●

●●●

●

●●●

●

●

●

●●

●

●

●

●
●

●●●

●

●●●●●

●●

●●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●●

●

●●

●●

●

●

●●

●
●
●

●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●

●

●

●

●●

●

●●

●

●

●

●
●

●●●

●

●

●●●

●

●

●

●●●●●●●●

●

●●

●
●

●

●
●

●●●●

●

●

●

●●●

●

●●

●

●

●●●

●

●

●●●

●
●

●●●

●

●

●

●●●

●

●

●

●

●

●

●●●●●●●●●●●●●

●
●
●●

●●

●

●

●

●●●●●

●

●

●

●

●●

●

●●

●

●●●●●●

●

●●

●

●●

●

●●●

●

●●

●

●

●

●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●●●●●●●

●●

●

●

●

●●●

●

●

●

●●

●

●●●●●●●

●

●●

●

●●●●

●

●●●●

●

●

●

●●●●

●

●

●

●●

●

●●●

●

●●●●●●

●
●

●●●●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●●

●
●
●

●

●●●●

●

●

●

●●

●

●●●●●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●●●●●

●

●●

●

●●

●

●●

●

●

●●●

●

●●●

●

●●●

●
●

●●

●

●

●

●

●●●●

●
●

●●●

●

●●

●●

●

●●●●●●●●

●

●●●●●

●

●●●●●●●

●●

●●●●●

●

●

●●●●●●●●

●

●●●

●

●●●●

●

●

●

●

●●

●

●●●●

●●

●●●●●●

●

●●●●

●●

●

●●●

●
●

●●●●

●

●●●●●●●●●●

●

●

●

●

●

●●●●●●

●

●●●●●●

●

●●●

●

●●●●

●

●

●
●

●●●●●●●

●

●●●

●

●

●●

●

●●●

●●
●

●

●●●●●

●

●●

●

●

●●●●●●●

●

●●

●

●●

●

●

●

●

●●

●●●●●●●●●

●

●●

●

●●

●

●

●

●●●●●●●●

●

●

●
●

●●●

●●

●●●●

●

●●

●

●

●

●

●
●

●●●

●

●●●●●●

●
●
●

●●

●

●

●●●●

●

●●●

●

●●●

●

●

●

●

●

●

●

●●●

●

●●

●●

●●●

●●●

●●●●●●●●

●

●●●

●

●●●●●●

●

●

●●●●

●
●

●

●

●

●●●

●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●●

●

●

●

●
●

●●●●●

●

●

●

●

●

●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●

●

●●●

●

●●●

●

●●

●
●●●

●

●

●

●

●●

●

●●

●

●●●●

●●

●

●

●●

●

●

●

●

●●

●

●●●●●●●

●

●

●

●●

●

●●●●●●

●

●●

●

●●

●

●

●

●

●

●●●●

●

●

●●●●

●

●●●●

●

●●

●

●●●●●

●

●

●●●

●

●

●
●

●

●●●●●●●

●

●

●

●

●●

●

●●●●

●

●

●

●●●●

●

●●●

●

●

●

●

●●●●●●●

●

●●

●

●

●●●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●●●●

●

●●

●

●●●●●●

●

●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●

●

●

●●●●●●●●●●●

●

●●

●●

●

●

●
●
●

●

●●●●

●

●●

●

●

●

●

●●

●●●

●

●●●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●
●

●

●

●

●

●●●●

●
●

●●

●

●

●

●

●

●

●●●●●

●

●●●●

●
●

●

●

●●

●

●●●●

●

●●●●

●

●●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●●●

●

●●●●●

●

●

●●●

●

●

●

●●

●

●●●

●

●●

●

●●

●

●●●

●

●●●●●●

●

●
●

●

●

●●●●●●

●

●

●
●
●

●●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●

●

●

●

●

●

●●●●●●●●●

●

●

●

●●

●●●●●

●

●

●

●●

●●●●●●●●

●

●

●

●

●●●●●

●

●●

●●

●

●

●●●

●

●●●●

●

●●

●

●●

●

●

●

●

●

●●●●●●

●

●●

●

●

●●●●

●

●●●●●

●

●●●

●

●●●●

●
●

●●●

●

●●

●

●

●

●●

●
●

●

●

●●●

●

●●

●

●

●

●
●

●●●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●●●●●●

●

●

●

●

●●●●

●
●
●

●

●

●

●

●

●

●

●●

●
●●

●●

●

●●●

●

●

●

●

●●●●●●●

●
●

●●●

●

●

●

●●●●●●

●

●●

●

●●

●

●●●●●●

●

●

●

●

●

●●●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●●

●●●●●●●●

●

●●

●

●●

●

●

●
●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●●●●●●●●●

●

●●●

●

●●●

●

●

●

●●

●

●●

●

●

●●●

●
●
●

●

●●

●

●●

●

●

●●●●

●

●●●

●

●

●●●

●

●●●

●

●●

●

●●

●

●●

●

●●●

●

●●

●

●●●●

●

●

●

●

●

●●●●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●●

●

●●●●●●

●

●●

●

●

●

●

●

●

●●●●●●●

●

●●

●

●
●

●

●

●●

●

●●●

●●

●●●●●●●●●

●

●

●

●●●●●●●●●●●

●

●

●

●●●●

●

●

●

●

●●●●●●●●

●
●

●●

●●

●

●●

●

●

●

●●●●●

●

●
●

●●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●●●

●

●●

●

●

●●●

●

●●

●

●

●

●

●●

●
●

●●●●

●

●

●

●●

●

●●●●●

●

●●●●

●

●●

●

●●

●

●●●

●

●●

●

●

●

●

●

●●

●

●●

●

●●

●●

●

●●●

●

●

●●

●●●●●●●●

●

●

●

●●●

●

●

●●

●

●●●●●●

●●●

●●

●

●

●

●

●●●

●●

●●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●

●

●●●●

●

●●

●

●●●●

●

●●●●●●●

●

●

●●●●●●●

●

●●●●

●

●

●●

●

●
●●

●●●

●
●

●

●●●●●●

●

●

●●

●

●●●●

●

●
●

●●●●●●●

●

●●●

●

●●●●●●

●

●●●●●

●

●●●●●●

●

●

●

●●●

●

●●●

●

●

●●

●

●●

●

●

●
●

●

●

●

●●●●

●

●●●●●●

●
●

●

●●

●

●

●
●

●●●●●

●
●

●

●

●

●

●●
●

●●●●●●

●

●●

●

●●●

●
●

●

●●

●

●●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●●

●

●

●

●

●

●●●

●
●

●●●●●●●●●●●

●

●●

●●

●●●●

●

●●●●

●

●

●

●●

●

●●

●

●●●●●

●

●
●

●●

●

●

●

●●

●

●●

●

●

●●

●

●●●

●

●●

●

●●●●●

●

●●●●

●

●●

●

●●

●

●

●
●

●●

●
●

●●

●

●●●●●●●●●●●●●●

●

●●

●

●●

●

●

●

●●●

●

●●●

●●

●●●●●●●●●●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●●●

●

●●●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●●●●

●●

●●

●

●●●●

●

●●

●

●

●

●●●●●

●

●

●

●●

●

●●●●●

●

●●

●

●●●●●●●●

●

●●

●

●

●●●●●●●●●●●●

●
●

●

●

●●●●●

●

●

●●●●●●●

●

●

●

●●

●

●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●

●

●●●●●

●

●

●

●●

●●●

●●

●

●

●●

●

●●

●

●

●

●●●●

●
●

●

●

●

●

●●●●

●●

●

●●

●

●
●
●
●
●●
●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●●
●

●

●

●●●

●

●●

●

●

●●

●●

●●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●
●

●

●
●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●●

●●
●

●
●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●●●

●
●●

●

●

●

●

●

●

●

●●

●

●
●
●
●

●

●
●
●

●

●
●

●●

●

●

●

●
●

●

●

●
●●

●

●
●●●

●●
●●

●

●

●

●
●

●●●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●●
●
●

●
●●

●
●

●
●
●
●
●

●

●
●

●
●
●●
●
●
●
●●

●

●

●
●

●●

●●●

●

●

●●
●
●
●

●

●
●

●

●

●

●

●●●

●

●
●●
●

●

●●●●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●
●
●

●
●
●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●
●
●

●

●

●

●

●

●
●●

●

●

●

●

●●●
●●●
●
●
●

●●

●

●

●●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●
●

●

●●

●

●

●
●

●

●

●
●

●

●

●●

●
●

●
●

●

●

●

●●

●
●

●

●
●
●

●
●

●

●
●

●

●

●●●

●

●

●

●●

●

●

●●

●
●

●●
●
●

●

●●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●
●
●
●●

●●●

●

●
●●
●

●

●

●

●

●

●

●
●

●

●

●
●●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●●

●

●

●

●●●

●

●

●

●

●
●

●
●

●

●●
●
●

●

●
●
●

●

●

●●●
●

●●

●

●
●●
●
●

●●

●

●

●

●
●●

●●

●

●

●

●
●●
●

●

●

●

●●●
●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●
●●●

●

●

●
●
●

●

●

●

●
●

●

●

●●

●●

●●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●
●

●
●
●
●●

●
●
●●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●
●
●

●
●

●
●

●●●
●
●●

●

●

●

●

●
●●

●
●●

●●

●
●

●

●
●
●

●

●

●
●
●

●
●

●

●

●●

●

●

●●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●●
●

●●

●●

●
●

●

●

●

●

●
●

●

●

●
●

●

●●

●
●
●
●

●●

●

●
●
●●
●

●

●

●●
●

●
●
●

●

●

●

●
●●

●
●
●
●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●
●

●

●●●●

●
●

●

●

●
●
●
●

●

●

●

●

●
●●●●

●

●

●
●●
●
●

●

●

●

●●
●
●

●

●

●

●

●●

●

●

●

●●

●

●
●
●

●

●●

●●
●
●

●

●

●●
●

●

●
●
●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●●
●

●

●
●

●
●
●

●

●
●

●●
●●

●●●
●
●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●
●

●

●

●●

●

●●

●

●

●
●●
●
●●

●
●

●

●●
●

●
●
●●●

●

●

●●
●

●●

●

●

●
●

●

●

●

●●

●

●

●

●●
●
●

●

●

●●

●●
●
●
●
●

●
●●

●

●

●●

●

●●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●
●
●
●●

●

●
●
●

●●

●

●●

●

●

●
●

●

●
●
●

●●●
●
●

●●
●●●

●●

●●
●
●
●

●●●
●
●
●●●
●
●
●●

●
●●
●

●

●

●

●

●●●

●●

●
●

●

●
●
●
●
●●●●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●
●●

●

●●
●

●

●●●●●

●

●
●
●

●

●

●

●●●
●
●●●
●●
●

●

●●
●●

●

●

●

●●

●●●●●●

●

●

●

●

●
●
●

●

●

●
●

●
●●●
●●
●
●●

●

●

●
●●
●●
●
●●
●
●
●
●

●

●
●●
●●●●●

●●●
●

●●

●

●
●●●
●
●●
●●●

●

●

●●
●
●
●

●

●●

●
●●
●

●

●

●●
●●

●

●

●

●●

●

●

●

●

●

●●●●●

●

●●

●●
●
●
●●
●●●
●
●●

●
●

●●●

●
●●
●
●

●

●

●

●

●
●

●
●

●

●●
●
●

●●
●●
●●●

●

●

●

●

●

●

●

●
●

●
●
●

●
●
●●●

●

●
●
●
●
●●●●●

●

●

●
●
●●

●●

●

●

●

●
●●
●

●

●

●

●●
●●
●

●

●

●

●

●

●

●
●

●●

●

●

●
●●●

●

●
●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●
●

●

●
●●

●

●
●

●
●

●

●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●
●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●
●

●
●●

●

●

●
●

●

●
●

●

●
●
●
●
●●

●

●

●

●

●

●

●
●

●
●
●●
●●

●

●

●

●
●

●
●
●

●

●

●●
●

●
●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●
●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●
●

●
●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●
●●

●

●

●

●●

●
●

●●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●●

●
●●

●

●
●

●

●

●

●

●

●
●
●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●●●

●●●●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●●●●●

●●

●●●●

●

●●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●●●

●●

●●●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●●●●●

●

●

●●●●●●●

●

●●●●

●

●

●●●●●●●●●●

●

●

●

●●●

●

●●

●

●●

●

●●●●●●

●

●●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●●

●

●●

●●●

●

●●

●

●●

●

●

●

●●

●●

●●●

●

●

●

●●●

●

●

●

●●

●

●

●

●●

●

●

●●●●

●

●●

●

●

●

●●

●

●●●

●●

●●

●●●●●

●

●●

●

●

●

●

●●

●

●●●

●

●●

●

●●●

●●●

●

●

●

●

●

●

●●●

●●●

●

●●●●●●●●

●

●●●●

●

●

●●●●●

●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●●●●●●

●

●●

●●

●

●●●

●●●●●●

●

●●●

●

●●●

●

●

●

●●●

●

●

●

●●

●

●●

●

●

●●

●

●●●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●●●●●●

●

●

●

●●

●

●

●●●●●●

●

●

●

●

●

●

●●

●

●●

●

●●●●●●●●

●

●●●●●

●

●

●

●

●

●●●●

●

●

●

●●●●●

●

●

●

●

●●

●●

●

●

●●●

●

●

●

●
●

●●

●

●●●

●

●●

●●

●

●

●

●

●

●●

●●

●●

●●●●●●

●

●●●●●●

●●

●●

●●

●●●●●●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●●

●●●

●

●

●

●●

●●

●●

●●

●

●

●

●

●

●●●

●●●●●

●

●●

●●

●●●

●

●●

●

●

●

●●

●●●●

●

●

●

●●●

●●

●

●●

●●

●

●●

●●

●

●●●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●●

●

●●

●

●●

●

●

●●●

●

●●●●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●●

●

●

●

●●●●

●

●

●
●

●●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●●●●

●●

●●●

●

●●●●●

●

●

●●

●●

●

●

●

●

●

●●●●●

●

●●

●●●●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●●●

●●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●

●

●
●

●●

●

●●

●

●●●●●●●

●

●

●●

●

●

●●●●●●●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●●●●

●

●

●

●

●●●

●

●

●●●●

●

●●

●

●

●

●●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●●●●

●

●

●

●

●●●

●

●

●

●●●●●●●●●●●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●●●

●

●

●

●●●●●●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●●●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●●●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●●

●

●●●

●

●

●●

●

●

●●

●●

●

●●●●

●●

●●

●

●●●●●

●

●●●●

●

●

●

●

●●●

●

●

●●●

●●

●●

●

●●

●●●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●●●

●●

●●●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●●●●●●●●●

●

●●●

●●●

●

●

●●●●●

●

●●

●

●

●

●

●●●●●

●

●●●

●

●

●

●●●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●●●

●●●

●●

●

●●

●

●

●

●

●

●●

●

●●●

●

●

●

●●

●●

●

●

●●

●

●●●

●

●●●

●

●

●●

●

●●●●●●

●

●●●●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●●

●●

●●

●

●●

●

●●

●

●●●●●

●

●

●

●●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●●

●

●

●●●

●

●

●

●

●●●●●

●

●

●

●

●

●●●●

●

●●

●

●●

●●

●

●

●●

●●

●

●●●●●●

●

●

●●●●●

●

●●●

●

●●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●●●

●

●

●

●

●●●●●●●

●

●●●●●●

●

●

●

●

●

●●●●

●

●●●

●

●●●●

●

●

●

●●●

●

●●●●

●

●●

●

●

●●

●

●●●

●

●●●●●

●

●●●●

●

●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●●●

●●

●

●

●

●●●●

●

●

●

●

●●●●

●

●●●●

●

●

●

●●

●

●

●

●●●●●

●

●

●

●●

●●

●

●●

●

●

●●●

●

●●●●

●

●

●

●

●

●●●

●

●●

●

●

●●●

●●

●●●●●●●

●

●●

●

●●●

●

●

●●

●●●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●●

●

●●●●●●

●

●●●●●●

●

●●●●●●

●

●

●

●●●●●

●●●

●●●●

●●●

●

●

●●

●

●●●●●●

●

●●●●●●●●

●

●●●

●

●

●

●

●●●

●

●●

●

●

●

●●●●●●

●

●

●●

●

●●●

●

●●

●

●●●

●

●

●●

●

●

●

●●●

●

●●●●●●

●

●

●●

●

●

●

●●●●●●●●

●

●●

●●

●●●●●●●●●●

●

●●●●●●

●

●●●●●●●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●●●●

●

●

●

●●

●

●●

●

●

●

●

●

●●●●

●●

●●●●

●

●

●

●

●

●

●

●

●●●●●●

●

●●●●●

●

●

●●●●●●●

●

●●

●

●●●

●

●

●

●●

●●

●

●●●●●

●

●●●●●

●

●●

●

●●●●●●

●

●●●●●

●

●●●●●●

●

●

●●●

●●

●

●

●

●●

●

●●

●

●

●

●●

●

●●●●

●

●

●

●

●●

●●●●●●●

●

●

●

●

●

●●●

●

●

●

●

●●●●●●●

●

●

●●●●●●●

●

●●●

●

●

●

●

●

●

●

●

●●●●●●

●

●●●●●●●●●●●

●●

●●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●●●●●●●●●●

●●

●●●●●

●●

●●●

●

●●●●●

●

●●●●

●

●●

●●

●●●

●

●●

●

●●●●●●

●

●

●●

●●

●

●●●●●●●●●

●

●

●

●

●●●●●●●

●

●●

●●●

●

●●

●

●

●●

●

●●

●

●●●●●

●

●

●

●●

●
●

●

●

●

●

●●●●

●●

●

●

●●

●●●

●●

●

●

●●●●●●●

●●

●

●●

●

●

●

●●●

●●

●

●●

●●

●
●

●●●

●●●

●●●

●

●●●●●

●

●

●●

●

●●●

●

●●●●●

●

●●●●

●

●●

●

●●

●

●●●●●●●

●

●

●●

●●

●

●●●●●●●●●●●

●●

●●●●●●

●

●

●●●

●

●●●

●

●●●

●

●●

●

●●

●

●

●●●●●●●●

●

●●●

●

●●●●●●

●

●●●●

●

●●●●

●

●●●●

●

●●●●●●●

●

●●●●●●●●

●

●●

●

●

●

●

●●●●●●●●

●

●

●●

●

●

●

●

●

●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●

●

●●●●

●

●

●

●●

●

●●●●●

●

●●

●

●●●

●

●

●

●

●●●●●

●

●●●

●

●

●

●●●●●●●●●●●●●●

●

●

●●

●

●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●

●

●●●

●

●●●

●

●●

●

●●

●

●●●

●

●

●

●●●●●●

●

●

●

●

●

●●●●●

●

●●●●●●

●

●●

●

●●●●

●

●●●●●●

●

●●●

●●

●

●

●●●●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●●●●●

●

●●

●

●●●●●●●●

●

●●●●●●

●

●●●

●

●

●

●●●●●●

●

●●●

●●

●

●●●●●

●

●

●

●●●●

●

●●●

●

●●●●●

●

●

●

●

●●●●

●

●

●

●●●●●●●

●

●●●●

●

●●

●

●●●●●●

●

●

●

●

●

●

●●●●

●

●

●

●●

●

●●●●●●●●

●

●

●

●

●●●

●

●

●●

●●●

●

●

●●

●

●●●●●●●●●●

●

●●●

●

●

●

●

●

●

●●●●●●

●

●

●●

●●

●

●

●

●

●●

●

●

●●

●

●

●●●

●

●●●●●●●●●●●

●

●●●

●

●●●●

●

●●●●●

●

●●●●●●

●

●

●

●

●

●

●

●●●

●

●●●●

●

●

●

●

●●

●●●●●●●●

●

●

●

●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●

●

●

●●●●●●●

●

●●●●

●

● ●●●●●●●●

●

●

●

●●

●

●●●●

●●●

●●

●●

●●

●

●

●

●

●●●

●

●●●●●

●

●●●●●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●●●●●

●

●●

●

●

●

●

●●●

●

●

●

●●●●●●●●●

●

●

●●

●●●●●

●

●

●

●

●

●

●

●

●

●●

●●●

●●

●

●●●●●

●●

●

●●

●

●●

●

●

●

●●●●●●

●
●

●

●●●●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●●●●

●

●●

●●

●●●●●●●●●

●●

●●●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●

●

●

●

●●

●

●●

●

●●●

●

●●

●

●●

●

●●●●

●

●

●●

●●●●

●

●●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●●●●

●

●

●●●●

●

●●●●●

●

●●●●●

●

●●●●

●●

●●

●

●

●

●

●●●●

●

●●●

●

●●●

●

●

●

●

●●●

●

●●

●

●●●●●

●

●

●●

●

●●

●●

●

●

●●

●●

●

●

●

●

●

●●●●●

●

●

●

●●●

●

●

●

●

●●●

●●●●●

●

●●●●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●●●●●

●

●

●●

●

●

●●●

●

●

●●●

●

●

●

●●●

●●

●●●●●●●

●

●●●●●

●

●●

●

●

●

●●

●

●

●

●●

●

●●

●

●●●●●●●●

●

●

●●●●●

●

●

●

●●

●

●●●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●●●●●●

●●

●●●

●

●

●●●●●●

●

●

●

●●●●●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●●●●●●●●●●

●

●

●

●●●●

●●

●●●●●●●●●

●

●●●●●

●

●●●●

●●

●●

●●●●●

●

●●●●●●

●

●

●

●●●●

●

●

●●●●●

●

●

●

●

●

●

●●

●●

●●●●●●●●●●●●●

●

●●

●

●●

●

●●

●

●

●●

●●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●●●●●●

●

●

●●

●

●

●●●

●

●

●

●

●

●●

●

●●●●●●●●

●

●●

●

●●●●

●

●

●

●●

●

●

●

●

●●

●

●●●●

●

●●●●

●

●●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●

●

●●●●●●

●

●

●

●●●●●●

●

●●●●

●

●●

●

●●●●●●●●

●

●●●●●●●●

●

●

●

●●●●●●●●

●

●

●

●●●●●●●●●

●

●●

●●

●●●

●

●

●

●

●

●

●●●

●

●●

●

●●

●

●●●

●

●●

●

●

●

●●●●●●●

●

●●●

●

●●

●●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●●

●●

●●●

●●

●●●●●

●

●

●●

●

●●●

●●

●

●

●●

●●

●●●●●

●●

●●

●

●

●

●

●

●●

●●●

●

●

●●●●

●●●●

●●

●●

●●

●

●

●

●●

●●●●●●●

●

●●

●

●●●●●●●

●

●●●

●

●●●●

●

●●●●●

●

●●

●

●

●

●●●

●

●

●

●●●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●●

●

●

●

●●●

●

●●

●

●

●

●●●●

●

●

●●

●●

●

●●

●

●●

●●

●●●

●

●

●

●●●

●

●

●●●●●

●

●●●●●●

●

●

●●

●

●

●●●

●●●●●●●

●

●

●

●●

●

●

●●●●

●

●●

●●

●●●●●●

●

●●

●●

●●●

●

●●

●

●

●●

●

●●●●●●●●

●●

●

●●●

●●●

●

●

●

●

●●●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●●●

●

●

●

●●

●

●●

●●

●

●●●●

●

●

●●

●

●

●

●●

●

●●●

●●●

●

●

●●●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●●●

●

●●

●●

●●●●●●●●●●

●

●●●●

●

●●●●

●●●

●●●

●

●

●

●●

●

●●●●●●●

●

●

●

●●●●●●●●●

●

●●

●

●●

●●●

●●

●

●●●

●●

●

●●

●

●

●

●

●

●●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●●

●●●●●●●●●●●●●●

●

●

●

●●●●●●●●

●

●

●

●●●

●●

●

●

●

●

●●●

●

●●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●●●●

●

●●●●●●●

●

●●●

●

●●

●

●

●

●●●●

●

●●

●

●●●●●●●●●●●

●

●

●●●●●●●

●

●

●

●●

●

●●●

●

●

●

●●●●●

●

●

●

●

●●

●

●

●

●●

●●

●

●●

●

●●

●

●●●

●

●●●●

●

●●●●

●●

●

●

●

●

●●

●

●

●●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●●

●

●●●●●

●

●●●

●

●

●

●●●

●

●●

●

●

●●

●

●●

●

●

●●●

●

●

●

●●●●●●●

●

●

●●●

●

●

●

●●●●

●

●●

●

●

●●

●

●●●●●●●●

●

●

●●●●●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●●

●

●

●

●●

●

●●

●

●

●

●●●●●●●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●●●●●

●

●●

●●

●●●●●

●

●●●●

●

●

●●

●

●

●

●

●

●●●●

●

●●●●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●●●●●

●

●

●

●

●

●●●●●

●

●

●

●

●●●●●●

●

●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●●

●

●●●●

●

●●

●

●●

●

●●●

●

●●●

●

●●●

●

●●●●●

●

●

●

●

●●

●●

●●

●●●●●●●●

●

●

●

●●●●

●●●●

●

●

●

●

●●

●●●●

●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●●●●

●●

●●

●●●●

●

●

●

●

●●●●

●

●

●●●●●

●●

●

●

●●

●

●

●

●

●●

●●

●

●

●●●●●

●

●

●

●

●

●●●●

●●

●●●

●●

●

●

●

●

●●●

●

●●

●

●●

●●

●●●●●

●

●●●●●●●●

●

●●●●●

●

●●●

●

●

●●

●

●●●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●●●●●●●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●●
●

●

●

●●

●●

●●●

●

●

●●

●

●

●

●

●

●●

●●

●●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●●●

●●

●

●

●●

●

●

●

●

●

●

●●

●
●

●●●

●

●

●

●

●
●

●●●

●●

●

●

●
●

●

●

●●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●●

●

●●●●

●

●●●●●●●●●

●

●

●

●●

●

●●●●

●●

●

●

●

●●●

●

●

●●

●

●●●

●

●●●

●

●

●

●

●●

●

●●●●●●

●

●

●

●

●

●●●

●

●●●

●

●●●●

●

●●●

●

●

●

●●●●●

●

●

●
●

●●●●●

●

●●●●

●

●●●

●

●

●

●

●

●

●●●●

●

●

●●●●●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●●

●
●

●●

●

●

●

●

●●

●●●●●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●

●

●●

●

●●

●

●●●

1 2 3 4 5 6 7 8

pr
oc

es
si

ng

sc
ri

pt

be
fo

re
_i

ns
ta

ll

be
fo

re
_s

cr
ip

t

in
st

al
l

re
po

rt
in

g

de
pl

oy

ot
he

r

af
te

r_
su

cc
es

s

cr
ea

tio
n

af
te

r_
sc

ri
pt

be
fo

re
_d

ep
lo

y

af
te

r_
de

pl
oy

af
te

r_
fa

ilu
re

0

1

10

100

Li
ne

 C
ou

nt

(a) The distribution for all projects.

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●
●●

●

●●

●

●●

●

●

●

●

●●

●
●●

●

●

●

●
●
●●

●

●

●
●

●

●

●

●

●
●
●●

●

●
●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●●●
●●

●

●

●

●
●
●●●

●

●

●

●

●●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●●

●
●

●

●●●●

●

●

●●
●

●
●

●●●

●

●

●

●●●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●●
●●

●

●

●

●

●

●●●●●●●

●

●●

●

●

●
●●

●●
●
●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●●

●

●●

●

●

●

●
●

●
●

●

●●
●●●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●
●
●

●

●
●
●

●

●
●
●●
●
●●
●●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●
●

●●●

●
●

●
●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●
●
●
●
●
●

●

●

●

●
●

●

●

●

●●

●
●

●

●
●

●

●
●

●
●
●
●

●

●●

●

●

●
●

●
●

●
●
●

●●

●

●
●

●●

●

●●

●
●
●
●
●
●

1 2 3 4 5 6 7 8

pr
oc

es
si

ng
(n

=
88

52
)

sc
ri

pt
(n

=
71

22
)

be
fo

re
_i

ns
ta

ll
(n

=
35

51
)

be
fo

re
_s

cr
ip

t
(n

=
38

63
)

in
st

al
l

(n
=

35
19

)
re

po
rt

in
g

(n
=

29
14

)

de
pl

oy
(n

=
34

3)
ot

he
r

(n
=

18
36

)

af
te

r_
su

cc
es

s
(n

=
12

43
)

cr
ea

tio
n

(n
=

14
41

)

af
te

r_
sc

ri
pt

(n
=

62
6)

be
fo

re
_d

ep
lo

y
(n

=
11

5)
af

te
r_

de
pl

oy
(n

=
23

)
af

te
r_

fa
ilu

re
(n

=
22

3)

1

10

100

Li
ne

 C
ou

nt

(b) The distribution a�er removing zero-length sections.

Figure 4.6: Line counts in each section of the .travis.yml file.

(RQ3) Which sections in the CI speci�cations induce the most churn?

Approach. First, we count the number of commits that have modi�ed the .travis.yml �le
of each project. Then, using the line-to-section mapping (see Section 2), we attribute changed
(i.e., added and/or removed) lines to sections in the �le that have been modi�ed by each of
these changes. Finally, we apply the Scott-Knott ESD test to split the sections into statistically
distinct ranks.

Results. Figure 4.7a shows the churn (i.e., the degree to which a given section in the .travis.yml
�le has changed over time). The .travis.yml �les in the subject systems are modi�ed 18.06
times on average in their lifetime, with a maximum of 366 changes in the lolli42/TYPO3.CMS-

Catharsis project;16 however, the churn in each section is very low. In more than 75% of the
studied projects, con�guration sections are modi�ed fewer than 10 times. These results com-
plement the work of Hilton et al. [2], who observed similar overall trends in the rates of change
in .travis.yml �les (median of 12, maximum of 266).

Observation 7: The sections that are related to job processing node con�guration account

for the most modi�cations over time. For example, TechEmpower/FrameworkBenchmarks,17 a
project that provides performance benchmarks for web application frameworks, has 290 mod-
i�cations to its .travis.yml �le, of which, 242 modify its job processing node con�guration.
In this case, it is because the benchmarks are contributed by the developer community and
the benchmarks for each framework require job processing nodes to be con�gured di�erently.

16https://github.com/lolli42/TYPO3.CMS-Catharsis
17https://github.com/TechEmpower/FrameworkBenchmarks

37

https://github.com/lolli42/TYPO3.CMS-Catharsis
https://github.com/TechEmpower/FrameworkBenchmarks

4.4. Study Results

●

●

●

●

●

●

●●

● ●●●
●
●
●

●
●

●

●

●
●

●
●
●●
●
●

●

●

●

●●

●

●
●
●

●

●

●

●

●
●
●

●

●
●

●

●

●●
●
●

●

●●

●

●
●

●

●

●

●

●●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●
●

●

●

●●●●

●

●

●

●

●●

●
●

●

●●

●

●

●

●●
●●
●

●

●

●
●
●●●●

●

●●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●●
●
●

●
●

●

●

●

●

●
●

●

●

●●

●

●●●

●

●

●
●

●●

●●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●●●
●

●

●●
●●

●

●

●

●●

●
●●

●

●
●●

●

●

●●●

●

●
●

●

●

●

●●

●
●●●

●

●●

●

●

●
●
●

●

●
●

●
●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●
●

●

●

●
●
●

●●●●

●●
●●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●●●

●

●

●

●

●

●
●

●
●
●

●
●

●●
●

●●

●

●

●●

●

●

●

●

●●●

●

●●
●●
●

●

●●

●

●●
●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●
●
●

●

●
●

●

●●●●

●
●
●

●●

●

●●
●

●

●

●

●
●

●
●

●●

●
●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●●

●
●
●
●
●

●
●
●
●
●

●
●
●
●

●
●●

●
●

●

●
●
●

●

●

●

●

●
●

●

●

●
●
●
●

●

●●

●
●

●

●
●
●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●●
●
●

●

●

●
●●
●
●
●

●

●

●

●●

●●

●

●

●

●●

●

●

●●●●

●

●

●●●
●

●

●
●●

●●

●

●
●

●
●

●

●
●●●
●●
●●

●
●●
●

●
●
●
●

●

●

●
●

●●
●
●

●
●●
●●
●

●

●
●
●●

●

●

●
●

●

●

●●
●
●

●●

●
●
●
●●

●

●

●

●●

●

●●

●
●

●

●

●●

●●

●●
●●

●●
●

●

●

●

●

●

●

●
●
●●

●

●

●●
●
●●●

●

●●

●

●
●

●

●

●

●
●

●

●●

●
●

●

●
●
●

●

●
●●

●
●
●
●

●

●

●

●
●

●●

●●
●

●

●●

●

●
●

●●

●
●

●
●●

●
●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●
●
●

●

●
●

●

●

●

●

●●

●
●
●

●

●
●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●
●
●●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●
●

●
●
●

●

●●
●

●

●
●●
●
●
●●
●●
●
●
●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●
●

●

●

●

●
●
●

●●

●

●

●

●●

●

●

●

●

●

●
●

●●
●
●
●
●

●
●●
●

●
●

●
●●
●

●
●

●

●

●
●

●

●

●

●

●
●
●
●
●●●
●●

●

●

●

●
●●

●●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●
●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●
●

●

●

●
●
●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●
●
●●

●

●

●

●

●●
●

●

●

●
●
●

●

●

●

●●●

●

●

●
●

●●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●●●

●
●

●

●

●

●

●●●

●

●

●

●●●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●●

●

●

●
●

●●●●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●●

●●●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●
●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●●

●

●

●

●●
●

●

●

●

●●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●●●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●●

●

●●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●●

●●●

●

●

●●

●

●

●●●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●●●●●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●

●

●

●●

●

●●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●
●

●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●●●

●

●

●

●

●

●●●●

●

●

●●

●

●

●●●

●

●

●●●

●

●
●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●●

●●

●
●

●●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●●

●

●●

●
●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●●

●

●●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●●●●

●

●

●

●●

●●
●

●●●●●●

●

●

●

●●

●●

●

●●

●
●
●

●

●●●●●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●
●
●
●

●●●

●

●

●●

●

●●●●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●●

●

●●

●

●●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●●●●●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●
●

●●

●

●●●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●

●

●

●

●●

●

●

●●

●
●
●

●●

●

●

●●

●●

●

●●●●●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●●

●
●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●●

●●

●

●●

●●●

●

●●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●●●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●●

●●●

●●●

●

●

●

●●●●

●

●●

●

●●●●

●

●

●

●●

●

●

●●

●

●●

●

●

●●

●

●

●

●●●

●●●●●

●

●

●●●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●

●

●

●●●●●●

●●

●

●

●

●

●

●

●

●●

●●●

●

●

●●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●●

●

●●●

●

●

●

●

●●●●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●●

●

●

●●●

●

●

●

●

●

●

●

●

●●●●●

●

●●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●

●

●

●

●●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●●

●

●●

●

●●

●●

●

●

●●●●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●●●●

●●

●
●

●

●

●

●●

●●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●●●●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●●●

●

●

●

●●

●●

●

●

●

●●

●

●●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●●●●

●●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●●●

●

●●

●

●

●
●
●

●

●

●●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●●●

●

●

●●

●●

●

●●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●

●●

●

●

●●

●

●

●

●

●

●●●●

●

●●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●●

●
●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●●●

●

●

●●●

●

●●●●●

●

●

●

●●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●●●

●

●

●

●

●

●

●

●●

●●

●●●●●

●

●●●

●●

●●●●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●●●

●

●

●●●●●●●●●

●

●

●●●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●●●●●●

●

●●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●●●●

●

●●●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●●●●●

●

●●●

●

●

●

●

●

●

●●

●●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●●

●

●

●●●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●●

●

●●

●

●●●●

●

●●●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●●●●

●
●

●

●

●●●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●
●
●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●●

●

●

●

●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●●●

●

●

●●●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●
●

●●

●●

●

●●

●

●

●

●

●●

●

●●

●

●●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●●

●●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●●

●

●

●●●●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●●●●

●●

●

●

●

●●

● ●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●●

●●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●●●●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●●●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

1 2 3 4 5 6 7 8

pr
oc

es
si
ng

sc
ri
pt

be
fo

re
_i

ns
ta

ll

in
st

al
l

be
fo

re
_s

cr
ip

t

re
po

rt
in

g

af
te

r_
su

cc
es

s

cr
ea

tio
n

ot
he

r

af
te

r_
sc

ri
pt

de
pl

oy

be
fo

re
_d

ep
lo

y

af
te

r_
de

pl
oy

af
te

r_
fa

ilu
re

0

1

10

100

C
hu

rn

(a) The distribution for all projects.

●

●

●●
●

●
●

●

●

●

●
●●●●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●●

●

●

●●

●●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●●
●

●

●

●●●

●
●

●

●●
●
●

●

●

●

●
●

●●

●
●

●

●
●

●●

●

●

●

●
●●

●
●

●

●

●
●
●

●
●

●

●

●

●

●

●

●●

●
●●
●
●

●

●
●
●●

●●●
●

●●

●

●

●

●

●
●

●
●
●
●●●

●
●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●
●
●●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●●●

●

●

●●●●
●
●

●

●

●

1 2 3 4 5 6 7 8

pr
oc

es
si
ng

(n
=
73

66
)

sc
ri
pt

(n
=
61

56
)

be
fo

re
_i

ns
ta

ll
(n

=
40

99
)

in
st

al
l

(n
=
36

44
)

be
fo

re
_s

cr
ip

t
(n

=
40

97
)

re
po

rt
in

g
(n

=
28

79
)

af
te

r_
su

cc
es

s
(n

=
14

78
)

cr
ea

tio
n

(n
=
18

46
)

ot
he

r
(n

=
18

61
)

af
te

r_
sc

ri
pt

(n
=
80

3)
de

pl
oy

(n
=
46

7)

be
fo

re
_d

ep
lo

y
(n

=
16

5)
af

te
r_

de
pl

oy
(n

=
39

)
af

te
r_

fa
ilu

re
(n

=
31

8)

1

10

100

C
hu

rn

(b) The distribution a�er removing zero-length sections.

Figure 4.7: The churn of each section in the .travis.yml file.

This complements our earlier observation that most of the e�ort in con�guring CI is spent on
the processing node con�guration.

Hilton et al. [2] studied the frequency of reasons for CI changes and observed di�erent
rankings than those that we observe. This discrepancy is likely due to di�erences in the gran-
ularity of our analyses. For example, in our analysis, we study the distribution of project-
speci�c rates of change, while their analysis uses a single measurement of the overall rates
of change for each identi�ed reason. Nonetheless, there are similarities in our rankings. For
example, their top ranked reason for CI change is related to the build matrix, which is a subset
of our top ranked job processing section.

Observation 8: In the projects that are modi�ed, all sections are likely to be modi�ed an equal

number of times. Since Figure 4.7a shows that sections after the fourth rank are not modi�ed
in most of the projects (i.e. the median churn of these sections is 0.), we omit such projects in
the next box plot shown in Figure 4.7b. Here, we can observe that the median churn for all of
the sections is in the range of 1–10.

Summary: In 75% of the studied con�gurations, sections of .travis.yml �les are modi-

�ed fewer than ten times.

Implications: Research and tooling for CI con�guration should focus on the creation of

an initial speci�cation rather than supporting speci�cation maintenance.

38

4.5. Threats to Validity

4.5 Threats to Validity

This section describes the threats to the validity of our study.

4.5.1 Internal Validity

Projects may use Travis CI without a .travis.yml �le. In this case, the Travis CI runtime
assumes that the project is using Ruby and would apply the conventional Ruby CI process.
Since we are unable to identify such projects automatically, we only consider projects with a
.travis.yml �le in the root directory of the project. Some subject systems may use multiple
CI/CD services or could be migrating across di�erent CI/CD services at the time of analysis.
Therefore, studying only one CI service usage of such projects may provide an incomplete
picture of their CI process. Further studies are needed to understand the CI usage of projects
with multiple CI/CD service con�gurations.

4.5.2 External Validity

Threats to external validity are concerned with the generalizability of our �ndings. We focus
only on open source subject systems, which are hosted on GitHub and use Travis CI as the
CI service provider. However, since GitHub is one of the most popular hosting platforms for
open source software projects and Travis CI is the most widely adopted CI service among
open source projects [2], our �ndings are applicable to a large proportion of open source
projects. Nonetheless, replication studies using other CI services may yield further insight.

4.5.3 Construct Validity

CI usage statistics are computed using various scripts that we have written. These scripts may
themselves contain defects, which would a�ect our results. To address this threat, we test our
tools and scripts on subsamples of our datasets, and manually verify the results.

The �lters that we apply to remove small, inactive, and duplicated repositories from our
corpus are based on thresholds, i.e., project size in �les, project activity in commits, and rate
of duplication in percentage of duplicated commits. The speci�c threshold values that we
selected may impact our observations. With this in mind, we did not select threshold values
arbitrarily. First, we analyze threshold plots to understand the impact that various threshold

39

4.6. Chapter Summary

values will have on the number of retained systems. Second, we perform sensitivity analyses
(Figures 4.4 and 4.5), where the impact of selecting di�erent thresholds is shown to be minimal.

4.6 Chapter Summary

CI has become a widely used practice among many software teams today. A CI service typ-
ically consists of nodes for creating, processing, and reporting of build jobs. To mitigate the
overhead of maintaining and operating this infrastructure themselves, many organizations
are moving to cloud-based CI services. These services allow for customizing the CI process
using con�guration �les.

Through our study of 9,312 open source systems that use Travis CI, we make the following
observations about the use of CI speci�cations:

• Despite being the default Travis CI language, Ruby is not the most popular language
in our corpus of studied systems. Node.js is the most popular language in our corpus
of studied systems (Observations 1 & 2).

• In terms of CI node con�guration, sections that are related to job processing nodes appear
in the most projects, while for build process con�guration, sections that are related to
the script phase appear in the most projects (Observations 3 & 4).

• Job processing con�guration and script phase con�guration have statistically distinct
and higher ranks in projects compared to other sections (Observation 5).

• Although commands in the deploy phase appear only in 343 projects (3.68%), the me-
dian number of commands is comparable to other sections. (Observation 6)

• The CI code that con�gures job processing nodes accounts for the most modi�cations.
In the projects that are modi�ed, all sections are likely to be modi�ed an equal number
of times (Observations 7 & 8).

Our CI usage results suggest that the most natural direction for future research and tooling
in CI would target the con�guration of job processing nodes.

40

Chapter5
Misuse of Features in CI/CD

Environments

Note. An earlier version of the work in this chapter appears in the IEEE Transactions on

Software Engineering (TSE) journal [84].

5.1 Introduction

Like other software artifacts, CI con�guration �le is stored in the VCS of the project. Since
the build process that is being invoked tends to evolve [88, 98], this CI con�guration �le must
also evolve to keep pace. Indeed, CI con�guration code may degrade in quality and may accrue
technical debt if it is not maintained properly. Like programming languages, CI con�guration
can also be misused, e.g., when unsupported or deprecated commands are used.

In this chapter, we set out to study how CI features are being misused. To study misuse,
we de�ne four anti-patterns based on formal Travis CI documentation,1 and informal docu-
mentation from the Travis CI user community: (1) redirecting scripts into interpreters (e.g.,
curl https://install.sandstorm.io|bash); (2) bypassing security checks (e.g., setting
the ssh_known_hosts property to unsafe values); (3) using irrelevant properties; and (4) us-
ing commands in an incorrect phase (e.g., using install phase commands in the script phase).
Using Hansel—our tool for detecting anti-patterns in .travis.yml �les—we address the fol-
lowing research question:

1https://docs.travis-ci.com/

41

https://docs.travis-ci.com/

5.2. Anti-patterns in CI/CD Speci�cations

• RQ1 How prevalent are anti-patterns in CI speci�cations?

Hansel detects at least one anti-pattern in the CI speci�cations of 894 projects in the
corpus (9.60%), and achieves a recall of 82.76% in a sample of 100 projects.

Using Gretel—our anti-pattern removal tool for CI con�guration code—we address the fol-
lowing research questions:

• RQ2 Can anti-patterns in CI speci�cations be removed automatically?

Yes, Gretel can remove the detected cases of the most frequent anti-pattern automati-
cally with a precision of 69.60%. This increases to 97.20% if a post hoc manual inspection
phase is included.

• RQ3 Are automatic removals of CI anti-patterns accepted by developers?

Yes, we submitted 174 pull requests that contain Gretel-generated �xes, of which, de-
velopers have: (1) responded to 49 (response rate of 28.16%); and (2) accepted 36 (20.69%
of submitted pull requests and 73.47% of pull requests with responses).

Our study of misuse of CI shows that anti-patterns that threaten the correctness, perfor-
mance, and security of build jobs are impacting a considerable proportion of Travis CI users
(9.60%). Hansel and Gretel can detect and remove these anti-patterns accurately, allowing
teams to mitigate or avoid the consequences of misusing CI features.

The remainder of the chapter is organized as follows. Sections 5.2 and 5.3 outline the mo-
tivation for and design of our study of CI misuse, respectively, while Section 5.4 presents the
results. Section 5.5 discusses the broader implications of our results. Section 5.6 discloses the
threats to the validity of our study. Finally, Section 5.7 draws conclusions.

5.2 Anti-patterns in CI/CD Speci�cations

If improperly con�gured, Travis CI build jobs may have unintended behaviour, resulting in
broken or incorrect builds. Violating the semantics of CI speci�cations could also introduce
maintenance and comprehensibility problems. Furthermore, the Travis CI runtime environ-
ment may be unable to optimize provisioning of CI job processing nodes for speci�cations
where semantics are violated.

To help Travis CI users avoid common pitfalls, the Travis CI team provides TravisLint,2

an open source tool that scans .travis.yml �les for mistakes (e.g., YAML formatting issues,
2https://github.com/travis-ci/travis.rb#lint

42

https://github.com/travis-ci/travis.rb#lint

5.3. Study Design

missing mandatory �elds). If the issues are �xed, TravisLint can prevent con�guration errors
from breaking project builds.

5.2.1 Research Questions

The .travis.yml �les that are syntactically valid can still violate the semantics of Travis CI
and introduce build correctness, performance, and security problems.

To detect such semantic violations, we propose Hansel—a .travis.yml anti-pattern de-
tector. Then, we also propose Gretel—a tool for removing anti-patterns from .travis.yml

�les. We apply Hansel and Gretel to the 9,312 .travis.yml �les in our corpus in order to
address the following research questions:

• RQ1 How prevalent are anti-patterns in CI speci�cations?

In this research question, we aim to study what type of CI anti-patterns are commonly
occurring in software projects “in the wild”.

• RQ2 Can anti-patterns in CI speci�cations be removed automatically?

This research question explores whether the detected anti-patterns can be �xed auto-
matically and to what degree are the transformed �les still valid.

• RQ3 Are automatic removals of CI anti-patterns accepted by developers?

This research question explores whether our anti-pattern detection technique is useful
for real developers in practice. If developers accept our �xes and integrate them into
their projects, it would suggest that our �ndings are useful to some degree.

5.3 Study Design

We implement Hansel to detect anti-patterns and Gretel to remove them. In a nutshell,
Hansel parses a .travis.yml �le using YAML and bashlex parsers in order to detect anti-
patterns. Then, Gretel applies the ruamel.yaml serialization/deserialization framework3 to
remove the detected anti-patterns automatically.

We de�ne CI speci�cation anti-patterns as violations of best practices in CI con�guration
�les that could hinder the correctness, performance, or security of the CI process of a software
system. Similar to the approach followed by prior work [25, 28], we �rst read the rules imple-
mented by TravisLint,2 formal Travis CI documentation,1 informal documentation from the

3https://pypi.python.org/pypi/ruamel.yaml

43

https://pypi.python.org/pypi/ruamel.yaml

5.3. Study Design

Travis CI user community (e.g., blogs, posts on Q&A sites such as StackOverflow) and in-
spect a sample of artifacts (i.e., .travis.yml �les) to prepare a list of recommended best prac-
tices. Then, we group the related best practices and deduce the corresponding anti-patterns
(i.e., cases where best practice are being violated).

Below, for each anti-pattern, we present our rationale for labelling it as an anti-pattern,
and the approach that (1) Hansel uses to detect it and (2) Gretel uses to remove it.

Anti-pattern 1: Redirecting Scripts into Interpreters

Motivation. A common approach to software package installation is to download a script
from a hardcoded URL and pipe it into a shell interpreter. For example, the installation in-
structions for the Sandstorm package,4 a self-hostable web productivity suite, includes a shell
command: curl https://install.sandstorm.io|bash. While this installation procedure
is convenient, it is known to be susceptible to security vulnerabilities.5 Moreover, if a network
failure occurs during the execution of the curl command, the installation script may only be
partially executed.

Detection. In order to detect this anti-pattern, we follow a three-step approach. First, we
parse the .travis.yml �le to identify commands that contain a pipe. Next, those commands
are split into the pre- and post-pipe sub-commands using the bashlex library. We check the
pre-pipe command for known downloaders (i.e, wget, curl). We then check the post-pipe
command for known shell interpreters (i.e., sh, bash, node). If both of these conditions are
met, we identify the command as an instance of this anti-pattern.

Removal. CI speci�cations should verify the integrity of externally hosted scripts before ex-
ecuting them. This could be achieved by automatically verifying the script after downloading
it but before execution. Alternatively, one could download the installation scripts, verify their
integrity, and commit known-to-be secure versions to the VCS. Since either solution requires
changes that are beyond the scope of the .travis.yml �le, we have not implemented an
automatic removal for this anti-pattern in Gretel yet.

4https://sandstorm.io/install
5https://www.idontplaydarts.com/2016/04/detecting-curl-pipe-bash-server-side/

44

https://sandstorm.io/install
https://www.idontplaydarts.com/2016/04/detecting-curl-pipe-bash-server-side/

5.3. Study Design

Anti-pattern 2: Bypassing Security Checks

Motivation. During the CI process, if the Travis CI job processing node communicates with
other servers via SSH for transferring artifacts, it is important to have this connection be
con�gured securely. A miscon�gured connection can make job processing node(s) vulnerable
to network attacks. For example, using the ssh_known_hosts property in the addons section
of the .travis.yml �le exposes job processing nodes to man-in-the-middle attacks.6,7

Detection. We parse .travis.yml �les and check whether they satis�es at least one of the
following conditions:

• There exists an addons section, which contains an ssh_known_hosts property.
• There exists a command containing the line StrictHostKeyChecking=no.
• There exists a command containing the line UserKnownHostsFile=/dev/null.

Removal.To remove this anti-pattern, three steps should be followed. First, all of the vulnerability-
inducing lines (ssh_known_hosts, StrictHostKeyChecking=no, UserKnownHostsFile=/dev/null)
should be removed from the .travis.yml �le. Second, a known_hosts resource should be
created in the repository and the argument -o UserKnownHostsFile=known_hosts should
be provided whenever ssh is invoked.

Anti-pattern 3: Using Irrelevant Properties

Motivation. Travis CI users may specify properties in the .travis.yml �le that are not
used by Travis CI at runtime. These properties may be user mistakes (e.g., typos) or features
that Travis CI has later deprecated and/or retired. For example, the .travis.yml �le may
contain an after_install property; however, that property is not supported by Travis CI. This
likely occurs because both deploy and script phases have post-execution clean-up phases (i.e.,
after deploy, after script), so Travis CI users may assume that the convention is followed by
the install phase without carefully checking the user documentation.

The dangerous consequence of specifying irrelevant properties is that the Travis CI en-
vironment ignores unsupported properties. While the omission of the unsupported property
is logged as a warning, it is unlikely that developers will check these warning if build jobs are
successful.

6https://annevankesteren.nl/2017/01/secure-secure-shell
7https://docs.travis-ci.com/user/ssh-known-hosts/#Security-Implications

45

https://annevankesteren.nl/2017/01/secure-secure-shell
https://docs.travis-ci.com/user/ssh-known-hosts/#Security-Implications

5.3. Study Design

Detection. In Section 4.4, we have mapped valid properties to sections in the .travis.yml

�le. We detect instances of anti-pattern 3 by parsing the .travis.yml �le and checking
whether each property appears in its mapped section. Unrecognized properties are reported
as anti-patterns.

Removal. There are several ways to �x this anti-pattern. First, if the unrecognized property is
after_install, Gretel removes the after_install phase in the con�guration and moves
its commands to the end of the install phase. If the install phase does not exist, it is
created and, to preserve the pre-existing behaviour, the default commands are added (e.g.,
npm install for Node.js projects) before appending the after_install content.

Second, if the unrecognized property is similar to a recognized one (i.e., with a Levenshtein
distance close to zero), the unrecognized property is corrected. For example, before_srcipt will
be corrected to before_script.

In other cases, Gretel warns the user that the unrecognized properties will be ignored by
the Travis CI runtime.

Anti-pattern 4: Commands Unrelated to the Phase

Motivation. Violating the semantics of a phase by including unrelated commands can intro-
duce maintenance problems. If the commonly-accepted phases are not used for the intended
purpose, new members of the project will �nd it di�cult to understand the behaviour of the
CI process. Moreover, the various runtime optimizations that Travis CI performs in order to
speed up builds (e.g., caching) may be suboptimal if phases are used in unintended ways.

Detection. We begin by identifying commands that we suspect should appear in a given
phase. For example, in Node.js projects, we expect to �nd package installation commands
such as npm install in the install phase (or one of its sub-phases) and testing framework
commands such as mocha in the script phase (or one of its sub-phases).

Build tools vary based on programming language. For example, Node.js projects typically
use npm for managing dependencies, whereas Python projects typically use pip.

While we de�ne this anti-pattern in language-agnostic terms, due to the plethora of language-
speci�c tools, we must detect the anti-pattern in a language-aware manner. Since, according
to the results of RQ1, Node.js is the most popular language among our subject systems, we
prototype the detection of this anti-pattern for Node.js projects.

46

5.4. Study Results

Table 5.1: Well-bounded commands at each phase.

Phase Functionality Command

Install Install dependencies npm install, apt-get install, bower install, jspm, tsd

Script
Testing npm test, mocha, jasmine-node, karma, selenium
Run Interpreter/Framework node, meteor, jekyll, cordova, ionic
Static Analysis codeclimate, istanbul, codecov, coveralls, jscover, audit-package

Deploy Deploying by script sh .*deploy.*.sh

We consider instances of well-bounded commands that we �nd in other phases to be in-
stances of this anti-pattern. Table 5.1 shows the well-bounded commands that we detect by
analyzing the Node.js sample semi-automatically. To detect instances of this anti-pattern, we
parse the .travis.yml �le, associating commands with phases. If a well-bounded command
from Table 5.1 is found outside of the phase to which it is bounded, we �ag it as an anti-pattern.

Removal.To remove this anti-pattern automatically, we select the projects that have install-
related commands in other phases (because we �nd that it is the most commonly occurring
variant of this anti-pattern). Gretel removes these commands from non-install phases and
appends them to the end of the install phase. If the project does not have an install phase,
it is created and the default commands are added (to preserve the pre-existing behaviour) be-
fore appending the other commands.

5.4 Study Results

In this section, we present the results of our CI misuse study with respect to our three research
questions.

(RQ1) How prevalent are anti-patterns in CI speci�cations?

Observation 1: 894 of the 9,312 subject systems (9.6%) have at least one anti-pattern in their CI

speci�cations. 862 of those (96%) have one type of anti-pattern. 31 of the remaining 32 projects
have two types of anti-patterns. The AngularjsRUS/angular-doc project,8 which provides the
Russian version of the AngularJS documentation, has three types of anti-patterns (the only
missing anti-pattern is #3).

Observation 2: In a sample of 100 random projects, Hansel achieves a recall of 82.76%.

To estimate the recall of Hansel, we manually identify anti-patterns in a randomly selected
8https://github.com/AngularjsRUS/angular-doc

47

https://github.com/AngularjsRUS/angular-doc

5.4. Study Results

sample of 100 .travis.yml �les from our corpus. We apply Hansel to the same sample, and
compute the recall =

anti-patterns found by Hansel

anti-patterns found manually
.

Our manual analysis uncovers 29 instances of the anti-patterns in the sample. Hansel can
detect 24 of these instances, achieving a recall of 82.76%. Three of the �ve false negatives are
instances of anti-pattern 1 (redirecting scripts into interpreters), where the downloaded �le is
immediately piped into an extractor rather than an interpreter (e.g., wget -O - <URL>|tar

-xvJ). These are borderline cases because the downloaded content is not being executed.
However, content is still extracted without verifying its integrity. If we relax the interpreter
requirement of Hansel’s detector for anti-pattern 1, the recall improves to 93.10% (27 of 29).

In the remaining two false negatives, Hansel fails to �nd anti-pattern 4 (commands unre-
lated to the phase) where composer.phar, the dependency management tool for PHP, is used
in the before_script phase. Our initial mapping of commands to phases did not bind the
composer tool to the install phase (see Table 5.1). This can easily be remedied by adding
the missing binding.

Observation 3: The majority of instances of anti-pattern 1 are installing the popular Me-

teor web framework. We detect 206 instances where scripts are being downloaded and piped
into shell interpreters directly, of which, 106 (51%) are in projects using Node.js. In these 106
projects, we �nd that 94 of them (88%) are using the above anti-pattern to install the Meteor
web framework.9 In fact, the Meteor documentation instructs users to install the framework
using this method (curl https://install.meteor.com|/bin/sh).10

We reached out to the Meteor team to discuss the potential security implications of this
installation approach. The Meteor team explained that the developer community is divided
about using script redirection to install software packages. On the one hand, some have shown
how script redirection can be exploited by attackers5 or how networking interruptions dur-
ing the download command may lead to partial execution of the installation script.11 On the
other hand, members of the Sandstorm project defend script redirection for cases where
script downloads are served strictly over HTTPS.12 The Sandstorm team argues that script
redirection allows developers to iterate faster by avoiding the hassle of maintaining a variety
of package formats for di�erent platforms (e.g., .rpm and .deb for RedHat-type and Debian-

9https://www.meteor.com
10https://www.meteor.com/install
11https://www.seancassidy.me/dont-pipe-to-your-shell.html
12https://sandstorm.io/news/2015-09-24-is-curl-bash-insecure-pgp-verified-install

48

https://www.meteor.com
https://www.meteor.com/install
https://www.seancassidy.me/dont-pipe-to-your-shell.html
https://sandstorm.io/news/2015-09-24-is-curl-bash-insecure-pgp-verified-install

5.4. Study Results

type Linux distributions, respectively). Moreover, discussion threads on HackerNews13 argue
that other standard package distribution methods (e.g., binary installers, package managers)
are also susceptible to man-in-the-middle attacks unless the delivered packages are signed
cryptographically. The Meteor team argue that they have not been able to identify a more
secure alternative for the script redirection installation method.

If a project advocates for the script redirection installation method, we propose the fol-
lowing guidelines:

• The installation script should be served over HTTPS.
• The installation script should be made resilient to network interruptions by wrapping

the core script behaviour in a function, which is invoked at the end of the script. Doing
so will prevent partial execution of the script, since the interpreter will only execute the
script instructions when the function is invoked at the end.

• Users should regularly audit the installation script.

However, when the project has identi�ed the supported platforms or has accumulated
several external dependencies, migration to a package manager may pay o�.

Observation 4: Although rare, there are instances anti-pattern 2 in Travis CI speci�cations.

Hansel detects 63 instances of this anti-pattern in our corpus. In 37 (58.73%) of these cases,
the StrictHostKeyChecking=no command is being used. This command disables an inter-
active prompt for permission to add the host server �ngerprint to the known_hosts �le. De-
velopers may disable the prompt because it will impede cloning a repository via SSH in a
headless environment, such as Travis CI, which can lead to build breakage. However, setting
StrictHostKeyChecking=no exposes the host to man-in-the-middle attacks by skipping se-
curity checks in ssh.

In 18 instances (28.57%), the ssh_known_hosts property is set in the addons section to
de�ne host names or IP addresses of the servers to which Travis CI job processing nodes need
to connect during the CI process. This is insecure because if the network is compromised (e.g.,
by DNS spoo�ng), Travis CI job processing nodes may connect and share private data with
an attacker’s machine.

In another eight instances of anti-pattern 2 (12.70%), UserKnownHostsFile=/dev/null
is being used. In this case, host server �ngerprints are written to and read from an empty �le,
e�ectively disabling host key checking, and exposing the host to man-in-the-middle attacks.

13https://news.ycombinator.com/item?id=12766049

49

https://news.ycombinator.com/item?id=12766049

5.4. Study Results

The secure way to prevent the interactive prompt from interrupting scripted operations
is to store the private keys of the hosts that Travis CI job processing nodes connect to
in a known_hosts �le. The �le may be enabled within the .travis.yml �le using the -o

UserKnownHostsFile=<file_name> property.

Observation 5: Irrelevant properties that are ignored by Travis CI runtime (anti-pattern 3)

appear frequently.Hansel detects 242 instances of anti-pattern 3, which can present imminent
concerns or future risks (see Table 5.2).

Making spelling mistakes when de�ning properties and placing properties in the incorrect
location within the .travis.yml are example causes of irrelevant properties that raise immi-
nent concerns. We �nd 74 instances of misspelled properties in our corpus. These misspelled
properties are an imminent concern because misspelled properties and all of the commands
that are associated with those properties are ignored by the Travis CI runtime. In the best
case, ignored properties will lead to build breakage, which is frustrating and may slow devel-
opment progress down. In the worst case, the CI job will successfully build while producing
incorrect deliverables, which may allow failures or unintended behaviour to leak into o�cial
releases.

We also �nd 148 instances of misplaced properties in our corpus. For example, the webhooks
property should be de�ned as a sub-property of the notifications property; however, it ap-
pears as a root-level property in four subject systems. This is an imminent concern because
miscon�gured properties are also ignored by the Travis CI runtime.

We label the use of experimental or deprecated features in the Travis CI speci�cation as a
future risk. There are 15 instances of using experimental properties in the corpus. For example,
the undocumented group property allows users to specify which set of build images are to be
used by the Travis CI runtime. Since this feature is actively being developed, the Travis CI
team does not recommend using it yet. Projects that use the group property may encounter
future problems if the property name or behaviour changes.

Users may also use deprecated properties such as source_key. We �nd �ve instances of
use of deprecated features in the corpus. They present a future risk because Travis CI may
stop supporting these properties at any time.

Observation 6: The most common variant of anti-pattern 4 is using install phase com-

mands in the script phase. Table 5.3 shows that commands that we expect to appear in the
install phase appear 467 times in other phases. We �nd that this often occurs because de-

50

5.4. Study Results

Table 5.2: Examples of irrelevant properties that we observed in .travis.yml files.

Reason Examples

Imminent
Concerns

Misspelled properties notications,
notificactions,
notification,
deployg,
before install,
before_srcipt,
before-install,
before-script,
branch, phps

Misplaced properties only, webhooks,
on_failure,
on_success, irc,
email, exclude,
fast_finish

Future
Risks

Experimental Features group
Deprecated features source_key

Table 5.3: Commands that appear in unrelated phases.

Expected in

Observed in
Install Script Deploy

Install - 467 0

Script 0 - 0

Deploy 0 52 -

velopers prepend lines to install required packages to the body of the script phase. By not
using install phase for installing dependencies, these projects are unable to leverage Travis
CI runtime optimizations (e.g., caching), which speed up builds.

The commands that we expect in the deploy phase appear 52 times in the script phase.
We �nd that developers tend to run deployment-related commands in the script phase im-
mediately after compiling and testing.

The Travis CI team states that compiling and testing tasks should appear in the script

phase. The deploy phase is typically reserved for uploading deliverables to cloud service
providers (e.g., Heroku, AWS, Google App Engine) or package repositories (e.g., NPM, PyPI,
RubyGems). This separation of concerns allow the Travis CI runtime to optimize resources

51

5.4. Study Results

within its CI infrastructure. For example, during the script phase, the infrastructure can be
tuned to perform more CPU- and I/O-heavy operations, while during the deploy phase, the
infrastructure can allocate additional network bandwidth and less CPU horsepower. If the
separation of concerns is not respected, the Travis CI team cannot make such optimizations.

Observation 7: Developers often violate semantics by applying static analysis too late in the

CI process. For detecting semantics violations in sub-phases of the CI process, we search for
calls to popular code coverage and static analysis tools (listed in the ‘static analysis’ row of
Table 5.1) in the after_script phase. We detect 40 of such instances.

One plausible explanation for the occurrence of this anti-pattern is that developers may
assume that the after_script phase is executed immediately after the script phase, similar
to how the after_deploy phase is executed immediately after the deploy phase. Yet, as
shown in Figure 2.2, the after script phase is executed after deployment-related phases
are executed. Indeed, we �nd 40 cases where static analysis tools are being executed at the
end of the CI process, after deployment, when is likely too late to act upon issues that are
detected.

Summary: Developers misuse and miscon�gure CI speci�cations. The anti-patterns that

we de�ne can expose a system to security vulnerabilities, cause unintended CI behaviour,

or delay SQA activities until after deployment.

Implications: Hansel, our anti-pattern detector, can detect misuse and miscon�guration

of CI speci�cations. If Hansel’s warnings are addressed, the consequences of CI misuse and

miscon�guration can be avoided.

(RQ2)Can anti-patterns inCI speci�cations be removed automatically?

Approach. We aim to check whether Hansel-detected anti-patterns can be removed auto-
matically. To do so, we randomly select a subset of candidates for removal and manually clas-
sify them until we achieve saturation [90], i.e., when new data do not add to the meaning of the
categories. In our case, saturation was achieved after analyzing 250 candidates for removal,
where no new categories were detected during the analysis of the last 79 candidates.

Before transforming the candidates, we check whether they are valid speci�cations by
using the TravisLint tool.2 We then apply Gretel to the valid candidates in order to remove

52

5.4. Study Results

language: node_js
node_js:
- ’0.10’
before_script:
- cd frontend
- npm install -g bower grunt-cli
- npm install
- bower install
script:
- grunt test

language: node_js
node_js:
- ’0.10’
install:
- cd frontend
- npm install -g bower grunt-cli
- npm install
- bower install
script:
- grunt test

Figure 5.1: An example where a state-altering command a�ects the removal of an anti-pa�ern. The

cd command should also be migrated to the install phase along with the npm install and bower
install commands.

the anti-pattern. We apply TravisLint again to the transformed �les to make sure that they
are still valid. Finally, we manually inspect the instances of removed anti-patterns to check
whether the transformation has changed the behaviour of the original speci�cation.

Results. We �nd that 174 of the 250 randomly selected anti-pattern instances (69.60%) can be
removed automatically. Moreover, 69 (27.60%) of the remaining cases can be �xed, but require
manual veri�cation to ensure that the original behaviour is preserved. We perform this manual
veri�cation and provide three observations about these 69 cases.

Observation 8: There are 38 instances of anti-patterns where the command under analysis

is preceded by a state-altering command. The state-altering commands include:

• File system operations (i.e., cp, cd, mv, mkdir).
• Package managers (i.e., npm update, npm cache clean, gem update, apt-get update,
bower cache clean, git submodule update).

• Environment variable and database-related operations.

State-altering commands may also need to migrate along with the anti-pattern commands to
the more appropriate section. Figure 5.1 shows an example where a state-altering command
impacts the removal of an anti-pattern, taken from lamkeewei/battleships,14 a tool for building

14https://github.com/lamkeewei/battleships

53

https://github.com/lamkeewei/battleships

5.4. Study Results

Python apps for the Google App Engine. In this case, lines 6–8 are implicated in the anti-
pattern, but line 5 must be executed before lines 6–8, and thus, must be included in the �x.

Observation 9: In 12 instances, there are compound commands that are connected by a double

ampersand. In this case, the bash shell only invokes the command(s) that follow after the
ampersands if the command(s) that precede the ampersands did not fail (i.e., returned an error
code of zero). Installation commands that appear before the ampersands can be safely moved
to the install phase while preserving this behaviour, since if the install phase fails, the
build job terminates with an error status in Travis CI.

Observation 10: In 29 instances, limitations in the ruamel.yaml framework
3
lead to problems

in the removal of anti-patterns. The problems that we encountered are listed below:

• Version numbers may be parsed as �oating point numbers, causing trailing zeros to be
removed in the output. For example, 0.10 is transformed into 0.1.

• Property-level comments are missing after removal.
• Duplicate properties are missing after removal.
• Line breaks in multi-line commands are replaced with ‘\n’ after removal.

We manually �x these minor issues before proceeding.

Seven (2.80%) of the remaining projects use the Yarn package manager15 along with npm
to manage dependencies. The removals that we propose are incompatible with such projects.
We plan to add support for Yarn and other package managers in the future.

Summary: The detected instances of the most frequent CI anti-pattern can be removed

automatically in 69.60% of cases. This improves to 97.20% if a post hoc manual inspection

phase is included (semi-automatic removal).

Implications: Hansel-detected anti-patterns can be removed (semi-)automatically with

Gretel to avoid the consequences of CI misuse and miscon�guration.

15https://yarnpkg.com/en/

54

https://yarnpkg.com/en/

5.4. Study Results

(RQ3) Are automatic removals of CI anti-patterns accepted by devel-

opers?

Approach. To better understand the utility of Gretel, we apply it to the 174 instances that
could be removed automatically to �x the anti-patterns and o�er these improvements to the
studied projects as pull requests.

Results. Of the submitted pull requests, 49 received responses from the projects’ developers
(response rate: 28.16%).

Observation 11: 36 of the 49 pull requests that received responses (73.47%) have been ac-

cepted and integrated by the subject systems. Of the 49 anti-pattern �xes to which developers
responded, 36 have already been accepted by the projects at the time of this submission.

13 pull requests were rejected by project maintainers. Two of the 13 were rejected because
our pull request appeared to introduce build breaks, which were introduced by other commits
that are not related to the removal of anti-patterns. In another two pull requests, the developers
did not understand why our change had added new commands. These commands were added
to preserve the implicit behaviour of phases that did not exist prior to applying our removal.
Two other rejected pull requests came from projects that are no longer being maintained.

Only in one pull request were our changes rejected because the developer did not agree
with our premise that this change is bene�cial. The developer pointed to Travis CI documen-
tation, which has an example to demonstrate an unrelated feature that uses install-related
commands in the before_script phase.16 We contacted the Travis CI team regarding this
and they agreed that the documentation needs to be �xed by moving the install commands
out of the before_script phase in the example as it is violating the semantics.

The six other rejected pull requests were closed without any explanation from the project
maintainers.

Summary: Automated �xes for CI anti-patterns are often accepted by developers and in-

tegrated into their projects (73.47% of pull requests that received a response or 20.68% of all

submitted pull requests).

Implications: Hansel and Gretel produce patches that are of value to active develop-

ment teams.

16https://docs.travis-ci.com/user/languages/javascript-with-nodejs/#Using-Gulp

55

https://docs.travis-ci.com/user/languages/javascript-with-nodejs/#Using-Gulp

5.5. Further Insights into CI/CD Misuse

5.5 Further Insights into CI/CD Misuse

In this section, we discuss the observed results further in terms of misuse of CI.

5.5.1 Dependence on Default Behaviour

The Travis CI design conforms to the principle of “convention-over-con�guration”. When no
command is speci�ed for a phase (i.e., the phase is not con�gured), a set of default commands
(i.e., the convention) is automatically executed. For example, in Node.js projects, the current
default behaviour for the install and script phases is to invoke npm install and npm

test, respectively.

The “convention-over-con�guration” principle might introduce problems if the conven-
tions change. These changes may break the builds of projects that depended upon the old
convention. Other tools that conform to the “convention-over-con�guration” principle (e.g.,
Maven, Rails) address the problem of changing conventions by maintaining versions of the
schema of the con�guration �le. This makes the convention that is associated with each ver-
sion explicit.

Although we do not classify it as an anti-pattern, we detect 5,913 projects in our corpus
(63.5%) that depend upon the Travis CI convention. A future change to the convention could
a�ect break the builds of these 5,913 projects.

The convention of Travis CI must evolve to keep up with changes in the build tool ecosys-
tem; however, without a versioning mechanism, con�gurations that depend upon the prior
convention may be susceptible to breakage. For example, for Objective-C builds, the cur-
rent Travis CI convention is to invoke xctool.17 Facebook, the organization that maintains
xctool, have deprecated it as of 2016.18 If the Travis CI team switches the convention to an
actively supported tool, the builds of projects that depend upon the existing xctool conven-
tion will be broken.

Furthermore, evolution of the Travis CI lifecycle itself may introduce build breakage. For
example, a recent change to the behaviour of the after_script phase19 ensures that the
phase is executed at the end of the CI process. Moreover, its commands are executed regard-
less of the outcome of the previous phases. Due to this change, projects that depended upon

17https://github.com/facebook/xctool
18https://github.com/facebook/xctool/blob/master/README.md#features
19https://blog.travis-ci.com/after_script_behaviour_changes/

56

https://github.com/facebook/xctool
https://github.com/facebook/xctool/blob/master/README.md#features
https://blog.travis-ci.com/after_script_behaviour_changes/

5.5. Further Insights into CI/CD Misuse

failures in the after_script phase preventing the build from proceeding to the deploy phase
had to move such commands to the script phase.

Conversely, when CircleCI, a competing CI service, made substantial changes to the
YAML DSL of their con�guration �les, they introduced a new schema version,20 while still sup-
porting the old version. The name of the con�guration �le was also changed from circle.yml

to config.yml, making it di�cult for users to mistakenly add deprecated properties in the
new con�guration �le.

5.5.2 Storage of Sensitive Data

We �nd that projects in our sample have stored sensitive data, such as passwords, private
keys, and other security-related properties, in the .travis.yml �le. For example, the hug-

inn/huginn project21 has APP_SECRET_TOKEN de�ned as a public environment variable in
the .travis.yml �le. Having these properties insecurely recorded in plain text within the
.travis.yml �le can expose the project and potentially, the Travis CI infrastructure to
exploits. Sensitive data, such as API credentials, should be encrypted and stored under the
secure property in the .travis.yml �le.

We perform an exploratory analysis to estimate the number of instances of sensitive data
being stored in plain text in our corpus. We search for the security-related su�xes key, token,
and secret in the names of environment variables that appear outside of the secure property.
To prevent double counting, we remove occurrences where the environment variable setting
is the value of another environment variable. If the other environment variable is stored in-
securely, we will have already reported it.

Table 5.4 shows that we detect 189 projects with instances of sensitive data in our cor-
pus (2.03%). This is a lower bound, since our su�x matching approach does not detect all
environment variables that contain sensitive data.

5.5.3 Dependence on External Scripts

Another potential anti-pattern is placing a large amount of CI logic in external scripts. For ex-
ample, the aescobarr/natusfera project22 uses the before_install, before_script, script,

20https://circleci.com/docs/2.0/migrating-from-1-2/
21https://github.com/huginn/huginn
22https://github.com/aescobarr/natusfera

57

https://circleci.com/docs/2.0/migrating-from-1-2/
https://github.com/huginn/huginn
https://github.com/aescobarr/natusfera

5.5. Further Insights into CI/CD Misuse

Table 5.4: Sensitive data in .travis.yml files.

Type Property Name # of Projects

Keys SAUCE_ACCESS_KEY,
GITHUB_OAUTH_KEY,
BROWSER_STACK_ACCESS_KEY,
TOKEN_CIPHER_KEY,
TESTSUITE_BROWSERSTACK_KEY,
RECAPTCHA_PRIVATE_KEY,
RAILS_SECRET_KEY,
IMGUR_API_KEY

124

Tokens ATOM_ACCESS_TOKEN,
CODECLIMATE_REPO_TOKEN,
COVERALLS_REPO_TOKEN,
APP_SECRET_TOKEN,
ADMIN_APP_TOKEN,
CODACY_PROJECT_TOKEN

56

Secrets GITHUB_CLIENT_SECRET,
JWT_SECRET, APP_SECRET,
OPBEAT_SECRET,
WEBHOOK_SECRET

9

and after_script phases; however, each phase just calls an external script. Since logic in
external scripts is hidden from the Travis CI runtime (recall Observation 14), optimizations
will be suboptimal.

We again perform an exploratory analysis to study the use of external scripts. We search
for commands in our corpus that invoke the sh or bash interpreters or have the .sh extension.
Applying this, we detect at least one shell script has been used by 1,924 projects in our corpus
(20.6%).

5.5.4 Applicability to Other CI/CD Services

Other popular CI services, such as CircleCI, Wercker, and AppVeyor also use YAML DSLs
for specifying CI con�guration. Thus, the anti-patterns that we de�ne in this paper may also
apply to these services. For example, CircleCI uses a config.yml �le23 to con�gure the CI
process. Since commands to be executed during build jobs are speci�ed in this �le, anti-pattern
1 (i.e., redirecting scripts into interpreters) may occur in CircleCI speci�cations.

23https://circleci.com/docs/2.0/

58

https://circleci.com/docs/2.0/

5.6. Threats to Validity

CircleCI users are also susceptible to the anti-pattern 2 (i.e., bypassing security checks)
because users can manually set StrictHostKeyChecking=no in the config.yml �le, expos-
ing the host to man-in-the-middle attacks, when executing commands that require an SSH
connection.24

CircleCI is robust to anti-pattern 3 (i.e., using irrelevant properties) because build jobs
terminate immediately if an unsupported property is processed in the config.yml �le. This
behaviour di�ers from Travis CI, where unsupported properties do not prevent build jobs
from proceeding.

CircleCI users are susceptible to anti-pattern 4 (commands unrelated to the phase). Simi-
lar to .travis.yml �les, config.yml �les have seven sections that represent phases of the CI
process (i.e., machine, checkout, dependencies, database, compile, test, and deployment).
Each phase has three sub-phases (i.e., pre, override, and post). Similar to Table 5.1, we can
map commands to CircleCI phases where they should appear.

5.6 Threats to Validity

This section describes the threats to the validity of our study.

5.6.1 Internal Validity

The list of anti-patterns that we present in the chapter is not exhaustive. However, to the
best of our knowledge, this chapter is the �rst to de�ne, detect, and remove anti-patterns in
CI speci�cations. Our set of anti-patterns is a starting point for future studies to build upon.
Future studies that de�ne anti-patterns using other data sources, e.g., developer surveys [26],
may prove fruitful.

Hansel uses a lightweight approach to detect instances of anti-patterns. A more rigorous
analysis may uncover additional instances of anti-patterns. Thus, our anti-pattern frequency
results should be interpreted as a lower bound.

Projects may use Travis CIwithout a .travis.yml �le. In this case, the Travis CI runtime
assumes that the project is using Ruby and would apply the conventional Ruby CI process.

24https://discuss.circleci.com/t/add-known-hosts-on-startup-via-config-yml-configuration/
12022

59

https://discuss.circleci.com/t/add-known-hosts-on-startup-via-config-yml-configuration/12022
https://discuss.circleci.com/t/add-known-hosts-on-startup-via-config-yml-configuration/12022

5.7. Chapter Summary

Since we are unable to identify such projects automatically, we only consider projects with a
.travis.yml �le in the root directory of the project.

5.6.2 External Validity

In terms of the generalizability of our results to other systems, we focus only on open source
subject systems, which are hosted on GitHub and use Travis CI as the CI service provider.
GitHub is one of the most popular hosting platforms for open source software projects and
Travis CI is the most widely adopted CI service among open source projects [2]. Therefore,
our �ndings are applicable to a large proportion of open source projects. Moreover, given
the similarities among the popular CI services (see Section 5.5.4), our observations are likely
applicable to some degree.

5.6.3 Construct Validity

Our proposed CI anti-patterns are subject to our interpretation. To mitigate this threat, we
review Travis CI documentation and consult with the Travis CI support team when incon-
sistencies are encountered. Furthermore, the rate at which our pull requests are being accepted
(73.47%) is suggestive of the value of addressing these anti-patterns.

5.7 Chapter Summary

Similar to programming languages, the features in CI con�guration �les can be used and mis-
used by the developers. Through our study of 9,312 open source systems that use Travis CI,
we make the following observations about the misuse of CI speci�cations:

• Hansel detects anti-patterns in the Travis CI speci�cations of 894 out of the 9,312
studied projects (9.60%). Moreover, in a sample of 100 projects, Hansel achieves a recall
of 82.76% (Observations 1–7).

• The instances of anti-pattern 4 can be removed automatically in 69.60% of the subject
systems. This percentage can be increased to 97.20% if a post hoc manual inspection
phase is included (Observations 8–10).

• Of the 49 pull requests for instances that are removed automatically and to which de-
velopers responded, 36 (73.47%) have been accepted (Observation 11).

60

5.7. Chapter Summary

Our CI misuse study shows that anti-patterns that threaten the correctness, performance,
and security of build jobs are impacting a considerable proportion of Travis CI users (9.60%).
Hansel and Gretel can detect and remove these anti-patterns accurately, allowing teams to
mitigate or avoid the consequences of misusing CI features.

61

Chapter6
Noise and Heterogeneity

in CI/CD Build Data

Note. An earlier version of the work in this chapter appears in the Proceedings of the

33rd International Conference on Automated Software Engineering (ASE 2018) [53].

6.1 Introduction

After making source code changes, developers execute automated builds to check the impact
on the software product. These builds are triggered while features are being developed, when
changes have been submitted for peer review, and/or prior to integration into the software
project’s version control system.

Tools such as Travis CI facilitate the practice of Continuous Integration (CI), where code
changes are downloaded regularly onto dedicated servers to be compiled and tested [3]. The
popularity of development platforms such as GitHub and CI services such as Travis CI have
made the data about automated builds from a plethora of open source projects readily available
for analysis.

Characterizing build outcome data will help software practitioners and researchers when
building tools and proposing techniques to solve software engineering problems. For example,
Rausch et al. [56] identi�ed the most common breakage types in 14 Java applications and Vas-
sallo et al. [8] compared breakages from 349 open source Java projects to those of a �nancial
organization. While these studies make important observations, understanding the nuances
and complexities of build outcome data has not received su�cient attention by software en-
gineering researchers. Early work by Zolfagharinia et al. [91] shows that build failures in the

62

6.1. Introduction

Perl project tend to be time- and platform-sensitive, suggesting that interpretation of build
outcome data is not straightforward.

To support the interpretation of build outcome data, in this chapter, we set out to charac-
terize build outcome data according to two harmful assumptions that one may make. To do so,
we conduct an empirical study of 3,702,071 build results spanning 1,276 open source projects
that use the Travis CI service.

Noise. First, one may assume that build outcomes are free of noise. However, we �nd that in
practice, some builds that are marked as successful contain breakages that need attention yet
are ignored. For example, developers may label platforms in their Travis CI con�gurations
as allow_failure to enable experimentation with support for a new platform. The expec-
tation is that once platform support has stabilized, developers will remove allow_failure;
however, this is not always the case. For example, the zdavatz/spreadsheet1 project has had the
allow_failure feature enabled for the entire lifetime of the project (�ve years). Examples
like this suggest that noise is likely present in build outcome data.

There are also builds that are marked as broken that do not receive the immediate at-
tention of the development team. It is unlikely that such broken builds are as distracting for
development teams as one may assume. For example, we �nd that on average, two in every
three breakages are stale, i.e., occur multiple times in a project’s build history. To quantify the
amount of noise in build outcome data, we propose an adapted signal-to-noise ratio.

Heterogeneity. Second, one may assume that builds are homogeneous. However, builds vary
in terms of the number of executed jobs and the number of supported build-time con�gura-
tions. For example, if the Travis CI con�guration includes four Ruby versions and three Java
versions to be tested, twelve jobs will be created per build because 4×3 combinations are pos-
sible. Zolfagharinia et al. [91] observed that automated builds for Perl package releases take
place on a median of 22 environments and seven operating systems. Builds also vary in terms
of the type of contributor. Indeed, build outcome and team response may di�er depending on
the role of the contributor (core, peripheral).

In this chapter, we study build heterogeneity according to matrix breakage purity, breakage
reasons, and contributor type. We �nd that (1) environment-speci�c breakages are as common
as environment-agnostic breakages; (2) the reasons for breakage vary and can be classi�ed into

1https://github.com/zdavatz/spreadsheet

63

https://github.com/zdavatz/spreadsheet

6.2. Study Design

(4)
Analyze and

Present
Results

(1)
Retrieve
Raw Data

Downloaded
Project Data

Computed
Metrics

(3)
Construct

Meaningful Metrics

(2)
Clean and

Process Raw
Data

Processed
Project Data

Selected
MetadataTravisTorrent

Travis CI API

Analyze
Build Noise

Analyze
Build

Equality

Retrieve
Metadata

Raw Logs

Build Equality
Metrics

Build Noise
Metrics

Filter
Malformed

Logs

Filter
Inactive
Projects

Selected Logs

Compute
Build Equality

Metrics

Compute
Build Noise

Metrics

Compute
Build Noise

Metrics

Retrieve
Build
Logs

Candidate
Metadata

Figure 6.1: An overview of the approach we followed for data analysis.

�ve categories and 24 subcategories; and (3) broken builds that are caused by core contributors
tend to be �xed sooner than those of peripheral contributors.

Take-away messages. Build outcome data is noisy and heterogeneous in practice. If build
outcomes are treated as the ground truth, this noise will likely impact subsequent analyses.
Therefore, researchers should �lter out noise in build outcome data before conducting further
analyses. Moreover, tool developers and researchers who develop and propose solutions based
on build outcome data need to take the heterogeneity of builds into account.

In summary, this paper makes the following contributions:

• An empirical study of noise and heterogeneity of build breakage in a large sample of
Travis CI builds.

• A replication package containing Travis CI speci�cation �les, metadata, build logs at
the job level, and our data extraction and analysis scripts.2

• A taxonomy of breakage types that builds upon prior work.

The remainder of the chapter is organized as follows: Section 6.2 describes the research
methodology. Sections 6.3 and 6.4 present our �ndings related to noise in build outcome and
build heterogeneity, respectively. Section 6.5 discusses the broader implications of our study
for the research and tool building communities. Section 6.6 outlines the threats to validity.
Finally, Section 6.7 concludes the chapter.

64

6.2. Study Design

6.2 Study Design

In this section, we describe our rationale for selecting the corpus of studied systems and our
approach to analyze this large corpus of build data, which follows Mockus’ four-step proce-
dure [92] for mining software data. Figure 6.1 provides an overview of our approach.

6.2.1 Corpus of Candidate Systems

We conduct this study by using openly available project metadata and build results of GitHub
projects that use the Travis CI service to automate their builds. GitHub is the world’s largest
hosting service of open source software, with around 20 million users and 57 million reposi-
tories, in 2017.3 A recent analysis shows that Travis CI is the most popular CI service among
projects on GitHub.4

6.2.2 Retrieve Raw Data

We begin by retrieving the TravisTorrent dataset [52], which contains build outcome data
from GitHub projects that use the Travis CI service. As of our retrieval, the TravisTorrent
dataset contains data about 3,702,595 build jobs that belong to 680,209 builds spanning 1,283
GitHub projects. Those builds include one to 252 build jobs (median of 3). In addition to
build-related data, the TravisTorrent dataset contains details about the GitHub activity
that triggered each build. For example, every build includes a commit hash (a reference to the
build triggering activity in its Git repository), the amount of churn in the revision, the number
of modi�ed �les, and the programming language of the project. TravisTorrent also includes
the number of executed and passed tests.

TravisTorrent alone does not satisfy all of the requirements of our analysis. Since Trav-
isTorrent infers the build job outcome by parsing the raw log, it is unable to detect the out-
come of 794,334 jobs (21.45%). Furthermore, TravisTorrent provides a single broken category,
whereas Travis CI records build breakage in three di�erent categories (see Subsection 6.2.4).

To satisfy our additional data requirements, we complement the TravisTorrent dataset
by extracting additional data from the REST API that is provided by Travis CI. From the API,
we collect the CI speci�cation (i.e., .travis.yml �le) used by Travis CI to create each build

2https://github.com/software-rebels/bbchch
3https://github.com/blog/2345-celebrating-nine-years-of-github-with-an-anniversary-sale
4https://github.com/blog/2463-github-welcomes-all-ci-tools

65

https://github.com/software-rebels/bbchch
https://github.com/blog/2345-celebrating-nine-years-of-github-with-an-anniversary-sale
https://github.com/blog/2463-github-welcomes-all-ci-tools

6.2. Study Design

job and the outcome of each build job. To enable further analysis of build breakages, we also
download the plain-text logs of each build job in the TravisTorrent dataset.

6.2.3 Clean and Process Raw Data

Since we focus on build breakages, we �lter away projects that do not have any broken builds.
This excludes from our analysis toy projects that have con�gured CI initially but do not use
CI services. 1,276 projects (out of 1,283) survive this �lter.

We observe that 996 build logs do not parse cleanly. When retrieving these logs, the Travis
CI API returned a truncated or invalid response. We also �lter these logs out of our analysis;
however, we do note that these 996 logs account for a negligible proportion of the sample of
analyzed build logs (996/3,702,595 = 0.03%).

6.2.4 Construct Meaningful Metrics

In this subsection, we �rst de�ne the Travis CI concepts that are useful for understanding
our work. Then, we de�ne the metrics that we use to operationalize the study dimensions.

Core Concepts in Travis CI. In this chapter, we adhere to the terminology as de�ned in
Section 2.4 and the o�cial Travis CI documentation.5

Projects that use the Travis CI service inform Travis CI about how build jobs are to be
executed using a .travis.yml con�guration �le. The properties that are set in this con�gu-
ration �le specify which revisions will initiate builds, how the build environments are to be
con�gured for executing builds, and how di�erent teams or team members should be noti�ed
about the outcome of the build. Furthermore, the con�guration �le speci�es which tools are
required during the build process and the order in which these tools need to be executed.

Metrics. Based on the above concepts, we de�ne seven metrics to analyze build breakage.
These metrics are not intended to be complete, but instead provide a starting point for in-
specting build breakage for suspicious entries that future work can build upon. Our initial set
of metrics belong to two dimensions.

• Build noise metrics. In this dimension, we compute the rate at which build breakage
is actively ignored and passively ignored. In addition, we measure the staleness of each
broken build, i.e., the rate at which breakages are recurring. Finally, we compute the

5https://docs.travis-ci.com/user/for-beginners/

66

https://docs.travis-ci.com/user/for-beginners/

6.3. Noise in Build Breakage Data

Signal-To-Noise Ratio (SNR) to measure the proportion of noise in build outcome data
caused by passively and actively ignored build breakage.

• Build heterogeneity metrics. In this dimension, for each broken build, we compute
the matrix breakage purity and classify broken builds by the root cause. For practical
reasons, we extract root causes for build breakage from the 67,267 jobs that use the
Maven build tool. This allows us to build upon the Maven Log Analyzer [34], which
can classify �ve types and 24 subtypes of Maven build breakage. Finally, we classify
each of the version control revisions that are associated with each build, according to
contributor type (i.e., core or peripheral contributors).

6.2.5 Analyze and Present Results

Using the metrics that we de�ne in Section 3.4, we (1) plot their values using bar charts, line
graphs, scatterplots, and bean plots [93]; and (2) conduct statistical analyses using Spearman’s
d , Wilcoxon signed rank tests, and Cli�’s X .

6.3 Noise in Build Breakage Data

The �nal build outcome does not always tell the complete story. Indeed, a broken build out-
come may not indicate a problem with the system, but rather a problem with the build system
or test suite. Conversely, a passing build outcome may only be labeled as such because break-
ages in particular jobs are being ignored.

In this section, we present the results of our noisiness study in terms of outcomes of builds
that are actively ignored (6.3.1), passively ignored (6.3.2), or stale (6.3.3). We also provide an
overview of the signal-to-noise ratio in the studied corpus (6.3.4).

6.3.1 Actively Ignored by Developers

Motivation. Support for new runtime environments is often slowly rolled out through adap-
tive maintenance [94]. While support for new platforms are in the experimental stage, devel-
opers may ignore build breakage on these platforms.

To prevent failing jobs in experimental areas of the codebase from causing build breakage,
Travis CI users can set the allow_failure property when testing against versions or con-

67

6.3. Noise in Build Breakage Data

�gurations that developers are not ready to o�cially support.6 In other words, a job may fail;
however, because the developers chose to ignore the outcome of its con�guration, the outcome
of the build is passing. So if analyses assume the build is successful because the reported out-
come is passing, actively ignored breakages may introduce noise. Therefore, we analyze how
often breakages are actively ignored in our corpus.

Approach. We begin by selecting all of the 496,240 passing builds in our dataset. From those
builds, we select the ones with failing jobs. Then, we retrieve the corresponding version of
the .travis.yml for each of those selected builds and check if the allow_failure property
is enabled for the failing jobs.

Results. In addition to computing how often passing builds contain failing jobs, Figure 6.2
shows how the percentage of actively ignored failing jobs is distributed in passing builds that
had at least one ignored failed job.

Observation 1: 12% of passing builds have an actively ignored failure. Of the 496,240
passing builds in our corpus, 59,904 builds had at least one actively ignored failure. Moreover,
Figure 6.2 shows that in the passing builds that had at least one actively ignored failing job,
the median percentage of ignored failing jobs is 25%.

In an extreme case, 87% of the jobs were actively ignored. We observe this in the rubycas/rubycas-
client

7 project where the allow_failure property is set in 33 out of the 38 jobs.8 Upon closer
inspection, we observe that this is an example of the intended use of the allow_failure

property. This build speci�es eleven Ruby versions as runtimes and four Gem�les for depen-
dency management. Six of the combinations are explicitly excluded. Thus, 38 jobs are created
for each build (11 × 4 − 6). All of the 33 jobs that have the allow_failure property set fail.
In subsequent builds, after several source code changes by the development team, all of these
failing jobs begin to pass. Finally, the development team removes the allow_failure prop-
erty from these jobs with an accompanying commit message that states that “builds should
fail on released versions of ruby and rails”. The development team only ignored failures while
they improved their support for multiple ruby and rails versions. Vassallo et al. [35] also have
observed that allow_failure property is sometimes used for valid reasons (e.g., temporarily
in jobs that are not fully implemented yet).

6https://docs.travis-ci.com/user/customizing-the-build/#Rows-that-are-Allowed-to-Fail
7https://github.com/rubycas/rubycas-client
8https://travis-ci.org/rubycas/rubycas-client/builds/5604025

68

https://docs.travis-ci.com/user/customizing-the-build/#Rows-that-are-Allowed-to-Fail
https://github.com/rubycas/rubycas-client
https://travis-ci.org/rubycas/rubycas-client/builds/5604025

6.3. Noise in Build Breakage Data

0

5000

10000

15000

20000

0 10 20 30 40 50 60 70 80 90
Percentage of Ignored Failed Jobs

F
re

qu
en

cy

Figure 6.2: Percentage of ignored failed jobs in passing builds that had at least one ignored failed job

across all projects.

On the other hand, the allow_failure setting can be misused. For example, in the zda-

vatz/spreadsheet
9 project, the allow_failure property, which is set in the initial build spec-

i�cation of the project, is never removed from the build speci�cation throughout the �ve-
year history of the project.10 Furthermore, in our corpus, we detect 23 projects that had the
allow_failure property set in all of their builds. These projects were not short-lived, with
31 to 769 builds in each project (median of 151). This suggests that although the intended pur-
pose of the allow_failure property is to temporarily hide breakages, development teams do
not always disable this property after it has been set, leaving the breakages hidden.

Passing build outcomes do not always indicate that the build was entirely clean.

6.3.2 Passively Ignored by Developers

Motivation. Build breakage is considered to be distracting because it draws developer atten-
tion away from their work to �x build-reported issues [6, 41, 95]. If development can proceed
without addressing a build breakage, we suspect that the breakage is not distracting. Since
these passively ignored breakages may introduce noise in analyses that assume that all break-
ages are distracting. We set out to analyze how often breakages are passively ignored.

Approach. To detect passively ignored breakages, we construct and analyze the directed
graph of revisions from the version history that have been built using Travis CI.

9https://github.com/zdavatz/spreadsheet
10https://github.com/zdavatz/spreadsheet/blame/master/.travis.yml

69

https://github.com/zdavatz/spreadsheet
https://github.com/zdavatz/spreadsheet/blame/master/.travis.yml

6.3. Noise in Build Breakage Data

[1] Build Filtering. We start by selecting the git_trigger_commit and the git_prev-

_built_commit �elds of each build from TravisTorrent. The git_trigger_commit

�eld refers to the revision within the repository that is being built. The git_prev-

_built_commit �eld refers to the revision that was the target of the immediately pre-
ceding build. Multiple builds may be associated with one git_trigger_commit because
developers can con�gure Travis CI to run builds at scheduled time intervals, even if no
new commits have appeared in the repository.11 Builds can also be triggered by the
Travis CI API, regardless of whether there are new commits in the repository.12 We re-
move such duplicate builds by checking for builds that have event_type property set to
cron or api. This reduces the number of builds from 680,209 to 676,408. Travis CI also
triggers builds when Git tags are created even if the tagged commit has already been
built. We remove builds that were triggered by tag pushes by checking for non-null val-
ues for the tags property. This reduces the number of builds to 659,048. However, there
are multiple builds remaining for one git_trigger_commit because manual build in-
vocations can be made via the Travis CI web interface. These manual invocations can-
not be distinguished from regular builds that were triggered by Git pushes. Therefore,
when multiple builds are encountered for one git_trigger_commit, the earliest build
is selected. This reduces the number of builds to 610,550.

[2] Graph Construction. Nodes in the graph represent build-triggering commits, while
edges connect builds chronologically. All nodes are connected by edges from git_prev-

_built_commit node to git_trigger_commit node.

[3] Graph Analysis. We use the directed graph to identify build-triggering commits from
which others branch. We select those branch point build-triggering commits that have a
non-passing outcome. Then, we traverse all of the branches of such builds in a breadth-
�rst manner to �nd the earliest build where the outcome is passing. Finally, we count
the number of builds along the shortest path between the breakage branch point and
the earliest �x.

11https://docs.travis-ci.com/user/cron-jobs/
12https://docs.travis-ci.com/user/triggering-builds/

70

https://docs.travis-ci.com/user/cron-jobs/
https://docs.travis-ci.com/user/triggering-builds/

6.3. Noise in Build Breakage Data

0%

5%

10%

15%

20%

2 3 4 5 6 7 8 9 10 11 12
of Branches

P
er

ce
nt

ag
e

of
 B

ui
ld

s

Type of Builds: Failed After Branching Failed

Figure 6.3: Developers branch out into multiple development paths (branches) even a�er build break-

ages. Percentage of broken builds at branch points are shown in white. Percentage of broken builds

that continued to be broken a�er branching are shown in grey. There are no broken builds with 11

branches.

Results. Figure 6.3 shows the broken builds that are at the branch points in the version history
of the project. To some degree, developers passively ignored these failures by not immediately
�xing them and continuing development in multiple paths.

Observation 2: Breakages often persist after branching. Of the 23,068 builds that are trig-
gered by commits at branch points 4,136 (18%) are broken. Of those commits that are branched
when the build is broken, 3,426 builds (83%) are not �xed in the immediately subsequent build.
These breakages are suspicious because developers have not immediately �xed these break-
ages and have continued development.

Figure 6.3 shows that commits are branched from up to twelve times when the build was
broken. In the 13,102 builds that were not immediately �xed, several commits appear before
the �x does. Figure 6.4 shows the maximum and median durations where the projects re-
mained broken in the studied projects.

Observation 3: Breakages persist for up to 423 days, and seven days on average, before being
�xed. In one extreme case, the orbeon/orbeon-forms project13 had 485 consecutive build break-
ages over 423 days before �nally the breakage was addressed. Upon further investigation of
this breakage, we �nd that the build is broken due to multiple test failures over time. By ana-
lyzing the commit messages of the broken builds in this sequence, we �nd only 10% of these
commits mention �xing the broken build (# of Occurrence of each term: build=3, regression=2,

13https://github.com/orbeon/orbeon-forms

71

https://github.com/orbeon/orbeon-forms

6.3. Noise in Build Breakage Data

1 Hour 1 Day 1 Week 1 Month 1 Year

Broken Time (in log scale)

P
ro

je
ct

max

median

Figure 6.4: In some cases, builds can remain broken for 423 days. The graph shows the maximum and

median durations that each project’s build remained broken, ordered by the maximum duration.

test=46). However, near the end of the long build breakage sequence, two commits before the
build started passing again, the developer has started skipping tests mentioning “For now,
don’t run integration and database tests”.14 This shows that the build breakages were not the
focus of the development activity until the end of the sequence when they turned o� the tests
that were causing the breakage.

We �nd that 761 projects have breakages that persist for more than one day, 547 projects
have breakages that persist for more than one week, and 227 projects have breakages that
persist for more than one month before getting �xed. In eight projects, consecutive build
breakages persist for more than one year before getting �xed. The overall median length of
the failure sequences is �ve, while project-speci�c medians range between 2–29.

In this study, we do not focus on the build breakage di�erences across branches. In a sub-
sequent study, Vassallo et al. [30] �nd that broken release branches are present in all studied
projects and a median of 11.51% of the master branch builds are broken. Moreover, they �nd
that the master branch remained broken on average for over six weeks in one project, con-
�rming our observations about long build breakage sequences.

In 83% of branches from broken builds, the breakage persists. These breakages persist for

up to 485 commits.

72

6.3. Noise in Build Breakage Data

0%

25%

50%

75%

100%

Project

S
ta

le
 B

re
ak

ag
es

 P
er

ce
nt

ag
e

Figure 6.5: Percentage of stale breakages in each project can range from 7% to 96%.

6.3.3 Staleness of Breakage

Motivation. Developers can passively ignore breakages for di�erent reasons. We identify the
staleness of a build breakage (whether the project has encountered a given breakage in the
past) as one of the reasons for ignoring a build breakage. A new breakage is di�erent from a
stale breakage because developers may have become desensitized to stale breakages.

Approach. In this section, we investigate how many times developers come across the same
breakage repeatedly in the history of a project with respect to the length of build breakage
sequences. These stale breakages can occur either consecutively or intermittently. Hence, we
extend the Maven Log Analyzer developed by Macho et al. [34]. We use it to compare two
Travis CI build jobs and check the similarity of the breakages. To make the comparison e�-
cient, this is done in two steps. First, the logs of build jobs are parsed and checked if they are
breaking due to the same reason (e.g., compilation failure, test execution failure, dependency
resolution failure). If the reason for failures are equal then the details of the failure are also
checked (e.g., if both breakages are due to compilation failure, check if the compilation error
is the same).

Results. Figure 6.5 shows the percentage of stale build breakages in each project in descending
order.

Observation 4: 67% of the breakages (6,889 out of 10,816) that we analyze are stale breakages.

On the project level, staleness of breakages ranges from 7% to 96% with a median of 50%. In
14https://github.com/orbeon/orbeon-forms/compare/f137cfb555f1...eb1a8095a025

73

https://github.com/orbeon/orbeon-forms/compare/f137cfb555f1...eb1a8095a025

6.3. Noise in Build Breakage Data

the eirslett/frontend-maven-plugin
15 project, where we observe the maximum percentage of

stale breakages (96%), it was due to the same dependency resolution failure recurring in 23
builds.

Two of every three build breakages (67%) that we analyze are stale.

6.3.4 Signal-To-Noise Ratio

Motivation. In previous analyses, we �nd that build breakages that are ignored by developers
and build successes that include ignored breakages can introduce noise in build outcome data.
However, the overall rate of noise in build outcome data is not yet clear. Such an overview
is useful for researchers who use build outcome data in their work, to better understand the
degree to which noise may be impacting their analyses.

Approach. To quantify the proportion of noise in build outcome data caused by passively and
actively ignored build breakage, we adopt the Signal-To-Noise ratio (SNR) as follows:

SNR =
#TrueBuildBreakages + #TrueBuildSuccesses

#FalseBuildBreakages + #FalseBuildSuccesses
(6.1)

where #TrueBuildBreakages (i.e., signal) is the number of broken builds that are not ignored by
developers, #TrueBuildSuccesses (i.e., signal) is the number of passing builds without ignored
breakages, #FalseBuildBreakages (i.e., noise) is the number of broken builds that are ignored by
developers, and #FalseBuildSuccesses (i.e., noise) is the number of passing builds with ignored
breakages.

To compute #FalseBuildBreakages, a threshold C2 must be selected such that if the number
of consecutive broken builds is above C2 , all builds in such sequences are considered false build
breakages. Instead of picking any particular C2 value, we plot an SNR curve as the threshold
(C2) is changed.

Results. Figure 6.6 shows the SNR curve for the subject systems.

Observation 5: As C2 decreases from 485 to 1, the SNR decreases from 10.62 to 6.39. Since
#FalseBuildSuccesses is not impacted by C2 , the maximum SNR is observed when #FalseBuild-

Breakages is zero (i.e., when C2 is set to the maximum value). The minimum of SNR is observed
15https://github.com/eirslett/frontend-maven-plugin

74

https://github.com/eirslett/frontend-maven-plugin

6.4. Heterogeneity in Build Breakage Data

5

6

7

8

9

10

0 100 200 300 400 500
Build Failure Sequence Length Threshold (tc)

S
ig

na
l−

to
−

N
oi

se
 R

at
io

Parameter
Overall

Branches−only

Figure 6.6: For every 11 builds there is at least one build with an incorrect status. The Signal-To-Noise

ratio increases when a higher build breakage sequence length is chosen.

when C2 is one and therefore all broken builds that are not immediately �xed are considered
false build breakages. If false breakages are de�ned to be only in consecutive breakages with
branches in them, the Signal-to-Noise ratio ranges from 10.19 to 10.62.

One in every 7 to 11 builds (9%–14%) is incorrectly labelled. This noise may in�uence anal-

yses based on build outcome data.

6.4 Heterogeneity in Build Breakage Data

The way in which builds are con�gured and triggered vary from project to project. This het-
erogeneity should be taken into consideration when designing studies of build breakage. Be-
low, we demonstrate build heterogeneity using three criteria.

6.4.1 Matrix Breakage Purity

Motivation. If a software project needs to be tested in multiple environments with di�erent
runtime versions, CI services like Travis CI provide the ability to declare these options in a
matrix of runtime, environment, and exclusions/inclusions sections. A build will execute jobs
for each combination of included runtimes and environments.

If a build is broken only within a subset of its jobs, the breakage may be platform- or
runtime-speci�c. These environment-speci�c build breakages may need to be handled di�er-

75

6.4. Heterogeneity in Build Breakage Data

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●●●

●
●

●●●

●●

●

●

●

●
●

●
●●●●●

●●
●
●

●

●

●●

●

●

●
●

●

●

●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●● ●●●●●●●●

0%

25%

50%

75%

100%

1 10 100

of jobs in build

Im
p
u
re

 B
re

a
k
a
g
e
s
 P

e
rc

e
n
ta

g
e

Figure 6.7: Percentage of impure build breakages increases with the number of jobs in each build.

ently from the environment-agnostic breakages. Thus, we want to know the extent to which
real breakages are environment speci�c.

Approach. To study the environments that are a�ected by a build breakage, we de�ne Matrix

Breakage Purity as follows:

Matrix Breakage Purity =
#FailedJobsInBuild

#AllJobsInBuild

(6.2)

A Matrix Breakage Purity below one indicates that the jobs that were run in some environ-
ments passed. We compute the Matrix Breakage Purity for all builds in our dataset and count
the number of builds with values below one. We label all builds that have a Matrix Breakage

Purity below one as impure build breakages.

Results. Figure 6.7 shows how the percentage of impure build breakages varies with respect
to the number of jobs per build.

Observation 6: At least 44% of broken builds contain passing jobs. Indeed, environment-
speci�c breakages are almost as common as environment-agnostic breakages.

Given the di�erence in semantics between pure and impure build breakage, researchers
should take this into account when selecting build outcome data for research. For example, in
build outcome prediction, if prediction models are trained using data that treats environment-
speci�c and environment-agnostic breakages identically, the model �tness will likely su�er.

76

6.4. Heterogeneity in Build Breakage Data

Moreover, the insights that are derived from the models will likely be misleading, since the
two con�ated phenomena will be modelled as one phenomenon.

Observation 7: Builds with a greater number of jobs are more likely to su�er from impure

build breakages. Figure 6.7 shows that the number of jobs in a build and the percentage of
broken builds that have passing jobs are highly correlated. A Spearman correlation test yields
a d of 0.8, with ? < 2.2× 10−16. While pure build breakage is common in builds with few jobs,
when the number of jobs per build exceeds three, impure build breakage are more frequent
than pure ones (i.e., impure breakage percentage > 50%).

Environment-speci�c breakage is commonplace. Once the number of jobs exceeds three,

impure breakages occur more frequently than pure breakages.

6.4.2 Reason for Breakage

Motivation. Builds can break for reasons that range from style violations to test failures.
Di�erent types of failures have di�erent implications. For example, while a style violation
might be corrected easily, �xing a test failure might require time and e�ort to understand and
address. Since subsequent analyses of build data should handle di�erent types of breakages in
di�erent ways, we want to know how types of build breakage vary in reality.

Approach. To analyze the reasons for build breakage in our corpus, we extend the Maven Log

Analyzer (MLA) [34]. Our extension �rst parses the Travis CI log �le and extracts the sections
of the log that correspond to executions of the Maven build tool. Then, each of these Maven

executions are fed to MLA to automatically classify the status of each execution. In addition
to the breakage types that were identi�ed in the original work [34], our extended version of
MLA also detects the build breakage types that were reported by Vassallo et al. [8] and Rausch
et al. [56], as well as ten previously unreported breakage categories.

If MLA classi�es all Maven executions within a broken build as successful, the build is
labelled as a Non-Maven breakage. Non-Maven breakages are further classi�ed as Pre-Maven

if a failing command is detected in the Travis CI log before the Maven commands and Post-

Maven otherwise.

In total, using our extended MLA, we classify 67,267 broken build jobs of projects that use
Maven as the build tool.

77

6.4. Heterogeneity in Build Breakage Data

Results. Table 6.1 classi�es the broken Maven builds by reason.16

Observation 8: Although a large proportion of build breakages are due to the execution of

Ant fromwithin Maven, most of these breakages belong to one project. Table 6.1 shows that there
are 15,850 instances of breakage where the external goal of executing an Ant build from within
a Maven build failed. This accounts for 92.59% of the goal failed breakages in our corpus. How-
ever, this is an example of an anomaly that dissipates when examined more closely. Indeed,
we �nd that all of these breakages occur in only two of the studied projects, the overwhelming
majority (15,857) of which occur in the jruby/jruby

17 project. According to developer discus-
sions, Ant is used inside the Maven build of jruby/jruby for executing tests.18 However, this
complex build setup, which requires 250MB of dependencies, causes build to fail intermit-
tently. The developers hope that the breakages will not occur once the build is completely
migrated to Maven.

Observation 9: In our corpus, most breakage is due to commands other than main build tool,

Maven. We observe 41% (27,289) jobs are broken due to reasons other than Maven executions
failing. This can be either due to a command that was executed by Travis CI (outside of
Maven) returning an error, the user canceling the build, or Travis CI runtime aborting the
build because it exceeded the allocated time.

Observation 10: Only a small amount of breakage can be automatically �xed by focusing on

tool-speci�c breakage. For example, 2,257 build jobs are broken because dependency resolution
has failed. This suggests that recent approaches that automatically �x dependency-related
build breakage [34] will only scratch the surface of the build breakage problem. Moreover,
Compilation and Test Execution failures only account for another 29.39% of the breakage
in our corpus. Future automatic breakage recovery e�orts should look beyond tool-speci�c
breakages to the CI scripts themselves to yield the most bene�t for development teams.

41% of the broken builds in our corpus failed due to problems outside of the execution of

the main build tool. Since tool-speci�c breakage is rare, future automatic breakage recov-

ery techniques should tackle issues in the CI scripts themselves. Furthermore, to properly

analyze a build, a tool must be able to process outputs from multiple technologies.

16More details about reasons for breakage are available online: https://github.com/software-rebels/
bbchch/wiki/Build-Breakages-in-Maven

17https://github.com/jruby/jruby
18https://gitter.im/jruby/jruby/archives/2016/05/27

78

https://github.com/software-rebels/bbchch/wiki/Build-Breakages-in-Maven
https://github.com/software-rebels/bbchch/wiki/Build-Breakages-in-Maven
https://github.com/jruby/jruby
https://gitter.im/jruby/jruby/archives/2016/05/27

6.4. Heterogeneity in Build Breakage Data

Table 6.1: Distribution of Build Breakages in Maven Projects based on the Categories proposed by

Vassallo et al. [8]. and Rausch et al. [56]. Global percentage of each category is shown in brackets.

Category Subcategory # % Projects

Dependency Resolution
*

2,257 (3.41%) 18

Test Execution Failed Unit 10,759 62.87% 165
Integration 6,354 37.13% 18

Total 17,113 (25.89%) 171

Compilation Failed Production 2,015 87.08% 18
Test 248 10.72% 12

Total 2,314 (3.50%) 47

Goal Failed Pre-processing 44 0.26% 4
Static-Analysis 210 1.23% 10

Dynamic-Analysis 8 0.05% 3
Validation 33 0.19% 5
Packaging 25 0.15% 4

Documentation 25 0.15% 7
Release Preparation 1 0.01% 1

Deployment - Remote 120 0.70% 9
Deployment - Local 7 0.04% 1

Support 3 0.02% 1
Ant inside Maven* 15,850 92.59% 2

Run system/Java program* 70 0.41% 2
Run Jetty server* 8 0.05% 1

Manage Ruby Gems* 65 0.38% 1
Polyglot for Maven* 32 0.19% 1

Total 17,119 (25.90%) 47

Broken Outside Maven No Log available* 1,554 5.69% 28
Failed Before Maven* 808 2.96% 3

Failed After Maven* 7,151 26.20% 46
Travis Aborted* 16,141 59.15% 172

Travis Cancelled* 1,635 5.99% 20
Total 27,289 (41.29%) 175

* New build breakage categories that did not appear in prior work.

79

6.4. Heterogeneity in Build Breakage Data

6.4.3 Type of contributor

Motivation. Both core and peripheral contributors trigger builds. Since core contributors
likely have a deeper understanding of the project than peripheral contributors, builds that are
triggered by core contributors might have breakage rates and team responses that di�er from
those of peripheral contributors. We set out to investigate the di�erences of build outcome, in
these two categories of contributors.

Approach. For analyzing this dimension, we use the two main outcomes of each build (passed
or failed) and whether the builds were triggered by a commit that was authored by a core
team member. We use the core member indicator from the TravisTorrent dataset,19 which
is set for contributors who have committed at least once within the three months prior to
this commit (gh_by_core_team_member). Then, we use the broken time and the length of
broken build sequences to investigate the relationship between the contributor type and build
breakage.

Results. Figure 6.8 shows how the percentage of build outcomes are distributed across projects
classi�ed by contributor type.

Observation 11: Builds triggered by core team members are break signi�cantly more often

than those of peripheral contributors. A Wilcoxon signed rank test indicates that breakage rates
in core contributors are higher than those of peripheral contributors (? = 1.28 × 10−8); how-
ever, the e�ect size is negligible (Cli�’s X = 0.13). Due to having more experience, core team
members in the development teams are assigned to complex tasks, which may explain why
breakage rates tend to be a little higher. The Wilcoxon test is inconclusive when comparing
rates of passing builds among core and peripheral contributors.

Figure 6.9 shows how long build breakages persist classi�ed by contributor type. Figures
6.9a and 6.9b show the length of build breakage sequences in terms of commits and time,
respectively.

Observation 12: Breakages that are caused by core contributors tend to be �xed sooner than
those of peripheral contributors. A Wilcoxon signed rank test indicates that breakages caused
by core contributors tend to persist for signi�cantly less time than those of peripheral con-
tributors (? = 1.86 × 10−7); however, the e�ect size is negligible (Cli�’s X = 0.09). Another
Wilcoxon signed rank test indicates that breakages of core contributors persist for fewer con-

19https://travistorrent.testroots.org/page_dataformat/

80

https://travistorrent.testroots.org/page_dataformat/

6.4. Heterogeneity in Build Breakage Data

0
20

40
60

80
10

0

Broken Passed

Core contributor
Peripheral contributor

Figure 6.8: Percentage of broken and passing builds classified by contributor type. Horizontal black

lines show the median values.

2
5

10
20

50
20

0
50

0

Broken Sequence Length

Peripheral contributor
Core contributor

(a) Chains of consecutive breakages caused by periph-

eral contributors tend to be longer.

1
10

10
0

10
00

10
00

0

Broken Time (in hours)

Peripheral contributor
Core contributor

(b) Build breakages caused by peripheral contributors

take more time to repair.

Figure 6.9: Build breakages caused by peripheral contributors remain broken significantly longer than

those of core contributors. Horizontal black lines show the median values.

secutive builds than those of peripheral contributors (? = 1.81×10−8); however, the e�ect size
is also negligible (Cli�’s X = 0.09).

The longer time taken by peripheral contributors might be due to multiple attempts of
trial and error before �xing a breakage, while core members might be able to identify the root
cause of the breakage sooner. Therefore, it may be worthwhile for the researchers working
on automatic build breakage repair to focus on build breakages that are caused by peripheral
contributors.

Broken builds that are caused by core contributors tend to be �xed sooner than those of

peripheral contributors.

81

6.5. Implications

6.5 Implications

We now present the broader implications of our observations for researchers and tool builders.

6.5.1 Research Community

Build outcome noise should be �ltered out before subsequent analyses. Passing builds
might contain breakages that are ignored. Long sequences of repeated breakages might be ig-
nored by the developers as false breakages. If the noise due to false successes and false break-
ages is not �ltered out, the results from prediction models may lead to spurious or incorrect
conclusions.

Heterogeneity of builds should be considered when training build outcome predic-

tion models. Some breakages are limited to speci�c environments while others are not. The
reason for breakages vary from trivial issues like style violations to complex test failures.
Breakages are often not caused by development mistakes, but by resource limitations in the
CI environment. Indeed, build outcome includes many complex categories that can not be
accurately represented in the prediction models using only a “broken” or “clean” label.

6.5.2 Tool Builders

Automatic breakage recovery should look beyond tool-speci�c insight. While recently
proposed tools can automatically recover from tool-speci�c build breakage [34], we �nd that
this category only accounts for a small proportion of CI build breakage in our corpus. Future
e�orts in breakage recovery should consider CI-speci�c scripts, for example, detecting those
scripts that are at risk of exceeding the allocated time prior to execution.

Richer information should be included in build outcome reports and dashboards.

Currently, build tools and CI services provide users with dashboards that show passing builds
in green and broken builds in red. However, we found hidden breakages among passing builds
and non-distracting breakages among broken builds. Moreover, heterogeneity of breakages
introduce further complexities. Build outcome reporting tools and dashboards should consider
providing more rich information about hidden, non-distracting, and stale breakages, as well
as breakage purity and type.

82

6.6. Threats to Validity

6.6 Threats to Validity

Construct Validity.Threats to construct validity refer to the relationship between theory and
observation. It is possible that there are build failure categories that our scripts are unable to
detect. By implementing the categories that were reported in prior work [8, 34, 56] and then
manually checking a subset of logs along with their detected failure categories, we ensure
most of the maven plug-ins and their failure categories are covered by our scripts.

There are likely to be other factors that introduce noise and variability in build outcomes.
As an initial study, we focus on the aspects that we think demonstrate noise and heterogeneity
of builds in this work. Our list of aspects is not intended to be exhaustive.

Internal Validity. Threats to internal validity are related to factors, internal to our study, that
can in�uence our conclusions. In the analysis of passively ignored breakages, we associate
continuous breakage of a build with developers ignoring the breakage. However, developers
may be unsuccessfully attempting to �x these breakages during the breakage chain. We do
not suspect that this is the most frequent explanation because we �nd several cases where the
initial breakage has several branches (implying that several developers inherited the break-
age). Although it can be assumed that these branches are created to �x the build, it is unlikely
that twelve branches are created only for bug �xing. We further investigate the staleness of
breakages, observing that the same build breakages are often repeated in these long chains.

External Validity. Threats to external validity are concerned with the generalizability of our
�ndings. We only consider open source projects that use the Travis CI service and are hosted
on GitHub. However, because GitHub is one of the most popular hosting platforms for open
source software projects and Travis CI is the most widely adopted CI service among open
source projects, our �ndings are applicable to a large number of open source projects. Similar
to that, we only consider projects that use Maven for analyzing reasons for build breakage.
However, Maven is one of the most popular build tools for Java projects [96] and therefore our
�ndings are widely applicable. Nonetheless, replication studies using data from other hosting
platforms, other CI services, and other build tools may provide additional insight.

6.7 Chapter Summary

Automated builds are commonly used in software development to verify functionality and de-
tect defects early in software projects. An o�-the-shelf usage of build outcome data is implic-

83

6.7. Chapter Summary

itly susceptible to harmful assumptions about build breakage. By empirically studying build
jobs of 1,276 open source projects, we investigate whether two assumptions hold. First, that
build results are not noisy; however, we �nd in every eleven builds, there is at least one build
with a misleading or incorrect outcome on average. Second, that builds are homogeneous;
however, we �nd breakages vary with respect to the number of impacted jobs and the causes
of breakage.

Researchers who make use of build outcome data should make sure that noise is �ltered out
and heterogeneity is accounted for before subsequent analyses are conducted. Build reporting
tools and dashboards should also consider providing a richer interface to better represent these
characteristics of build outcome data.

In future work, we plan to study how much of an impact noise and heterogeneity can have
on common analyses of historical build data. We also plan to investigate whether breakage
type varies with respect to contributor type and other commit factors.

84

Part III

E�ciency in CI/CD Services

85

Chapter7
CI/CD Service Providers’ Perspective

7.1 Introduction

The main goal of CI is providing fast feedback to developers, allowing them to verify whether
their changes cleanly integrate with changes that other team members have submitted. In-
deed, the bene�ts of CI, such as perceived increases in developer productivity and improved
software quality, have been observed by the software development community [9]. Both open
source [5] and proprietary [6, 67] software organizations have dedicated resources for main-
taining CI pipelines for this purpose. These bene�ts not only improve the organizations that
make use of CI, but they can also impact software users through the delivery of higher quality
deliverables.

Dedicated cloud-based CI providers such as CircleCI,1 Travis CI,2 CloudBees3 have of-
fered CI services for software organizations to get the bene�ts of CI without the hassle of
provisioning, operating, and maintaining CI infrastructure on their own.

The broad adoption of CI services has presented new opportunities for research on CI/CD.
Researchers have interpreted the outcome [53] and duration [54] of the builds of these CI
providers from the perspective of the CI users, discussing challenges and bene�ts of adopting
CI [59]. However, the perspective of the CI provider has remained largely unexplored. Focus-
ing on build data from the perspective of CI service providers is also important for capacity
planning and identifying opportunities to improve existing provider solutions. Identifying
opportunities for managing resources e�ciently will help CI service providers to keep oper-

1https://circleci.com/
2https://www.travis-ci.com/
3https://www.cloudbees.com/

86

https://circleci.com/
https://www.travis-ci.com/
https://www.cloudbees.com/

7.1. Introduction

ational costs low while delivering fast and reliable CI services. Improving the usability of the
service by making use of research �ndings can help to attract new users and to retain existing
ones.

To study CI from the perspective of service providers, we conduct a case study of Cir-
cleCI– one of the most popular CI service providers for projects hosted on GitHub.4 We
focus on the CircleCI service in this study due to its availability of reliable build data for a
long period. Our dataset includes 23.3 million builds spanning 7,795 open source projects that
use the CircleCI service during the period of 2012–2020. This data enables us to address the
following research questions:

RQ1:How does the usage of a CI service change over time?

Motivation: Analyzing usage metrics over an extended period of time may help CI ser-
vice providers to understand how the feature additions and improvements to the service
have impacted the growth of the user base over time and thus allow them to plan ac-
cordingly. Studying the growth of CircleCI along multiple productivity metrics may
help to identify speci�c areas that need attention to improve resource allocation and
the overall user experience.
Results: During the last eight years, the CircleCI service has grown, in terms of both the
number of monthly users and the total number of builds that are invoked every month.
However, this growth has stagnated since the mid-2020. At least 14% of the projects that
were inactive on CircleCI during the year 2020 have started using another CI service.
Although median values for build duration and throughput have remained stable (un-
der 200 seconds per build and 30 builds per month) during this period, the same metrics
have grown rapidly for the most active users of the service (up to 25 minutes per build
and 900 builds per month). We also observe a high success rate (67%–92%) and a low
Mean Time To Recovery (MTTR of an hour) among the studied builds.
Recommendations: Additional resource usage due to the growth could be reduced by
using techniques that have been proposed in research for the acceleration and skipping
of CI builds. The high success rate shows that there is a large pool of safe candidate
builds to be skipped if they can be identi�ed in advance. Automatic repair techniques
can be used to reduce MTTR further.

RQ2:How is time spent during signal-generating builds?

Motivation: By understanding the time consumption of di�erent steps in the CI pipeline,
4https://github.blog/2017-11-07-github-welcomes-all-ci-tools/

87

https://github.blog/2017-11-07-github-welcomes-all-ci-tools/

7.2. Core Concepts in Modern CI

service providers can identify resource bottlenecks and estimate the operational costs.
Identifying the stages that are slowing down the CI pipeline can allow researchers and
tool developers to target the most impactful stages.
Results: Compared to other stages in the CI process, a larger proportion (median 35%)
of the CI runtime is spent on the compilation and testing stages.
Recommendations: Focusing research e�orts on accelerating testing and compilation
steps in the CI pipeline will yield the largest reductions to CI workload costs for CI
providers and feedback delays for CI users.

RQ3:Why are some builds unable to provide a signal?

Motivation: Studying why certain builds fail early without providing a signal can help
the CI service providers to mitigate such instances, eventually reducing the number of
builds that are unable to provide a signal. Researchers can also �nd opportunities for
early detection and remediation of non-signal-providing builds.
Results: Most of the builds are unable to provide a signal because they are prematurely
cancelled (3.64% of all builds/50% of non-signal-generating builds). The next most com-
mon reasons for builds failing to provide a signal are con�guration errors and infras-
tructure provisioning issues in the CircleCI environment.
Recommendations: Future research should focus on simplifying the con�guration and
increasing the resiliency of CI services.

Based on our observations, we propose that tool builders should allocate more resources
to improve the e�ciency and robustness of CI services by adopting existing software engi-
neering research. Furthermore, researchers should also aim to optimize the resource usage of
CI services to handle their growth.

The remainder of the chapter is organized as follows. Section 7.2 describes the terminology
and metrics related to the CI process. Section 7.3 provides an overview of the design of our
study, while Section 7.4 presents the results. Section 7.5 discusses the broader implications
of our observations. Section 7.6 presents the threats to the validity of the study. Section 7.7
draws conclusions and proposes directions for future work.

7.2 Core Concepts in Modern CI

Software organizations increasingly use cloud-based CI service providers because these cloud
CI services allow them to easily con�gure CI pipelines based on their needs, and provision

88

7.2. Core Concepts in Modern CI

their resources based on demand without the hassle of maintaining their own server infras-
tructure.

The organizations that are using CI services may have multiple projects that are kept
in source code repositories, each with their own CI work�ows. A work�ow is comprised
of one or more jobs. CI services typically support specifying work�ows in a con�guration
�le (e.g., .circleci/config.yml for CircleCI, .travis.yml for Travis CI) using a YAML-
based DSL. Although this con�guration �le is primarily used for specifying the sequence of
commands to be executed during builds (i.e., invocations of the work�ow), it supports further
customization such as:

Parallelism: Number of parallel instances of a job to run.
Environment: A map of environment variable names and values to be set during build exe-

cution.
Resource Class: Amount of CPU and RAM allocated to each build job.

Organizations that use CI services are billed based on resource usage (i.e., a combined
metric of build minutes, compute resource type, and concurrently available resources) and
user seats (i.e., number of team members with the permission to trigger CI builds).

CI work�ows can be con�gured to invoke builds based on development events (e.g., when
a pull request is created/updated or a push to a central repository is performed), on a schedule
(e.g., every evening after development wraps up), or manually (e.g., on-demand to retry a build
without changing the code or programmatically via an API request). Once a build request is
received by the CI service via any of these methods, depending on the subscribed plan of the
organization and the work�ow con�guration of the project, a build environment (e.g., a set of
physical machines, virtual machines, and/or containers) is allocated to execute the CI build.

7.2.1 CI Build Outcomes

CI builds are executed with the expectation that they will produce a signal, which indicates
whether the proposed changes to the codebase are ready to be integrated (CI) and/or delivered
(CD). However, in practice, build outcomes are not always conclusive. Therefore, we categorize
build outcomes as either:

Signal-generating builds. The CI builds that executed until a meaningful outcome, i.e., pass
or fail, is produced. If a build passes, CI users know that the proposed changes to the

89

7.2. Core Concepts in Modern CI

codebase have at least passed baseline checks (i.e., no faults were uncovered by the CI
work�ow). If the build fails, CI users can diagnose the problems with their proposed
changes while design decisions are still fresh in their minds.

Non-signal-generating builds. CI builds that are terminated before completion. A build
could be abruptly stopped before completion due to a user aborting the build, a con�g-
uration error, or an infrastructure provisioning issue. Non-signal-generating builds are
unable to provide a meaningful signal about the changes to the CI user.

In an ideal CI pipeline, all builds are signal generating. If non-signal-generating builds oc-
cur often, CI users may have to spend their considerable amounts of time diagnosing problems
in con�guration and resource allocation. Furthermore, it is desirable for signal-generating
builds to �nish executing as quickly as possible to avoid impeding the development progress
of CI users.

7.2.2 CI Indicators

CI providers have proposed indicators that track performance in CI pipelines. In a recent
report, CircleCI5 proposes four such indicators:

Build Duration. The time taken for a CI build to execute. A short build duration may indicate
that too few tests are executed during the CI process. A long build duration may a�ect
developer productivity because developers will switch contexts to other work while
waiting – a costly action to take for knowledge workers like software engineers [97].
CircleCI recommends a build duration of �ve and ten minutes which typically strikes
the right balance.

Mean Time to Recovery (MTTR). The average time between the end times of a failing
build and the subsequent successful build. A long MTTR means that the status of the
build for a project remains broken for considerable amounts of time, whereas a short
MTTR means that developers can quickly resolve build failures and return to their reg-
ular tasks without too much of a disruption. CircleCI recommends to keep the MTTR
under an hour.

Success Rate. The proportion of signal-generating builds with passing outcomes during a
given period of time. The importance of the success rate depends on the team size and

5https://circleci.com/resources/data-driven-ci/

90

https://circleci.com/resources/data-driven-ci/

7.3. Study Design

Stage 1: Data Extraction and Filtering

Raw Build
Activity Data

Filter
Incomplete

Builds

Retrieve
Build
Data

8,259 Projects
23.3M CI Builds

7,795 Projects
22.2M CI Builds

RQ3
Non-signal-generating

Builds

Projects with
CircleCI

Configuration

Select Projects
with CircleCI config

10,170 Projects

Public GitHub
Project Data

2.9M Projects

Stage 2: Data Analysis

Google
BigQuery

Confirm activity
on CircleCI

8,259 Projects

CircleCI
API

DE1 DE2 DE3 DE4

Compute
Build Noise

Metrics

RQ1
CI Usage
over Time

RQ2
Signal-generating

Builds

Cleaned Build
Activity Data

Split by
Signal

Generation
Status

Projects with
Registered

Build Activity

Figure 7.1: An overview of the approach we followed for data analysis

branching model of a software project. A low success rate of builds in the main branch of
development in a multi-person software team means that the team is blocked from con-
tributing to the project most of the time. However, the success rate in a feature branch
where only one developer is actively working may not be that important. CircleCI
recommends a success rate of 90% or better in the main branch.

Throughput. The number of CI builds that are performed during a given period of time.
Depending on the development model and the team size, throughput may vary across
projects. However, this metric gives an indication of expected total server load and net-
work bandwidth usage for the CI service provider. CircleCI does not suggest a speci�c
number of daily work�ows to strive for the software teams.

These four indicators provide insight into the maturity of CI adoption among the CircleCI
user population. Individual software organizations also may �nd these indicators useful to un-
derstand how their CI usage pattern compares with others. CircleCI have started providing
these metrics to their users recently on a per-work�ow basis within the CircleCI web inter-
face. We use these four indicators in our study to characterize the growth of CI usage over the
years.

7.3 Study Design

In this section, we provide our rationale for studying CircleCI (Section 3.1), and describe our
data extraction (Section 3.2) and data analysis approaches (Section 3.3).

91

7.3. Study Design

7.3.1 Subject Systems/Communities

With the popularity of CI as a software development practice, many cloud-based providers
have o�ered CI services. In a Forrested Research report,6 �ve leaders were identi�ed among
cloud-native CI tool providers after evaluating their current product o�erings, strategy, and
market presence, namely: (1) Google Cloud Build, (2) AWS Code Build, (3) Azure DevOps Ser-
vice, (4) GitLab, and (5) CircleCI. Out of these services, according to GitHub marketplace
statistics,7 CircleCI has the highest number of installs (748k installs to-date) in the CI cat-
egory. Therefore, considering its popularity and that CI build data for a large number of its
users is openly available for a span of eight years we choose to focus our analysis on Cir-
cleCI. As a leading CI platform, CircleCI has served over one million developers during its
nine years of operation.8

Stage 1: Data Extraction and Filtering

Figure 7.1 provides and overview of our data extraction and �ltering approach. We describe
each step below. In order to arrive at reliable conclusions representing the full workload of a
typical CI service provider, it is important that we access all publicly available build data for
projects that use CircleCI.

Therefore, we start by querying for projects that use CircleCI in the public GitHub
dataset on Google BigQuery,9 one of the largest publicly available datasets of software repos-
itories. For this purpose, we check for projects that have a .circleci/config.yml con�gu-
ration �le in their version control system (see DE1 of Figure 7.1). From this query, we retrieve
a corpus of 10,170 projects with a CircleCI con�guration �le, out of 2,991,522 open source
projects in the dataset.

Having a CircleCI con�guration �le in its version control system is a necessary but not
su�cient condition to conclude that a project uses the CircleCI service. Even with a CI con-
�guration �le, it is possible that the CI service was never activated or that no CI builds were
run for a particular project. Therefore, we query the CircleCI API for projects that have run

6https://www.forrester.com/report/The+Forrester+Wave+CloudNative+Continuous+
Integration+Tools+Q3+2019/-/E-RES148217

7https://github.com/marketplace?category=continuous-integration&query=sort%
3Apopularity-desc

8https://circleci.com/milestones/
9https://cloud.google.com/bigquery/public-data/github

92

https://www.forrester.com/report/The+Forrester+Wave+CloudNative+Continuous+Integration+Tools+Q3+2019/-/E-RES148217
https://www.forrester.com/report/The+Forrester+Wave+CloudNative+Continuous+Integration+Tools+Q3+2019/-/E-RES148217
https://github.com/marketplace?category=continuous-integration&query=sort%3Apopularity-desc
https://github.com/marketplace?category=continuous-integration&query=sort%3Apopularity-desc
https://circleci.com/milestones/
https://cloud.google.com/bigquery/public-data/github

7.4. Study Results

at least one CI build in their lifetime (see DE2 of Figure 7.1). A corpus of 8,259 projects survive
this �lter.

After that, via the CircleCI API, we download metadata of all builds across these �ltered
projects. a total of 23,330,690 build records have been retrieved (see DE3 of Figure 7.1). Then,
we remove builds that have incomplete �elds and builds that were started after December
31st, 2020 (see DE4 of Figure 7.1). We chose this cuto� date to allow only completed years
into our dataset for analysis. We use the 22,238,413 unique builds spanning 7,795 projects for
further analysis.

Stage 2: Data Analysis

Figure 7.1 provides an overview of our data analysis approach. We describe each step below.

To answer RQ1, we compute the project level values for the four indicators de�ned in
Section 7.2. Then, we plot the growth of CircleCI usage and indicators for the studied period
of 2012–2020 using bar charts and line graphs.

To answer RQ2, we focus on signal-generating builds. Here, we use the Scott-Knott E�ect
Size Di�erence (ESD) test [86] to cluster build steps into statistically distinct ranks because
this test considers the e�ect size when clustering build steps into ranks. Furthermore, we use
Mann–Whitney U test [98], and Cli�’s Delta [99] because these tests allow us to compare the
runtime distribution of build steps between heavy users and other users without making the
assumption that values are normally distributed.

To answer RQ3, �rst, we manually inspect a sample of non-signal-generating builds. Then,
we formulate queries to �nd the frequency of occurrence of di�erent non-signal-generating
builds in the full dataset.

7.4 Study Results

In this section, we present the results of our study with respect to our research questions. For
each research question, we describe the approach that we use to address it, followed by the
results that we observe.

93

7.4. Study Results

0

1,000

2,000

3,000

4,000

0

200,000

400,000

600,000

800,000

20
12

/1
2

20
13

/1
2

20
14

/1
2

20
15

/1
2

20
16

/1
2

20
17

/1
2

20
18

/1
2

20
19

/1
2

20
20

/1
2

A
ct

iv
e

pr
oj

ec
ts

 p
er

 m
on

th
B

uilds per m
onth

Figure 7.2: The growth of CircleCI usage during the period of 2012–2020. The number of projects that

used CircleCI as the CI provider in each month is shown in blue. The number of CircleCI builds of

these projects during each month of the studied period is shown in red. Both lines are Loess-smoothed

curves with gray shaded areas indicating the 95% confidence interval.

(RQ1) How does the usage of a CI service change over time?

RQ1: Approach. We plot the number of projects that are using CircleCI as their CI provider
and the number of total builds that are run on CircleCI during each month throughout the
studied period from 2012 to 2020. Then we plot the growth of CircleCI usage based on four
indicators previously proposed by CircleCI,5 namely: (a) Build Duration, (b) Mean Time to
Recovery (MTTR), (c) Success Rate, and (d) Throughput.

RQ1: Results. Figure 7.2 shows the growth of CircleCI usage during the period of 2012–2020,
in terms of the number of projects that are using CircleCI (shown in blue) and the number
of total builds that are executed on CircleCI (shown in red).

Observation 1: The number of builds per month across all the studied projects grew over

the years, reached a peak of 872,842 builds during the month of April 2020, and then declined.

We suspect that this trend can be explained by the number of active projects that were using
CircleCI, which started plateauing in 2019 and declined in mid-2020. Competitive pricing

94

7.4. Study Results

Table 7.1: Top five CI services used by projects that became inactive on CircleCI. Note that the sum

of percentages exceed 100% because some projects are configured to use more than one CI service.

CI Service # %

Travis CI 214 50%
GitHub Actions 148 35%
AppVeyor 69 16%
Scrutinizer 11 2%
SemaphoreCI 10 2%

and new features o�ered by other service providers such as GitLab CI and GitHub Actions—
GitHub’s own automation service—may have contributed to this exodus users fromCircleCI.
For instance, compared to the 250 free minutes of build time per month in CircleCI, GitHub
Actions provide 20 free parallel builds and unlimited build minutes for every open source
project. There are also other community and technical factors at play. For example, Widder
et al. [100] observe that projects with more pull requests tend to be less likely to abandon
a CI service suggesting that the projects get value out of CI by using it to evaluate external
contributions via pull requests. Similarly, they �nd that projects with a longer build duration
are less likely to abandon CI suggesting that projects with more complex builds are better able
to adapt the CI service to �t their needs.

To explore whether other CI service providers are attracting users away from CircleCI,
we investigate the CI usage of projects that have stopped using CircleCI. For this purpose, we
focus on projects that have not executed any CI builds on CircleCI during 2020, the last year
of our analysis. We �nd that 39% (3,074 of 7,795) projects match this criteria. Then, we query
the GitHub API to determine if these projects that were inactive on CircleCI have reported
the result of a build from any other CI service during the year 2020 or if they have con�gured
GitHub Actions to execute any CI work�ows.

Observation 2: At least 14% (425 of 3,074) projects that were inactive on CircleCI during the

year 2020 have started using another CI service. Table 7.1 shows the top �ve CI services that
were used by projects that became inactive on CircleCI. The inactive projects on CircleCI
had con�gured at least 20 di�erent CI services to report results back to GitHub.

Figure 7.3 shows the number of builds on the two di�erent CircleCI platforms during the
2012–2020 time period. The second version of the CircleCI platform10 provided users with

10https://circleci.com/blog/say-hello-to-circleci-2-0/

95

https://circleci.com/blog/say-hello-to-circleci-2-0/

7.4. Study Results

V
2

B
et

a
R

el
ea

se

V
2

P
ub

lic
 R

el
ea

se
0

250,000

500,000

750,000
20

12
/1

2

20
13

/1
2

20
14

/1
2

20
15

/1
2

20
16

/1
2

20
17

/1
2

20
18

/1
2

20
19

/1
2

20
20

/1
2

B
ui

ld
s

pe
r

m
on

th

Platform Version

1

2

Figure 7.3: Number of builds on CircleCI platforms 1 and 2 during the 2012–2020 time period.

additional technical capabilities such as native support for Docker images, �exible resource
allocation, customizable images, and SSH access. The release of this updated platform may
have contributed to the rapid growth during the 2016–2018 period. The CircleCI 2.0 platform
was available as a closed beta in November 2016 and was later made publicly available for all
CircleCI users in July 2017. Figure 7.3 shows that these dates coincide with sharp changes in
the trend of CircleCI build activity.

Observation 3: While median project-level indicator values have remained stable, indicators

like throughput and build duration have been increasing in the heaviest users of the platform.

Figure 7.4 shows the evolution of four project-level indicators over the studied period. The
black lines and gray bands show the median values and 90% con�dence intervals of each
metric across the projects, respectively.

Figure 7.4a shows that the median build duration stayed below 200 seconds throughout
the studied period. However, 5% of studied projects took at least 25 minutes to build. These
large projects might bene�t from CI acceleration techniques that have been proposed in prior
research [101].

96

7.4. Study Results

0

500

1000

1500
20

12
/1

2

20
13

/1
2

20
14

/1
2

20
15

/1
2

20
16

/1
2

20
17

/1
2

20
18

/1
2

20
19

/1
2

20
20

/1
2

B
ui

ld
 D

ur
at

io
n

(in
 S

ec
on

ds
)

(a) Build Duration

1 Hour

1 Day

1 Week

1 Month

1 Year

20
13

/1
2

20
14

/1
2

20
15

/1
2

20
16

/1
2

20
17

/1
2

20
18

/1
2

20
19

/1
2

20
20

/1
2

M
T

T
R

 (
in

 lo
g

sc
al

e)

(b) Mean Time to Recovery (MTTR)

0%

25%

50%

75%

100%

20
12

/1
2

20
13

/1
2

20
14

/1
2

20
15

/1
2

20
16

/1
2

20
17

/1
2

20
18

/1
2

20
19

/1
2

20
20

/1
2

S
uc

ce
ss

 R
at

e

(c) Success Rate

0

300

600

900

20
12

/1
2

20
13

/1
2

20
14

/1
2

20
15

/1
2

20
16

/1
2

20
17

/1
2

20
18

/1
2

20
19

/1
2

20
20

/1
2

M
on

th
ly

 T
hr

ou
gh

pu
t

(d) Throughput

Figure 7.4: The evolution of four CI indicators during the period of 2012–2020 in CircleCI. The median

value of each metric across the subject systems is shown by the black line. The 90% confidence interval

is shown by the gray band.

Figure 7.4b shows that the median MTTR �uctuates before December of 2014 because
of the low number of observations. However, later in the studied period, the median MTTR
stayed in the range of 12–87 mins. For the slowest 5% of projects, the MTTR was at least one
week. As shown in prior research [53], these projects could be taking a long time to recover
from build failures because the software teams are not taking the CI signal seriously. Only a
small proportion of software teams may be focusing on �xing the broken builds. For the bene�t
of software teams who are truly struggling to repair builds, research in automatically repairing
build breakage [33, 43], providing developer assistance for build breakage resolution [32], and
more broadly automated program repair [102] can be incorporated into CI services to �x build
breakages quickly thereby reducing the MTTR.

Figure 7.4c shows that although the median success rate �uctuates before December of
2014, the rate gradually increases later in the studied period and ranges between 67%–92% of
all builds. This demonstrates that in the majority of CI builds and at an increasing rate, newly
introduced changes are not causing any build failures. If these changes that are not triggering

97

7.4. Study Results

40%

60%

80%

100%

20
12

/1
2

20
13

/1
2

20
14

/1
2

20
15

/1
2

20
16

/1
2

20
17

/1
2

20
18

/1
2

20
19

/1
2

20
20

/1
2

G
in

i C
oe

ffi
ci

en
t

Throughput

Total Build Time

Figure 7.5: Gini coe�icient computed using throughput and total build time during the 2012–2020 time

period. Inequality of CI users is increasing.

any build failures can be identi�ed in advance, the execution of such CI builds can be com-
pletely skipped, saving time and compute resources. Abdalkareem et al. [66] have a proposed
machine learning approach to identifying such commits that can be skipped. Similarly, Jin and
Servant [103] have proposed to reduce the high cost of CI by running fewer builds, while run-
ning as many failing builds as early as possible. These approaches to skip builds can be used
by CI providers to prioritize builds that can uncover faults early without wasting computing
resources on the growing proportion of passing builds.

Figure 7.4d shows that the median throughput, i.e., the number of builds that are executed,
remained under 30 throughout the studied period (roughly one build per day). However, for
5% of the studied projects, the throughput grew rapidly and reached a peak of 900 builds per
month.

Observation 4: Inequality of build execution and resource consumption has steadily in-

creased over time. To further investigate the imbalance of CI usage across users, we compute
the Gini coe�cient [104], a popular measure of inequality, during each month of the stud-
ied period. We calculate the Gini coe�cient of the throughput and total build time. The Gini

98

7.4. Study Results

Table 7.2: Distribution of Build Outcome. Global percentage of each category is shown in brackets.

Outcome # %

Signal-generating Success 18,831,874 80.72%
Failed 2,806,792 12.03%

Sub Total (21,638,666) 92.75%

Non-signal-generating Canceled 849,954 3.64%
Infrastructure fail 10,993 0.05%

Timedout 17,917 0.08%
No tests 36,184 0.16%

Null 776,976 3.33%
Sub Total (1,692,024) 7.25%

coe�cient of the throughput estimates inequality in the number of builds being executed,
while the Gini coe�cient of total build time provides a �ner grained resource consumption
perspective.

Figure 7.5 shows the evolution of the Gini coe�cients of throughput and total build time
as Loess-smoothed curves with gray shaded areas indicating the 95% con�dence interval. In-
creasingly high Gini coe�cients mean that there is a smaller number of projects that run a
larger proportion of builds and consume a greater proportion of the build time per month.
Since these heavy users run CI builds frequently, and put a heavy burden on CI services’ re-
sources, it is important for CI providers like CircleCI to invest in approaches that optimize
the workloads of heaviest users.

Although the demand for CI has rapidly grown over the years, the services have managed

to provide a consistent service for the regular users. However, to cater the heaviest users

who account for a growing proportion of the build activity and resources, CI services may

bene�t from research breakthroughs in the areas of build acceleration and automated

program repair.

(RQ2) How is time spent during signal-generating builds?

RQ2: Approach. We �rst extract the outcome of each build and label each one as signal-
generating or non-signal-generating. We label builds with an outcome of success or failed as
signal-generating builds because these builds provide a conclusive signal to the user, reporting

99

7.4. Study Results

● ● ●●● ●●● ● ●●●●●●●●●●● ●● ●● ●● ●●●● ●●●●●● ●●●●●●●●●● ●●●● ●●● ●●●●● ●●●● ●●●● ●● ●●●● ●●● ●●● ●●●●●● ●●●●●●● ● ●●●●●●● ●● ●● ●●● ●●●●● ●●●●●●●●●●●● ●● ●●●●●●●●●●●●● ●● ●●●● ● ●●●● ●●●●●● ●● ●● ●●●●●● ●●●●●●● ●●●● ● ●● ●●●●●●●● ●●●●● ● ●●● ●● ●●● ● ●●● ●●●●●●● ● ●●● ● ●● ●● ● ●● ●● ●●●● ●●●●●●●●●● ●●●●●●●●●●●● ●● ●●●●● ●●●●●●●●●●●●●●●● ●●●● ●● ●●●●●

● ● ●● ●●●● ●●●●● ● ● ● ●●●● ●●● ●● ●● ●●● ●●●●●●●●●●●●●●●● ●●●● ●●● ●●● ●● ●● ●● ●●●● ●●●● ●●● ●● ●●●● ●●● ●●●● ●●●● ●●●●●●● ●●●●● ● ●●●● ●●●●●●●●●●● ●●●●●●●●●● ●● ●● ● ● ●●● ●●● ●● ●●●● ●●●● ●●●●●●●●●●●●● ●●● ● ●● ●●● ●●●●●● ●●●● ● ●● ●●●●●● ●●● ●●● ● ●● ●●●●●●●●● ●●●● ●●●●●●●●● ●● ● ●●● ●● ●●● ●●● ●● ●● ● ●●●●●● ●● ●●●●● ●●●●●● ● ●● ● ●●●● ●●●●●● ●●● ●●●●●●●●● ●●● ●●●● ●●●● ● ●● ●● ●●●● ●●● ●● ●●● ● ●●●● ●●● ●●● ●●● ●●●●●●● ●●●●● ●●● ●●● ●● ●● ●●● ●●●●●●● ●●● ●● ●●●●● ●●● ● ●●● ●●● ● ●●●● ● ●●● ●● ●● ●●● ●●● ●●●●●● ● ●● ●● ●●●● ●●● ●● ● ●●●●●● ●● ●●●● ●●● ●● ●● ●●●●● ●● ●●●●● ● ●● ●●●●● ●●● ●● ●●● ●●●● ●● ●●●● ● ● ●●● ●● ●● ●● ●● ●●● ●●●●●●●●● ●●●●●●●● ●●●●●●●●●● ●● ●● ● ●●● ● ● ●●●● ●● ●●●●●● ●● ● ●●● ●●●● ●● ●● ● ●●● ● ●● ●●●●●●● ● ●●● ●●●● ● ●●●●●●● ●●●● ●●●●●●●● ●●● ●● ●●● ●●● ●●●●● ●● ●●●●●●● ●●●● ●● ●●● ●● ● ●●●●●●●●●● ●● ●●●●● ●●● ●●● ●● ●●●●●●●●●●● ● ●●● ●●●● ●●● ●●● ●● ●●● ●●●●●●● ●●● ●● ●● ● ●●●●●●●●●● ●●● ●●●●●● ●●●● ●●●●●●●● ● ●●●●● ●●●●●●●● ●●● ●●●● ●●● ●●●● ●●●●● ●●● ●●●●● ●●● ●●●● ●●● ●●●● ●● ●●●●●● ●●● ● ●● ●●●● ●●● ●●●●● ● ●● ●●●●● ●●● ●● ●● ● ● ●●● ●●● ●● ●●● ●●● ●● ● ●●● ● ●● ●●● ● ●●●●● ●●● ●● ●●●●● ● ●●● ●●●● ●●●● ●●● ● ●●● ●●● ●●●●●● ●● ●● ●● ●●●● ●●●● ●●●●●●●● ● ●●●● ●●● ●●●● ●●●●●●● ● ●● ● ●● ● ●● ●● ●●● ●●●● ●●●●●●●●● ●● ● ●● ● ● ●● ●● ●●● ●● ●●●●●●●● ●●● ●●●●●●●● ●●● ● ●●● ●●●●● ●●●● ●● ● ●● ● ●● ●●●●●● ●●●●●●● ●●● ●● ●●● ●● ●●●●● ●●● ● ●●●●● ●● ●● ●● ●● ● ●● ●●● ●● ●●● ●● ● ●●●●● ● ●● ● ●● ●● ●●●● ●● ● ● ●● ●● ●● ● ●●● ●●● ●●●● ●●●● ●●●●● ●●● ●● ●●●●●● ●●● ● ●●●●●●●● ●● ● ●● ●● ●● ●●●●●● ●● ●● ●●●●●●●●●● ●● ●● ● ●●●●●● ●● ●●●● ●●●●●● ● ●●●● ●●●●● ●●●●●● ● ● ●●●●●●●● ● ●●●● ●● ●●● ●●●●● ●● ●● ●●● ●●● ●● ●●●●●●●● ●●● ●● ●● ●● ●●●● ●●●●● ●●●●●● ● ●● ●● ●●● ● ●●●● ●●●● ●●●● ●●●● ● ●●●●●● ● ●●● ●●● ●● ●●●●●●● ●● ● ● ●●●●●● ●● ●● ●● ●●●● ●●● ●● ●●●● ●● ●●●●● ●● ●●●● ●● ●●●● ●●●●● ●●●● ●●● ●● ●●●● ●● ●●●●● ● ●● ●●●●●●●●●●●● ●●●● ●●●●●●●● ●●●●● ●●● ●●●●● ●●●● ●●● ● ●●●●● ● ●●●● ●●●● ●●● ●●●● ● ●● ●● ●●●● ●●● ● ●● ●● ●●● ●●●● ●●● ●●● ●● ●● ●●●●●● ●●●● ●●●●● ● ●●●● ●●●●● ●● ●●● ●● ●●●●●● ●●● ●● ●●●● ●●●●● ●● ●●● ●●●●● ● ●●●● ●●●●●● ●● ●●● ● ● ●●● ●● ●●● ●● ● ●●●●●●●●●● ●●●● ●●●●● ● ● ●● ●●●● ●● ●● ●● ●●● ●●● ●● ●● ●●●●● ●●●●●●● ●● ●● ●●● ●●●●●●● ●●●●●●●● ●● ●●●● ●●● ●●● ●●●●●● ●●●●●● ●● ● ●●● ● ●●●●● ●● ● ● ●● ● ● ●●●● ●●●●● ●●●●●● ● ●●●● ● ● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●● ● ●● ●●● ●●●●● ●●●● ● ●●● ●● ●● ●●● ● ●● ●●● ●●● ●●●●● ●●●●●●●●●● ●● ●●● ●● ● ●●● ●● ●●● ● ●●●● ●●● ●● ● ●● ●● ●●●● ●●● ●● ●●●●●●●● ● ●●●● ●● ●● ●●●●● ●●● ●● ●●●●●●● ●● ● ●●● ● ●●●● ●● ●● ●●● ●●●● ●●● ●● ●●● ●●● ●● ●●● ●● ●●●●●●●● ●●●●● ●●● ●● ●● ●●●● ●● ●●●●●● ●● ●●● ●●●●● ● ●● ●● ●● ●●● ● ●●●●● ● ●●●● ●●● ●●●● ●●●●●● ●●● ●● ●● ●● ●●● ●●●●●● ● ● ●● ● ●●●● ●●●●●●● ●● ●●● ●●●● ●● ●● ● ●● ●● ●●● ●●● ●● ●●● ●● ● ●● ●●●● ●●●● ●● ●● ● ●●●●● ● ●●●● ● ●● ●●● ● ●● ●●●● ●● ● ●●●●● ●●● ●● ●●●●●●●●● ●● ●●●● ● ●● ● ● ●●●● ●●●●●● ●●●● ●● ●●●● ●● ● ●●●●● ●●●●●●●● ● ●● ●● ●●●●● ●●●●● ●● ●●●● ●●● ●●● ●●●●●●●●●●●●●● ● ●●●●●●● ●●●●●●● ●● ●●●● ●● ●●●●●● ●●●●● ●●●●● ● ● ● ●●● ● ●●●● ●●● ●●● ●●●● ●●● ●● ●●● ●● ●●●●●● ●●●● ●●● ● ●●● ●●●●●● ●●●●●●●●●● ●●● ●●●●●● ●●●● ●●●●●●●●● ●●● ●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●● ●● ●● ●●●● ●●● ●● ●●●●●●●●●●● ●●● ●● ●●●●●●● ●●● ●●● ●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●● ●● ●●●●● ●●● ●●●●● ●●● ●●● ●●●●●●●● ●● ●●● ●●●● ●●●●● ●●● ●●●●●● ●●●●●●●●● ●● ● ●●●●●●●●●●●●● ●●●●●● ●● ● ●●●●●● ●●● ●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●● ●● ●● ●●●● ●●●●●●●●●● ●●●●● ●●●●●●●● ●● ●● ●● ●●●●●●●● ●●●●●●● ●●● ●●●●●● ●●●●●●●●●● ●●●●●● ●●●● ● ● ●● ●●●● ●●●●●● ●●● ●●●●● ● ●● ●●● ●●●●● ●●●● ●●● ●●●●●●● ●●●●●●● ●●●●●● ●● ● ●●● ●●●●●●●●●●●●●●●●●●●● ● ●● ●●●●●●●●●●●●● ●●●● ●●●● ● ●●●●● ●●●●●●● ●● ●● ●●● ●● ●●●●●●●● ●●●●●●● ●●●●●●●● ●● ●●●●●● ●●●● ●● ●●● ●●●●●●●●●● ● ●● ●●●●● ● ●●● ●● ●●●●●●● ●●● ●●●●●●●●● ●●●●●●●●● ● ●●●● ● ●● ●●● ● ●●●● ● ●●●●● ●●● ● ●● ● ●● ● ●●●● ●●●●●●● ●● ●●●● ●● ●●●●● ●●●● ●● ●●●●●●● ● ●●●● ●● ●● ●●● ● ●●●●●● ●● ●●●● ●●●●●●●●●●● ●●●●●● ●●● ●●●●●●● ●●● ●●● ●●●●● ●● ●●● ●●●● ●● ●● ●●●●● ●● ●● ●● ●● ●● ●●● ●●● ●● ● ●● ●● ●● ●●●● ●●●●●●●●●●●●●●●●●●● ● ●● ●●●●●● ●●●●●● ●●●●●●● ●●●●●●● ●●●●●● ●●●●● ●●●●●●● ●●●● ● ●●●●●●● ●● ●●● ● ●●●● ● ●● ●●● ●●●●●● ● ● ● ●● ●●● ● ●●●●● ●● ●●●● ●● ●●● ●● ●● ●● ●● ●● ●●●●●●●●● ●● ●● ●●● ●●● ●● ●● ●●●● ●● ●●●●●● ●● ● ●● ● ●●●●●● ●●● ●●● ●●●●●●●●● ●● ●● ●●● ●●● ●●●● ● ●●●● ●● ●● ●●● ● ● ●●●● ●●●●●●●●●●●● ●● ●●●● ● ●●● ●●● ●● ●●● ●●

●●● ●● ● ●●● ●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●● ●● ●●●● ●●● ●●● ● ●● ●● ●●●●●● ●● ●●● ●●● ●●●●●●● ●●●●●●● ●●●●● ●●● ●●● ● ●● ●● ●●● ●● ●●●●● ●●●●●● ●● ●● ●●●● ● ●●●●● ●●●● ● ●● ●●●●●●● ●●●●●●● ●●●●●●●●● ●● ●● ●●● ●● ●● ● ●●● ●●● ●●● ●● ● ●● ● ●●●●● ●●●●●●●● ● ●●● ●●● ●● ●● ●●●●● ●● ●● ●● ●●●●● ●●●●●●●● ●●● ●●●● ●●●●● ●●● ●●● ●●●●●● ● ●●●● ●●●●● ●● ●●● ●●●●●● ●● ●●●● ●● ●● ●● ●●●●●●●● ●● ●●●●● ●●●●●● ●● ●● ●●●●●● ●●●●● ●●●●● ●●●● ● ●●●●● ●●●● ●●●● ●●●●● ●● ●●● ●● ● ●●●● ●● ●●● ●●●●●●● ● ●●●● ● ●● ●● ● ●● ●● ●● ● ●● ●● ●●● ●● ● ●●●● ●●●●●● ●● ●● ● ●● ●●●● ●● ●● ●●●● ●●● ● ●●●●● ●●● ●●● ●●●●●● ●●●●●●●●●● ●●● ●● ●●●● ● ●● ●●●●● ●● ●●● ●●● ●●●●●●●●●●● ●●● ●●●●● ●●●●●●●● ●●●● ●●●●●●●●●● ●● ●●●●●●●● ●●●●●● ●●●● ●● ●●● ●● ●● ●●●●●●●●● ●●●● ●●● ●● ● ●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●● ● ●●●● ●●●●● ● ●●●●● ●● ●●● ● ● ●● ●● ●●● ●● ●● ●●● ●●●●●●● ●●● ● ● ●● ● ●●●●●●●●● ●●● ●● ●●●● ●●● ●●●●●●●●●●● ● ●●●● ● ●●●●●●●● ●●●●●●●● ●●●●●● ●●●●●●●●●● ●● ●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●● ● ●●●● ●●●● ●●●● ●●●●●●●●●●●●●●●●● ● ●● ●●●● ●●●● ●●● ● ●● ●●● ●●● ●●●●●● ●●● ●●●●●●●● ●●●● ●● ●● ●●● ● ● ●●● ● ●● ●●● ●●● ●● ●●●●●●●●● ●● ●● ●●●●●● ●● ●●●● ●●● ●●●● ● ●● ●● ● ●● ● ● ● ●●●●●● ●●●●●●●● ●●●● ●● ●●●●●●●●●●●● ●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●● ●●● ●●●●●●●●●●● ●●● ●●●●● ●●●● ●● ●● ●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●● ●● ● ●●●●●● ●●●●●● ●●●● ●● ●●●●●●●●● ● ●● ●●●●● ●● ●●●●●●● ●●● ●●● ●●●●● ●●●●● ●●●●●●●● ●●●● ●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●● ●●●● ●● ●●●●●● ●● ●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●● ●●● ●●●● ●●●●●●●●● ●● ●●●● ●●● ●●●● ● ●●●●●●●●●●●●●●●●● ●●●●●●●●● ●● ●● ●●●●● ●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●● ●●● ●●●●●●●●●●●●●●●●●●● ●● ● ●●●●●●●●●● ●●● ●●●● ●● ● ●●●●● ●●●●●● ●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●● ●●●● ●● ● ● ●● ●● ●●● ●●●●● ●●● ●●●● ● ●●● ●● ●●●● ●●●●●●●●●●●● ●●● ●● ●● ● ● ●●● ●●●●● ●●●● ●●●●●● ●●● ●● ●● ●●●● ●● ●●●●● ● ●●●●●● ●●●●●●●●●●● ●● ●● ●● ●●● ●●● ●●● ● ●●● ●● ●●●● ●●● ● ●●●● ●●●● ●●● ●● ●● ●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●● ●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●● ●● ●●●●●●●●●●● ●● ●●●● ●●●● ●● ●●●●●●●● ●●●●● ●●●●● ● ●● ●● ●●●●● ●●●●●●●● ●●● ●● ●●●●●●●● ●●● ●●● ●● ●●●●●● ●●● ●●●●●●●●●●●●●● ● ●● ●● ●●● ●●●●● ●● ●● ●●●● ● ●●●●●●●●●● ●●●●● ●● ●● ●● ● ●●●● ●●● ● ●●●● ●●●●●●●●● ●●●●● ●●● ●● ●●● ● ●●●●●●● ●●● ●●●● ● ● ●●● ●● ● ●●●● ● ●●●●● ●● ●●● ●● ●● ●● ●● ● ●●●●● ●●●● ●● ● ●●●● ●● ●● ●● ●●●● ●●●● ●●●● ●●● ●●●●●●● ●● ●● ●● ●●●●● ●●●● ●●●● ●●● ●●● ● ●●● ●●●●● ● ● ●●● ● ●● ● ● ●● ●●●● ●●● ●● ● ●● ●● ● ●● ●●● ●●● ● ●●●●● ● ●●● ●●●●●●●●●● ● ●●● ●●●●● ● ●●●●● ●●●● ● ●● ● ●●● ● ●●● ●● ● ●●●●●●● ●●●● ●●● ●●●● ●●●● ●●●● ●● ●● ●●●●●●● ●●●●● ● ●● ●●●●●●●●● ●●●●● ●●● ●● ●●●●●●● ●●●●● ● ●●● ●● ●●●●●●● ●●●●● ●●● ●●●● ●●●●● ●●● ● ●● ●●● ●● ●● ●●●●●●●●●● ●●● ●● ●●●●●● ●● ●●●● ●●●●●● ●● ●●● ● ●●● ●●● ●●●● ●● ●● ● ●●● ●●● ● ●● ● ●●●●●●●● ●● ●●●● ●●● ●● ●●●●●● ● ●●●● ●● ●●● ●● ●●● ●●●●● ●●●●●●●● ●●●●●●●●●● ●●●●●● ●●●●●●● ●●● ●●●●●●● ●●●●● ● ● ●● ●●● ●●● ●●●● ●●●●●● ●●●●●● ●●●● ●● ●●● ●●● ● ● ●● ● ●●●● ●● ●● ●●●●●●●●●● ●●●●●●●●●●● ●●●●● ●●●●●●● ●● ●● ●● ●● ● ●●● ●●●● ●● ● ●● ●●● ●●● ●● ●●●●● ● ●●●● ● ● ●● ●●● ● ●● ● ●● ●●●●● ●● ● ●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●● ●●●●●●● ●●●● ●●●●●●●●●● ●●●●●●●●●●● ●●● ●●●●● ●● ●●● ●● ●● ●●●●●●● ●●● ●●● ● ●● ●● ●● ●●● ● ● ●●● ●● ●●●●●● ●● ●●● ●●●● ● ●● ● ●●● ●●●●● ●●●●●●● ●●●● ●●● ● ● ●●● ●●●●●● ●●●●●●●●● ●● ●●● ● ●● ●● ●● ●●●● ●● ●● ●● ●● ●●● ●●●●● ●● ●●●●● ●●●● ●● ●● ●●● ●● ●●● ●●● ●●● ●● ●● ●●●●● ●●● ● ● ●●● ● ● ●●●●●●● ●● ●● ● ●●●● ●●●● ● ●●●● ● ● ●●● ●●● ●●●● ● ●● ●●●●●●●● ●● ●●● ●●●●●●● ●●●● ●●● ●●●●●●● ●●●● ●●● ●● ●●●●● ●●●● ● ●● ● ●●● ●● ● ●●●● ● ● ●● ●●●● ●● ●●●●●●● ●● ●●● ●●●● ● ●●● ● ● ●● ● ●●●● ●●●●● ● ●●●● ●●● ●●● ●● ●●●● ●●● ●●●●●●● ●●● ●●● ● ●●●●● ●●●● ● ●● ●●●●● ●●●● ●●●●●●●● ●●●●●● ●●●●●●● ●●● ●●●● ●● ● ●●● ●●● ●● ● ●●● ●● ●●● ● ● ●● ●●●● ● ●● ●● ●●●●●● ●● ●● ● ●●●●●●● ●●● ● ●● ●●●● ●● ●●● ●●● ● ●●● ●●● ●●● ●● ●● ●●●●● ● ●● ●●● ●● ●●● ●●●● ●●● ●●● ●●●●●●●●●●● ●●● ●●● ●●●●● ● ●●● ●●● ●●●● ● ●●●●

●●●●●●●●●●●●● ●●●●●●●●● ●●●●●● ●●● ● ●●●●● ● ●●● ●●●● ● ●● ●● ●●●●●●● ● ●●●●●● ●●●● ●●●●● ●●●●●●● ●●● ● ●●● ●●● ●●●● ●●●●●●●●●● ●●●●● ●● ●● ● ●●●●●●●●●● ●● ●●●●●●● ●●●●●●●●●● ●●● ●●●● ●●●● ●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●● ●●●●●●●●●● ●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ● ●●●● ●●● ●●●●●●● ●●●● ●●●●●●●●● ●●● ●●●●●●●●●●●●●● ●●●●●●●●●● ●●● ●●●●●●● ●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●● ●● ●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●● ●● ●●●●●●●●●● ●● ●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●● ●●● ●●●●●●●●●● ●●●●●●●●●●●● ●●● ●●●●● ●●● ●●●●●●●● ●●●●●● ●● ●●●●●● ●●●●● ●●●●●● ●● ●● ●● ●●● ●●●●●● ●● ●●●● ●●● ●●● ●●●●●●●● ●●●● ●●●●● ●●●●●●●●● ●●●●●●●●●●●● ●●● ●●●● ●●● ●●●● ●●●●●●●● ●● ●●●● ●● ●●●● ●● ●●● ●●● ●● ●●●●●●●●●●●● ●●●●●●●●●●●●● ●●● ●●●●●●●●●● ●●●●●●●●● ●●● ●●●●●●●●●●● ●●●●●●● ●●●●●●●● ●● ●●●●●●●●●● ●● ●●●● ●● ●●● ●●●●●●●●●●●●●●●●●●● ●●●● ●● ●●●●●●●●●● ●●●● ●●●● ●●●● ●●●●●●● ●●●● ●●●●●●●●● ●●●●● ●●● ●●● ●● ● ●●●●● ● ●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●● ●● ●●●●●● ●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ● ●●●●●●●●●●●● ●●●●●●● ●●●●● ●● ●●●●●●●●● ●●●●●● ●● ●●●●● ●●●●●●●●●● ●●● ●●● ●●●●●●●●● ●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●● ● ●●●●●●●● ●●●●●●●●●●●●●● ●●● ●●●●● ●●● ●●●●●●●● ●●●●●●● ●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●● ●● ● ●● ●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●● ●●●●● ●●●●●● ●●● ●●●●●●● ●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●● ●●●●●●●●● ●●● ●●●●●●●●●●●●●● ●●● ●●● ●●●●●●●●●●●●●●●●● ● ●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●● ●● ●●●●● ●●● ●● ●● ●●●●● ●●● ●● ●●●●●●●●●●●●●●●● ●●●● ●●●● ●● ●●●●● ●●●●● ●● ●●●●●●●● ●●●●●● ●●● ●●●● ●●●●●●● ●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●● ● ●● ● ●●●●●●●●●● ●●● ● ●●●●●●●● ● ●●●●● ●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●● ●●● ●●●● ● ●●●● ●●●● ●● ● ●●● ●●●●●●●●●●●●● ●●●●● ●●● ●●●●● ●●●● ●●●● ●● ●●●●●● ●● ●●● ●● ●● ●● ●●●●● ●●●●● ●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●● ●●●●●●●● ●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●● ●●●● ●●●●●●●●●●●●●●●● ●●● ●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●● ●● ●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●● ●● ●● ●● ●●●●●●●● ●●● ●●●●●●● ●●●●●●●●●●●●●●●●● ● ●●●●●●● ●●●● ●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●● ●● ●●● ● ●●●●●●● ●●●●● ● ●●●● ●●● ●●● ●●● ●●●●● ● ●●● ● ●●●● ●●●● ●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ● ●●●● ●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●● ●●●●●●● ●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●● ●● ●●●●●●●●●●●●●●●●●●● ●●● ●●●● ● ●● ●● ●●● ●●●●●●●●●●● ●● ●●●●●●● ●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●● ●●●●●●●●● ●●●●●● ●●●●●● ●●●●● ●●●●●● ●●●●●●●●●●●●●●● ●●● ●● ●●●● ●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●● ●●● ●●●●●●● ●●●●● ● ●●● ●●●●●●●●●●●●● ●●●●●●●● ●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●● ●●●●● ●● ●●●● ●●● ●●●●●●●●●● ●●● ●●● ●●●●●●●●●●●●● ● ●●●●●●● ●●● ●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●● ●●●●●●● ●●●●● ●●●●●●● ●●●●● ●●●●●●●●●●●●●● ●● ●●●●● ●●●●●●●● ●●●●●●●●●●●●● ●●●● ●●● ●●● ●●●●●●● ●●●●●●●●●●● ●●● ●●●●●● ●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●● ●●●●●●●● ●●● ●● ●● ●●●● ●● ●●● ●●●● ●●●●●●●●●●● ● ●●●● ●● ●●●●●●●●●●●● ●●●● ●● ● ●●● ●●●●●●●●●●●●● ● ●●●● ●● ●●●●●●● ●●● ●●● ●● ● ●●●●●● ●●●●● ●● ●●●● ●● ●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●● ●● ●●●●●●●●●●●● ● ●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●● ●●●●●●●● ●●●●●●●●●● ●●● ●● ●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●● ●●●●● ●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●● ●●● ●●●● ●●●●●●●●●●●●● ●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●● ●●●●●● ●● ●●●●●● ●●●●●●●● ●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●● ●●●● ●●●●●●●●●●●●●●● ●● ●●●●● ●●●●●● ●● ●● ●●● ● ●●● ●●●●● ●●●●●● ●●●●●●●●●●●● ●●●● ●●●● ●●●●● ●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●● ●●●●●●● ●● ●● ●● ●● ●●● ●●●●●● ●●●● ●●●● ●●●●●●●● ●●●●● ●● ● ●●●●● ●●●● ●● ●●●●●●●●●● ●●● ●●●●●●● ●●●●●●●●● ●●●●●●●●●●● ●● ●●●●● ●● ●●●● ●● ● ●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●● ●●● ●●●● ●● ●●● ●●●●●●●●● ●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●● ●● ●●●● ●● ●● ●●●●●●●● ●●●●● ●● ●●● ●●●●●●●● ●●●●●●●●●●●●● ●●●●● ●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●● ●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●● ●●●●●●●●●●● ●● ●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●● ●●●● ●●●● ●●●●●●●● ●●● ●●●●●● ●●●●●● ●●●● ●●● ●●●●● ●●●● ●● ●●●●● ●●●●● ●●● ●●●●●● ●●●●●●● ●●● ●● ●●● ●●●●●●● ●●●●●●●●●●●● ● ●●● ●●●●●●●●● ●●● ● ●●●●●●

● ●●● ● ●● ●● ●●●●●● ●●● ● ● ●●● ●●●●●●● ●●● ●●●●●●●●●●● ●●●● ●●●●●●●●●● ●●●●●● ●●● ●●●●●●●●●● ●● ●● ● ●● ● ●● ●●● ● ●●●●●●●● ●● ●●●●● ●●● ●● ●●●● ●●● ●●● ●●● ● ●● ●●●●● ●●●● ●● ●●● ●●● ● ●●● ●●● ●● ●●●●●●●●●●●●●●●●●●●●● ●● ●●●●● ●●●●●● ●● ●● ●●● ●● ●● ●● ● ●● ●●●● ●●●●●●●●●● ●●●● ●● ●●● ●●●●●● ●● ●●●●●●●●●●●●● ● ●●● ● ●● ●● ●●●● ●● ● ●● ●● ● ●●● ●● ●●●●● ● ●● ●●● ●●●●●●●●●●●● ●●● ●● ●● ● ●●●●●● ●●● ●● ●●●●● ● ● ●● ● ●● ● ●●● ●● ●● ●●● ●●●●●●● ●● ●● ●●●●●●●● ●●● ●● ●●● ●●●●●●●●●●● ●●●●●● ●●●● ●●●●● ●●● ●●●●●●●● ●● ●● ●●● ●● ●●● ● ●●●●●●●●● ●●●●●●● ●●● ●● ●● ● ●● ● ●● ●●● ●●● ●●● ●●● ●●● ●● ●●● ●● ●●●●●● ●●● ●●●●● ●●● ●● ●● ●●● ●● ●●●● ●●● ●●●●● ●●●●● ●●●●● ●● ●●●● ●●● ●●● ●●●●● ●●●●●● ●●●●●● ●●●●● ●●●● ●●●●●● ● ●●●●●●●● ●●●● ●● ●● ●●●● ●●●● ● ●● ●●● ●●● ● ● ●● ● ● ●●●● ●●●●● ●●●● ●●●●●●● ●●●●●●●● ● ●●● ●●●● ●● ●●● ●● ●●● ●●●●●●●●● ●●●● ●●●●●●●●●●● ●●●● ●●●●●● ●● ●●●●●●● ●●●●●●●●●●●●●●●●●●● ● ●●● ●●●● ● ●●●●● ●●●●●●●●●● ●●● ●●●● ●●●●●●●● ●●●● ●●●● ●●● ● ● ●●●● ●●●● ●●● ●●● ●●● ● ● ●● ●●●● ●● ●●●●●●● ●● ●● ●●●●●● ●●●● ● ●● ●● ●●● ● ●●● ●● ●●●● ● ●●●●●●●● ●●●●● ● ●●● ●●●● ●●●●●●● ●● ●●●● ●●●●● ●● ●●● ●● ●●● ●● ●●● ● ●●●●●● ●●●● ●●●●●●●●● ●●●●●●●●●●● ●●●●●●●● ●●●●●● ●● ●●●●●● ●●● ●●● ● ●●●● ●●●● ●● ●●● ●●●● ●●●●●●●● ●●●●●● ●●●●●●● ● ●●● ●●●● ● ●● ●● ●●●●●●●●● ●●● ●● ●●●● ●●●●●●●●● ●●●●●●●●●●●●●● ●●● ●● ●● ● ●●● ●●● ●● ●●● ●●●●● ●● ●●●●●●●●● ●●●●●● ●●●●● ●●●● ●●●● ● ●●● ●●●● ● ●●●●● ●●● ●●●●●● ●●● ●● ●●●● ●●●● ●● ● ●●● ●●●●● ●● ●●●●●● ●●●● ●● ●● ● ●●● ● ●●●● ●●● ● ●●●● ●● ●●● ●●● ●●● ●●●●●●● ●● ●●●●● ●● ●● ●●●●● ●●● ●●●● ●●●●●● ●● ●●●●●● ●●●● ●●● ●●●●● ●●●●●● ●●●●●●● ●●●●● ●●●● ●● ●● ●●●●● ●●●●●●● ●●● ●●●●●●●● ●●● ●●● ●●● ●●●●● ●● ●● ●●●●●● ●●●●●●●●●● ●●●● ●●●●●●●● ●● ●● ●●●● ●● ●●● ●●●●●●●●● ●●●●●●● ●● ● ●●● ●●●●● ●● ●● ●●● ●●●●●●●● ●● ●●●●●●●●● ●● ●●●●● ●●● ●●● ●● ●●● ●●●● ● ●●● ● ●●●● ● ●●●● ●●● ●●●●●●●●●● ●● ●●●● ●●●●●● ●●●● ●●● ●●● ●●● ●●● ●●● ●●● ●●● ●●●●●● ●● ● ●●●● ●●●●●● ● ●●●●● ●● ●●● ● ●●● ●● ● ●●●● ●●●●●●●●●●●●●●● ●●●●●●● ●●● ●●● ● ●● ● ●● ●● ●●●●● ●●●●● ●● ●●● ●●●●● ●●●● ●●●●● ●●● ●●●●●● ●●●●●● ●●●● ●●●●●●●●● ●●●● ●●●●●● ● ●● ●● ●● ●● ●●●●● ●●●● ●●●●● ●●●● ●● ●● ●●●● ●● ●●● ●●● ●● ●● ●●●●● ●● ●●●● ●● ●● ●●●●● ● ●● ●● ●●● ●● ●● ●● ●●●●● ●●●●●●● ●●●●● ●●● ●●● ●●●●●●● ●●● ●● ●●●●● ●● ● ● ●●●●●●●●● ●●● ●●●● ●●●●●●●●●●●●● ●●●●●● ●●●● ●●●● ● ●● ●●●●●● ●● ●●● ●●●● ●●●●●● ● ●●● ●● ●●●●● ●● ● ●● ●●●●● ●●● ●●●●●●●●●●●● ●● ●●●●● ● ●●●●●●● ●●●● ●● ●● ●●● ●●● ● ●● ●●●●●● ●●● ●●● ●●● ● ●●●● ●● ●● ●●●● ● ●● ●●●● ●● ●● ●●●●●●● ● ●●●●●●●●● ●● ● ● ●● ●● ●●● ●●● ●●●● ●●●●●●●●●●● ● ●● ●● ● ● ●●●●● ●●●● ●●●●● ●●●● ●●●●● ● ●●●●●●● ●● ●●● ●●● ●● ●● ●●●● ●● ●● ●●●● ●● ●●●●●●●●● ● ● ●●●●●●● ●● ● ●● ●●●● ●●●● ●●● ●● ●● ●●●● ●●●● ●●●●●● ●● ●●● ● ●●●●●● ●● ●●● ● ●●●●●●●●●●●●●●● ●●●●●●●● ● ●●● ●● ●●● ●●● ●●●●●● ●● ●●● ●●●●●● ●●●● ●●●●● ●●●●● ●●●●●●●●●● ● ●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●● ● ●●● ●● ● ●● ● ●●●●● ●●●●●●● ●●●●●● ●●● ●●●●●● ●● ●●● ●●● ●●●●●● ●●● ● ●●● ●●● ●●● ●●● ●●●●●●●●● ●●●● ●● ●●● ● ●●● ●●●● ● ●● ●● ●●● ●●● ●●●●● ● ●● ●● ●●● ●●●● ●●● ●●●● ●●● ●●●●● ●● ● ● ●●●● ●●●● ●●●● ●●●●●●●● ●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ● ●●●●●●● ●●●●●● ● ●●●● ●●●●●●● ●●●●● ●●●● ●●● ● ●● ●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●● ●● ●● ●●●●●●● ●●●●●●● ●●● ● ●●●● ●● ●●●●●● ●●●●●●● ●●●●●●● ●●●●●●●●●● ●●● ●●● ●●●●●●●●●●●●●● ●●●●●●●●●● ● ●●● ●●●●● ●●●●● ●●● ●●●●●● ●●● ●● ●●● ●●●● ●●●●●●● ●●●●●● ●●●●●●● ●●●● ● ● ● ●● ●●●● ●● ●●●●● ●●●● ●●●●● ●●●● ●● ●● ●● ● ●●●●●●●● ● ●●●●● ●●●●●●● ●●●●●●●●●● ●●●● ● ●● ●● ●●●●● ●●● ●●● ●● ●●●●● ●● ●● ●● ● ●●● ●●●● ●●●●● ● ●● ●● ●●●●● ●●●● ●●●● ●●●● ●● ●●●●● ●● ●●● ●●● ●●● ●●●● ●● ●● ●●● ● ●● ●● ●●● ●● ●● ●●● ● ●●● ●●● ●●●●● ●●●●●● ●●●● ● ●●● ●● ●●● ●●●●●● ●● ● ●● ●● ●●●● ●● ● ●●● ●●● ●●● ●● ●●● ●●●●● ●●● ●●●●●● ●● ●●●●●●● ●● ●●●●●●● ●● ●● ●●● ●●● ● ● ●●● ●●●● ●●●● ●●● ●● ● ●●● ● ●●● ●●●●● ●● ● ●● ● ●●●●● ● ●●●●●● ●●●●●●●●●●●● ●●●●●●●● ●● ●● ● ●●●●●● ● ●●●●● ●●● ●●● ●● ●● ●●●●●● ●●●●●● ●● ●●●●●● ●●●●●●●●●●●●●●● ● ●● ●●● ● ●● ● ● ●●●● ● ●●●●●●●●● ●●● ●●●●● ●● ●●● ● ●●● ● ●●●● ●●● ●● ●●● ●●● ●● ●● ●● ●● ●●● ●●●● ●●●●●●● ●● ●●● ●●●● ●●● ●●●●●●●● ●●● ●●● ●●●●● ●●●● ●●● ●● ●●●●●● ●●●● ●● ● ● ●● ●●●● ●●●●● ●●●●● ●● ●●●●●●● ●● ●●●●●●● ●●●●● ●●●● ● ●●● ●●● ●● ●●●●●●●● ●●●● ● ●● ●●● ●●●●●●●● ●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●● ●● ●●●●● ●●●●●●● ●● ●●●● ●●● ●● ●●●●●●●●●● ●● ●●●●● ●● ●● ●●●●●●●● ●●●●● ●● ●●●●● ●●● ● ●●●●●●●● ●●● ●●●● ● ●● ●●●●●● ● ●●●●● ●● ●● ●●●●● ●● ●●● ●● ●● ● ●●● ●●● ● ●●●● ●●●●● ●● ●●● ●● ●●● ●●● ●● ●●● ●● ●● ●● ●●●● ●●● ●● ●●● ●● ●● ● ● ●●● ●●●●● ●●● ●● ●●●● ●● ● ●●●●●●●●●●●● ● ● ●●●●●● ●●●● ●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●● ●● ● ●●●●● ●●●●● ●●●●●●● ●●●● ●●●●● ●●●●●● ●● ●●●●● ●●● ●●●●●● ●●● ●● ●● ●●● ●●● ●●● ●● ●● ●● ●● ● ●●●● ●●● ● ●● ●● ● ●● ●● ●●● ● ●●●●●● ● ●●●● ●● ●●● ●●● ● ●● ●●● ●● ●●●

● ●●● ●●●● ●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●● ●●●●●●● ●●●● ●●● ●● ● ●●●● ●●●● ● ●●● ● ● ●● ● ●● ●● ●● ● ●● ●● ●●● ●●● ●● ●● ●● ● ●●● ●● ● ●● ●●●● ● ●● ●● ●● ●● ●● ●● ●●● ●●●● ●● ●● ●●●● ●● ●● ● ●●●● ●● ●●●● ● ●● ●● ●● ●● ●● ●● ●● ●●● ●●● ●●●● ● ●●●●● ●●●●●● ●●●●● ●●● ●●● ●●● ● ●●●●● ●●●● ●●● ● ●●● ●●● ●● ● ●●● ●●● ●●● ●● ●● ●●●● ●● ●● ●●●● ●●●● ●●●● ●●● ●●● ● ●● ●●● ●●●● ●●● ●●● ●● ● ● ●●●● ● ●● ●●● ● ● ●●● ●●● ●●● ●●●●● ●●●● ●●● ● ●● ●● ●●●●●● ●●● ●● ●●●● ●● ●●● ● ●● ●●●●● ●● ●● ● ●●● ● ●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●● ●●●●●●● ●● ●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ● ●●●●●●●●●● ●●●● ● ●● ●●●●●● ● ●● ●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●● ●●● ●● ●●●●●●●●●●●● ●●●●●●●●● ●●●●●●● ●●● ● ●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ● ●● ●●●●●●●●●●●●●●● ●●●●●● ●●●●● ●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ● ●●●●●●●●● ●●●● ●●●●● ●●●●●●● ●● ●●● ●●●●● ●●●● ●●●●●●●● ●●●●● ●● ●● ●●● ●●● ●●● ●●●● ●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●● ●●●●● ● ●●● ● ●●●●●●● ●● ●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●● ●● ●●●●●●●● ●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ● ●●●●●● ●●●●● ●●● ●● ●●● ●●●● ●● ●●● ●● ●●● ●●●●● ●●●●● ●●● ●● ●●●●●●●●● ●●●● ●●●● ●● ●●● ●●●●●●●●●● ●●●●●●●●●●● ●●● ●●●●●● ●●●● ●●●●●●●● ●●●●● ●● ●●● ●●●●●●● ●●●●● ●●●●● ●● ●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●● ●●● ●●● ●●●●●● ● ●● ● ●●●●● ●●●●●●● ●●●●●●●●● ●●●●●● ●●●● ●●●●● ●●●●●●●●●●●●●●●●●●● ● ●● ●●●●● ●●●● ●●●●●●●●●●● ●●●●●●●● ●● ●●●●●●●●●●●●●●● ● ●●●●●●●●●●●● ●● ●●●●● ●●●●●● ●● ●● ●●●●●● ●● ● ●●●●●● ●●●●●●●● ●●●●●●●●● ●● ●●●● ●●●●●●●● ●●●●● ● ●● ● ●●● ●●● ●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●● ●● ●●●●● ●● ●● ●● ●● ●●●●● ●●●●●●●●● ●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●● ●●●●●●● ●●●●●●●● ●● ● ●●● ●●●●●●● ●●●●● ● ● ●● ●● ●● ●●●●●● ●● ●●●●●●●●● ●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●● ●● ●● ●●● ● ●●●●●●●● ●●●●●●●●● ●●●●●● ●● ●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●● ●●● ●●●●● ●●● ●●●●● ●●●●●●●●●● ●●● ●●●●●●● ● ●●●●● ● ●● ●●●●● ●●●● ●●●●● ●● ●●●●●●●●●●● ●● ●●● ●●●●●●●●● ●●● ●● ●●● ●●●●●●● ●● ●●●●●● ●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●● ●●●●●●● ●●● ●●● ●●● ●●●●● ●● ●●● ●●●● ● ●● ● ●●●●●●●●●●●● ●●●●●●● ●●●●●●● ●● ●● ●●●●●●●● ●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●● ●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●● ●●●●● ●●●●● ●●●● ●●●● ●● ● ●●●●● ●●●●●●● ●●● ●●● ●● ●●●●●● ●● ●●● ●●● ●●●●● ●● ●●● ●●●●● ●●●●●● ● ●●●●●●●●● ●●●●●● ●● ●●● ●●● ●●● ●● ● ●●●● ●●●●●●●●●●●● ●●●● ●●●● ●●● ●● ●● ●●●● ●●●●● ● ●●● ●● ●●●●●●●●● ●● ●● ● ●● ●● ●●●●● ●●●●●●●●●●●●●● ●●● ●●●●●● ●●● ●● ●● ●● ●● ●● ●●●●●●●●●● ●●●●●●●●●●●●● ●● ●● ●●●● ●●● ● ●●●●●●●●● ●●●●●●● ●●●●● ●●● ●● ●●●● ●●●● ●● ●●●● ●●●● ●●●● ●●●● ●● ●● ●● ●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●● ●●● ●●●●●●●●●●●●●● ●●●●●●●●●● ●● ●●●●●●●●● ●● ●●● ●●●● ●●●●●●● ●●●●●●●●●●●●●●● ●●●●●● ●●●●● ●●●●●● ●●●●●●●● ●●● ●●●●●●●●●●● ●●● ● ●●●●● ●●●●●●●●● ●●● ●●●● ●●●●●●● ●●● ●●●●●● ●●●● ●●●●●● ●●●●●●●●●● ●●●● ●●●● ●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●● ●● ●● ●●● ●●●●●●● ●●●● ●●● ●● ●● ●● ●●● ●●● ●●●●●●●● ●●●●●●●●●●●● ●●● ●●●●● ●●●●●●●●●●● ●● ●●●●●●● ●●●●● ●●●● ●● ●●● ●●●● ●●●●●●● ●●●● ● ●● ●●●●●● ●● ●●●●●●●● ●●● ●●●●● ●●●● ●●●●●●●●●●●●●●●● ●●●● ●●● ●●●●●●●●●●●●●●●●● ●●● ●● ●● ●●●●● ●●●● ●●●●●●●●●●●● ●●●●●●●●● ●●● ●●●●●●●●●●●● ●● ●● ●●●●●●●● ●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●● ●● ●●●●●●● ●●● ●●●●●● ● ●●● ●● ●●●●●●●●●●●● ●●●●●● ●●● ●● ●●● ●● ●●●●●●● ●●●● ●● ●●●●●●●●● ●●●● ●●●●●●●●●●●●● ●●●● ● ●●●●● ●●● ●● ●●●●●●●●●● ●●●●●●●●●● ● ●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●● ●●●●●●●●●● ●●● ●● ●● ●● ●●●●● ● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●● ●● ●●●●● ●●●●●●●● ●●●●●●● ●●●●●● ●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●● ●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●● ● ●●●● ●●●●●●●● ●●●●●●●● ●●●●●●● ●●● ●●●●● ●●●● ●●●●●● ●●●●●●●●● ●● ●●●● ●●●●●● ●●●●●●●●●●●●●●●●● ●●● ●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●● ●● ●●●● ●●● ● ●●●● ●● ●● ●●●●●●●●●● ●●●●●● ●● ●●● ●●●● ● ●●●●●●●●●●● ● ●●● ●●● ●●● ●●●●●●●●●● ●●●●● ●● ●●● ●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●● ●● ●●●●●●● ●●●●●●●● ●●●●● ●●● ●● ● ●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●● ●●●●●●●● ●●● ●●● ●●●●● ●●●●●●●●●●●●●● ●●●●●●● ●● ●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ● ●● ●● ●● ●● ●●●● ●● ●●● ●●● ●●●● ●● ●●●●●●●●●●●●●●●●●●●●● ●●● ●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●● ●●●●●●●●●● ● ●●●● ●● ●●●●●●●●●●●●● ●●●●●●● ●● ●● ● ●● ●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●● ●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●● ●●●● ●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●● ●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●● ●●●●● ●● ● ●●●●● ●●●●● ●●●●● ●●●●●●●● ●●● ●●●●●● ●●●●● ●● ●●● ● ●●●●● ●● ●●●●●● ●● ●●●● ●●●● ●●●●● ● ●●●●●●●● ●● ●●● ● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●

1
2

3
4

5
6

7

0% 25% 50% 75% 100%

compile

test

dependencies

deployment

infrastructure

machine

teardown

checkout

database

Run Time

A
ct

io
n

Ty
pe

Figure 7.6: Runtime percentage of each action type in signal-generating builds.

whether their proposed changes can be integrated into the mainline of development or not.
All builds with other outcomes are categorized as non-signal-generating because they were
prematurely terminated without providing a signal. To answer RQ2, we focus our analysis on
the signal-generating builds.

The CircleCI API response provides start and end times of each step in a given build.
Furthermore, each step has an action type which is machine, infrastructure, checkout, depen-

dencies, compile, test, database, deployment, or teardown. We use the action type and runtime
of each build step to compute the percentage of runtime spent executing each action type in
a build. Then, we apply the Scott-Knott E�ect Size Di�erence (ESD) test [86] to cluster action
types of build steps into statistically distinct ranks based on the proportion of the build time
spent on each action type.

Moreover, we investigate whether the time spent during the signal-generating builds of
heavy users is di�erent from non-heavy users. For this purpose, we label projects as heavy
users or non-heavy users. We consider projects that consume a large proportion of the build
time as heavy users. After identi�cation of heavy users, we conduct Mann–Whitney U tests

100

7.4. Study Results

0

100

200

300

0.0001% 0.0100% 1.0000%
Median Build Time Consumption (in log scale)

F
re

qu
en

cy

Figure 7.7: Distribution of median monthly build time consumption. Dashed black line at 1% marks

the threshold for selecting heavy CI users.

and compute Cli�’s delta for build time percentage of action types between heavy and non-
heavy users.

RQ2: Results. The top three rows of Table 7.2 show the distribution of signal-generating
builds used to answer RQ2.

Observation 5: Compiling source code and running tests take up the greatest proportion of

the build runtime. Figure 7.6 shows the run time percentage taken up by each action in signal-
generating builds. The median runtime percentages of the compilation and testing stages are
33.2% and 32.5%, respectively. The next largest action type is the downloading of dependencies,
which has a median of 19.5% and is a statistically distinct rank lower than compilation and
testing. Therefore, focusing e�orts to reduce the time taken for compilation and testing stages
during the build will provide the most value for CI service providers. Approaches such as
incremental builds, caching, build step skipping, and test selection are applicable here. We
explore and evaluate two such CI acceleration techniques in Chapter 8.

However, as we observe in RQ1, the heaviest users exhibit di�erent behaviour than the
rest of the users. Figure 7.7 shows the distribution of monthly build time consumption across

101

7.4. Study Results

Table 7.3: Domains of projects that heavily use CircleCI.

Domain # Projects

Application Framework 6
Cloud Computing 4
Computer Security 3
Blockchain 3
Development Tools 3
Package Management 2
Machine Learning 2
Web Application 2
IoT 1
Database 1
Total 27

all studied projects. From there, we pick 1% of total monthly build time consumption as the
threshold for identifying projects that heavily use CI. Based on this threshold, we identify 27
of 7,795 projects as heavy CI users.

To check if the selected threshold for identifying heavy CI users is suitable, we change
the threshold value and see how many projects survive. A more lenient threshold of 0.9% will
categorize only �ve more of the 7,795 projects as heavy users. A more strict threshold of 1.1%
removes only four more projects from the group of heavy users. This indicates that the chosen
threshold value will not heavily impact the sample size of heavy CI users.

Table 7.3 shows that the 27 heavy users of CircleCI belong to a broad variety of domains,
including cloud computing, security, and machine learning.

Observation 6: For all action types except deployment and compile, there were statistically

signi�cant di�erences between heavy users’ builds and other builds, in terms of the runtime per-

centage. Figure 7.8 shows the runtime percentage of each action type in signal-generating
builds in heavy CI users vs others. The results of applying Mann-Whitney U test to the run-
time percentage of each action type for the builds of same two user groups shows that there
are signi�cant di�erences in the usage patterns and resource consumption of heavy CI users
compared to other users (? < 2.2 × 10−16) for all action types except deployment and compile,
after applying Holm-Bonferroni correction [105]. The deployment and compile action types
had insu�cient evidence (i.e., one and zero observations respectively) among the builds of
heavy users to reach any conclusions. Based on Cli�’s delta, e�ect sizes were large for in-

102

7.4. Study Results

●●●●●●●●●●● ●●●●● ●●●●●●●●●●● ●●●● ● ●● ●●●●●●● ●●●● ●●● ●●● ●● ●●●●●● ●● ●● ●●● ●● ●●●●●●● ●●●●●●●● ●● ●● ●●●●●●●●●●●●●●● ●●●●●●●●● ●●●● ●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●● ● ●●●●● ●● ●●●●● ●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●● ●● ●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●● ● ●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●● ●● ●●●●●●● ●● ●●●●●●●●●●●●●●●●● ●●●●●●●●● ● ●●● ●●●●●●●● ●●●●●●●●●●●●●●●● ●●● ●●●●●

●● ●● ● ●● ●●●●●●●● ●●●●● ●● ●● ●●●● ●● ●●● ●● ● ● ● ●● ●●●● ●● ●●●●● ●●●● ●●●●●● ●● ●● ●●● ●●●●●●● ●● ●● ●●●●●●●● ●●● ●● ●●● ●●●●●●●●●●● ●●●●●● ●●●● ●●●●● ●●● ●●●●●●●● ●● ●● ●●● ●● ●●● ● ●●●●●●●●● ●●●●●●● ●●● ●● ●● ● ●● ● ●● ●●● ●●● ●●● ●●● ●●● ●● ●●● ●● ●●●●●● ●●● ●●●●● ●●● ●● ●● ●●● ●● ●●●● ●●● ●●●●● ●●●●● ●●●●● ●● ●●●● ●●● ●●● ●●●●● ●●●●●● ●●●●●● ●●●●● ●●●● ●●●●●● ● ●●●●●●●● ●●●● ●● ●●●●● ●●●●●●● ●●●●●● ● ●● ● ●●●●● ●●● ● ●●●●● ●●●●● ●● ●●● ●●● ●●● ●●●● ●●●●●●●●●●●●●●● ●● ●●●●● ●●● ●●● ● ●●● ●●● ●●●● ●●●●●●●●●● ●● ●●● ● ●●● ●●●● ● ●● ●● ●●● ●●● ●●●●● ● ●● ●● ●●● ●●●● ●●● ●●●●●● ●●●●● ●● ●●●● ●● ●●● ●● ●●● ●●● ● ●●● ●●●●●● ●●● ●●●●● ●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ● ●●● ● ●●●● ●● ●●● ●●●●●●●●● ● ●●●●● ●●●● ●● ● ●● ●● ●●●●● ●● ●●●● ●●● ●●●●●●●●● ●●●●● ●●● ●●● ●●● ●● ●●●●●●●●●●●●●●●●●●●●● ●● ●●●●● ●●●●●● ●● ●● ●●● ● ●● ● ●● ●●●●●●●●● ●● ●●● ●●●●● ●●● ●● ●●● ●●●●●●●●● ●●●● ●●●●●●●●●●● ●●●● ●●●●●● ●● ●●●●●●● ●●●●●●●●●●●●●●●●●●● ● ●●● ●●●● ● ●●●●● ●●●●●●●●●● ●●● ●●●● ●●●●●●●● ●●●● ●●●● ●●● ● ● ●●●● ●●●● ●●● ●●● ●●● ● ● ●● ●●●● ●● ●●●●●●● ●● ●● ●●●●●● ●●●● ● ●● ●● ●●● ● ●●● ●● ●●●● ● ●●●● ●●●● ●●●●● ● ●●● ●●●● ●●●●●●● ●● ●●●● ●●●●● ●● ●●● ●● ●●● ●● ●●● ● ●●●●●● ●●●● ●●●●●●●●● ●●●●●●●●●●● ●●●●●●●● ●●●●●● ●● ●●●●●● ●●● ●●● ● ●●●● ●●●● ●● ●●● ●●●● ●●●●●●●● ●●●●●● ●●●●●●● ● ●●● ●●●● ● ●● ●● ●●●●●●●●● ●●● ●● ●●●● ●●●●●●●●● ●●●●●●●●●●●●●● ●●● ●● ●● ● ●●● ●●● ●● ●●● ●●●●● ●● ●●●●●●●●● ●●●●●● ●●●●● ●●●● ●●●● ● ●●● ●●●● ● ●●●●● ●●● ●●●●●● ●●● ●● ●●●● ●●●● ●● ● ●●● ●●●●● ●● ●●●●●● ●●●● ●● ●● ● ●●● ● ●●●● ●●● ● ●●●● ●● ●●● ●●● ●●● ●●●●●●● ●● ●●●●● ●● ●● ●●●●● ●●● ●●●● ●●●●●● ●● ●●●●●● ●●●● ●●● ●●●●● ●●●●●● ●●●●●●● ●●●●● ●●●● ●● ●● ●●●●● ●●●●●●● ●●● ●●●●●●●● ●●● ●●● ●●● ●●●●● ●● ●● ●●●●●● ●●●●●●●●●● ●●●● ●●●●●●●● ●● ●● ●●●● ●● ●●● ●●●●●●●●● ●●●●●●● ●● ● ●●● ●●●●● ●● ●● ●●● ●●●●●●●● ●● ●●●●●●●●● ●● ●●●●● ●●● ●●● ●● ●●● ●●●● ● ●●● ● ●●●● ● ●●●● ●●● ●●●●●●●●●● ●● ●●●● ●●●●●● ●●●● ●●● ●●● ●●● ●●● ●●● ●●● ●●● ●●●●●● ●● ● ●●●● ●●●●●● ● ●●●●● ●● ●●● ● ●●● ●● ● ●●●● ●●●●●●●●●●●●●●● ●●●●●●● ●●● ●●● ● ●● ● ●● ●● ●●●●● ●●●●● ●● ●●● ●●●●● ●●●● ●●●●● ●●● ●●●●●● ●●●●●● ●●●● ●●●●●●●●● ●●●● ●●●●●● ● ●● ●● ●● ●● ●●●●● ●●●● ●●●●● ●●●● ●● ●● ●●●● ●● ●●● ●●● ●● ●● ●●●●● ●● ●●●● ●● ●● ●●●●● ● ●● ●● ●●● ●● ●● ●● ●●●●● ●●●●●●● ●●●●● ●●● ●●● ●●●●●●● ●●● ●● ●●●●● ●● ● ● ●●●●●●●●● ●●● ●●●● ●●●●●●●●●●●●● ●●●●●● ●●●● ●●●● ● ●● ●●●●●● ●● ●●● ●●●● ●●●●●● ● ●●● ●● ●●●●● ●● ● ●● ●●●●● ●●● ●●●●●●●●●●●● ●● ●●●●● ● ●●●●●●● ●●●● ●● ●● ●●● ●●● ● ●● ●●●●●● ●●● ●●● ●●● ● ●●●● ●● ●● ●●●● ● ●● ●●●● ●● ●● ●●●●●●● ● ●●●●●●●●● ●● ● ● ●● ●● ●●● ●●● ●●●● ●●●●●●●●●●● ● ●● ●● ● ● ●●●●● ●●●●●●●● ●●●● ●●●●● ● ●●●●●●● ●● ●●● ●●● ●● ●● ●●●● ●● ●● ●●●● ●● ●●●●●●●●●●●● ●●●●●●● ●● ●●●●●●●● ●● ●● ●●●●● ●● ●●●●● ●●●● ●●●●●●●● ●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ● ●●●●●●● ●●●●●● ● ●●●● ●●●●● ●● ●●●●● ●●●● ●●● ● ●● ●●●●●●● ●●●●● ●●●●●● ●●●●●●●●●●●● ●● ●● ●●●●●●● ●●● ●●●●● ●● ●● ●●● ●●● ●●●● ●● ● ● ●● ●●●● ●●●●● ●●●●●●●● ●●●●● ●●●● ●●●● ●● ● ●●●●●●●●●● ●●●●● ● ●● ●● ● ●●●●● ●●● ● ●●●●●●●● ●●●●●●● ●●●●● ●●●●●●●●● ●● ●●● ●●●●●●●●●●● ●●●●●●●●●●●● ●●● ●●● ●●●●●● ●●● ●● ●● ●● ●●●●● ● ●●●●●●●● ●●● ●● ●●● ●●● ● ●●●●●●●●●●●●● ● ●●●● ●●●●● ● ● ●● ● ●● ●●●● ●● ● ●● ●●●●●●●● ●●●● ●●●●●● ● ●●●●●● ●●●●●● ●● ●●● ●● ●● ●●● ●● ●● ●● ●● ●● ●●●●●●●●●●● ●●●●●● ●●● ●●●●●●●●●● ●● ●● ● ●● ● ●● ●●● ● ●●●●●●●● ●● ●●●● ●●●●●● ●●●● ●●●● ●●●●●●●●●●●●●● ● ●● ●●●●●●●●●●●●●●● ●● ●● ●●●● ●●● ●● ●●● ●●●●●●● ● ●●● ● ●●●●●●●●●●●●● ● ● ●● ●●●●●●●●●●●●●●● ●●● ●●●● ● ●● ●●●●●● ●●●●●●●●●● ●●●●●●● ●● ●●●●●●●●●●●●●● ●● ● ●● ●●● ●● ●●● ●●● ●● ●●● ●● ●● ●● ●●●● ●●● ●● ●●● ●● ●● ● ● ●●● ●●●● ●● ●●●●●●●● ●●●● ● ● ●●●● ●●●●●●● ●●● ●● ● ●● ● ●● ●●● ●● ●● ●●●●●●● ●●●●●●●●●●●● ●●●● ●●● ● ●● ●● ●●●● ●● ● ●● ●● ● ●●● ●● ●●●● ●● ●●●●● ●●●●● ●●●●●●● ●●●● ●●●●●●●● ●●● ●●●●●●● ● ●●●● ●●●● ●● ●●●●● ●●●●●● ●●● ● ●● ●● ●●●● ●● ●● ●●●●● ●●●● ●●● ●●● ●●● ●● ●●● ● ●●● ● ●●●● ● ●● ● ●●● ●● ● ● ●● ● ●●●●● ●●●●● ●●● ●●●●●●●●●● ●●●●● ●● ●● ●●● ●●●●●●●● ●● ●●●●●● ●●●● ●●●● ● ●●●●●●● ●● ●● ●● ● ●●● ●●●● ●●●●● ● ●● ●● ●●●●● ●●●● ●●●● ●●●● ●● ●●●●● ●● ●●● ●●● ●●● ●●●● ●● ●● ●●● ● ●● ●● ●●● ●● ●● ●●● ● ●●● ●●● ● ●●●● ●●●●●● ●●●● ● ●●● ●● ●●● ●●●●●● ●● ● ●● ●● ●●●● ●● ● ●●● ●●● ●●● ●● ●●● ●●●●● ●●● ●●●●●● ●● ●●●●●●● ●● ●●●●●●● ●● ●● ●●● ●●● ● ● ●●● ●●●● ●●●● ●●● ●● ● ●●● ● ●●● ●●●●● ●● ● ●● ● ●●●●● ● ●●●● ●● ●●●●●●●●●●●● ●●●●●●●● ●● ●● ● ●●●●●● ● ●●●●● ●●● ●●● ●● ●● ●●●●●● ●●●●●● ●● ●●●●●● ●●●●●●●●●●●●●●● ● ●● ●●● ● ●● ● ● ●●●● ● ●●●●●●●●● ●●● ●●●●● ●● ●●● ● ●●● ● ●●●● ●●● ●● ●●● ●●● ●● ●● ●● ●● ●● ● ●● ● ●

●●●●●●●●●●●●● ●●●●●●●● ●●●●● ●●● ●●●●●●●●●●● ●● ●● ●●● ●● ●●●●●●● ●●●●●●●● ●● ●● ●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●

●●●● ●● ●● ●●● ●● ●● ●●● ● ●●●●● ●● ●●●●●● ●● ●●●● ●●●● ●●●●● ● ●●●●●●●● ●● ●●● ● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●● ●●● ●●●●● ●●● ●●●●● ●●●●●●●●●● ●●● ●●● ●●●●●●● ●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●● ● ●● ●●●●●● ● ●● ●● ●●●●●●●● ●● ●●●● ●●●●●● ●●●●●●●●●●●● ●● ● ●●●●●●●●● ●●●●●● ●●●●● ●●● ●●●●●●●●●●● ●●●●● ●●●●●● ● ●●●●●● ●●●●●●●●● ●●●● ●●●●● ● ●●●●●● ●●●●● ●●● ●● ●●● ●●●● ●● ●●● ●● ●●● ●●●●● ●●●●● ●●● ●● ●●●●●●●●● ●●●● ●●●● ●● ●●● ●●●●●●●●●● ●●●●●●●●●●● ●●● ●●●●●● ●●●● ●●●●●●●● ●●●●● ●● ●●● ●●●●●●● ●●●●● ●●●●● ●● ●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●● ●●● ●●● ●●●●●● ● ●● ● ●●●●● ●●●●●●● ●●●●●●●●● ●●●●●● ●●●● ●●●●● ●●●●●●●●●●●●●●●●●●● ● ●● ●●●●● ●●●● ●●●●●●●●●●● ●●●●●●●● ●● ●●●●●●●● ●●●●●●● ● ●●●●●●●●●●●● ●● ●●●●● ●●●●● ●● ●●●●●● ●● ●● ●●● ●●● ●●● ●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●● ●●● ●● ●● ●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●● ●●●●●●●●●● ●●● ●●● ● ●● ● ●●●●●●●●● ●●● ●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●● ●●●● ●●●● ●●● ● ●●●●●●●●●●●● ●● ●●● ● ●●●●●● ●●●●●●●●● ●●●●●● ●●● ● ●● ●● ●●●●● ●●●●●●●●●●●●●● ●●● ●●●●●● ●●● ●● ●● ●● ●● ●● ●●●●●●●●●● ●●●●●●●●●●●●● ●● ●● ●●●● ●●● ● ●●●●●●●●● ●●●●●●● ●●●●● ●●● ●● ●●●● ●●●● ●● ●●●● ●●●● ●●●● ●●●● ●● ●● ●● ●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●● ●●● ●●●●●●●●●●●●●● ●●●●●●●●●● ●● ●●●●●●●●● ●● ●●● ●●●● ●●●●●●● ●●●●●●●●●●●●●●● ●●●●●● ●●●●● ●●●●●● ●●●●●●●● ●●● ●●●●●●●●●●● ●●● ● ●●●●● ●●●●●●●●● ●●● ●●●● ●●●●●●● ●●● ●●●●●● ●●●● ●●●●●● ●●●●●●●●●● ●●●● ●●●● ●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●● ●● ●● ●●● ●●●●●●● ●●●● ●●● ●● ●● ●● ●●● ●●● ●●●●●●●● ●●●●●●●●●●●● ●●● ●●●●● ●●●●●●●●●●● ●● ●●●●●●● ●●●●● ●●●● ●● ●●● ●●●● ●●●●●●● ●●●● ● ●● ●●●●●● ●● ●●●●●●●● ●●● ●●●●● ●●●● ●●●●●●●●●●●●●●●● ●●●● ●●● ●●●●●●●●●●●●●●●●● ●●● ●● ●● ●●●●● ●●●● ●●●●●●●●●●●● ●●●●●●●●● ●●● ●●●●●●●●●●●● ●● ●● ●●●●●●●● ●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●● ●● ●●●●●●● ●●● ●●●●●● ● ●●● ●● ●●●●●●●●●●●● ●●●●●● ●●● ●● ●●● ●● ●●●●●●● ●●●● ●● ●●●●●●●●● ●●●● ●●●●●●●●●●●●● ●●●● ● ●●●●● ●●● ●● ●●●●●●●●●● ●●●●●●●●●● ● ●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●● ●●●●●●●●●● ●●● ●● ●● ●● ●●●●● ● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●● ●● ●●●●● ●●●●●●●● ●●●●●●● ●●●●●● ●●●● ●●●●●●●●●●●● ●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●● ●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●● ● ●●●● ●●●●●●●● ●●●●●●●● ●●●●●●● ●●● ●●●●● ●●●● ●●●●●● ●●●●●●●●● ●● ●●●● ●●●●●● ●●●●●●●●●●●●●●●●● ●●● ●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●● ●● ●●●● ●●● ● ●●●● ●● ●● ●●●●●●●●●● ●●●●●● ●● ●●● ●●●● ● ●●●●●●●●●●● ● ●●● ●●● ●●● ●●●●●●●●●● ●●●●● ●● ●●● ●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●● ●● ●●●●●●● ●●●●●●●● ●●●●● ●●● ●● ● ●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●● ●●●●●●●● ●●● ●●● ●●●●● ●●●●●●●●●●●●●● ●●●●●●● ●● ●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ● ●● ●● ●● ●● ●●●● ●● ●●● ●● ●●●● ●● ● ●●●●●● ●●● ●●● ●●● ●●●●● ●●● ●●●●●● ●● ●●●●●● ●●●●● ●●●●● ●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●● ●●●●●●● ●● ●● ●●●●●● ● ●●●●●● ●●●●●● ●●●●●●● ●●●●● ●● ●● ●●● ●● ● ●●●● ●●●● ● ●●● ● ● ●● ● ●● ●● ●● ● ●● ●● ●●● ●●● ●● ●● ●● ● ●●● ●● ● ●● ●●●● ● ●● ●● ●● ●● ●● ●● ●●● ●●●● ●● ●● ●●●● ●● ●● ● ●●●● ●● ●●●● ● ●● ●● ●● ●● ●● ●● ●● ●●● ●●● ●●●● ● ●● ●●● ●●●●●● ●●●●● ●●● ●●● ●●● ● ●●●●● ●●●● ●●● ● ●●● ●●● ●● ● ●●● ●●● ●●● ●● ●● ●●●● ●● ●● ●●●● ●●●● ●●●● ●●● ●●● ● ●● ●●● ●●●● ●●● ●●● ●● ● ● ●●●● ● ●● ● ●● ● ● ●●● ●●● ●●● ● ●●●● ●●●● ●●● ● ●● ●● ●●●●●● ●●● ●● ●●●● ●● ●●● ● ●● ●●●●● ●● ●● ● ●●● ● ●●●●● ●● ● ●● ●● ●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●● ●● ●●●●● ●●●●●● ●● ●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●● ●●●● ●● ●● ●●●●●●●●●●●●●●●●●●●●●●● ●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●● ●● ●●● ●●●●●●●●●●●● ●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●● ●●●● ●● ●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ● ●●● ● ●● ●●●● ● ●● ●●●●●●●●●●●●●●● ●●●●●● ●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●● ●●●●● ●● ● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●● ●●●●●●●●●●●●●●● ●●●●●●● ●●● ●● ● ●●●●● ●● ●●● ●●● ●●● ●● ● ●●●● ●●●●●●● ●●●●● ●●●● ●●●● ●●● ●● ●● ●●●● ●●●●● ● ●●●● ●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●● ●●●● ●●●●●●●●●● ●● ● ●●●●● ●●●●●●● ●●● ●●● ●● ●●●●●● ●● ●●● ●●● ●●●●● ●● ●● ●● ●● ●●●●●●● ●● ●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●● ●●● ●●● ●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●● ●● ●●●●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●● ●● ●●●●●●●● ●●● ●●●●● ●●●●● ●●●● ●●● ●●● ●●●●●●●● ●●●●● ●● ●●●●●●● ●●●●●● ●●●●●●● ●●●● ● ●●●●●● ● ●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●● ●● ●●●●●●●● ●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●

● ●● ●●●●● ●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●● ●●●●●●●●●●● ●●●●●●● ●●●●●●● ●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●● ●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●● ●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●● ●● ●●● ●●

● ●● ●● ● ●●●●●● ●● ●●●●●●● ●●●● ● ●● ●●●●●●●● ●●●●● ● ●● ● ● ●●● ●●● ●● ●● ●● ●●● ●●●●●● ●●●●●●● ●●●● ●●●●●●●●●● ●●●●●● ●●● ● ●●●●● ●●●●●●●●●●● ●● ●●●●● ●●●●●●●●●●●● ●● ●●●●●●●●●●●●● ●● ● ●●●●●● ●● ●●●●● ●●●●●●●●●●●●●●●● ●●●● ●● ●●●●●● ●●● ●●● ●● ●●●● ● ●●● ●● ●●●● ●●●●●● ●● ●● ●●●●● ●●● ●●● ●● ●●●●● ●●●●●● ●●●●●●●●●● ●●●● ●●● ●●●●● ●●●● ●●●● ●● ●●●●●●

●●●●●●●●●●●● ●●●● ●● ●● ●●●●●●● ●● ●●●● ●●● ●●● ● ●●●●●●●●●●●●● ●●●●●●●●● ●●●●● ●●●● ●●●●●●● ●●●●●● ● ●●●●● ●●●● ● ●● ●●●●●● ●● ●● ●●● ●● ●●●●●●● ●●●●●●●● ●● ●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●● ● ●● ● ●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●● ● ●●●●●●●●● ● ● ●●●●●●● ●●●●●●●●●●● ●●●●●●● ●●●● ●●●●●● ●●●●●● ●●●● ●●● ●●●●●●●●●●● ● ●●●●●●●● ● ●●●●●●● ● ●●●●●● ● ●●● ●●●●●●● ●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●● ●●● ●●●●●●●● ●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●● ●● ●●●●● ●●●●●●●●● ●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●● ●● ●● ●●●● ●●●●●●●●●●●●● ●●●● ●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●● ●●●● ●●●●●●●●●● ●●●●●●●●●● ●●● ●● ●●●●●●●●●● ●●●●●●●●● ●● ●●●● ●●●●●●● ●●●●●●● ●●●●●● ●●● ●●●● ●●●●●●● ● ●●●●● ●●●●● ●●● ●●●●●● ●●● ●●●● ●●●●● ●●●● ●

●● ● ●● ●● ● ●● ●●●●●●●●●●● ●●●● ●●● ●●●● ●● ●●● ●● ●● ●● ●●●●● ●●●●● ●● ●●●●●● ●●●●● ●●● ●●● ● ●●● ●●●● ● ●●●●● ● ●●● ●●●● ● ●●●●●●● ●●●● ●●●●●●●● ●●● ●● ●●● ●●● ●●●●● ●● ●●●●●●● ●●●● ●● ●●● ●● ● ●●●●●●●●●● ●● ●●●●● ●●● ●●● ●● ●●●●●●●●●●● ● ●●● ●●●● ●●● ●●● ●● ●●● ●●●●●●● ●●● ●● ●● ● ●●●●●●●●●● ●●● ●● ●●●● ●●●● ●●●●●●●● ● ●●●●● ●●●●●●●● ●●● ●●●● ●●● ●●●● ●●●●● ●●● ●●●●● ●●● ●●●● ●●● ●●●● ●● ●●●●●● ●●● ● ●● ●●●● ●●● ●●●●●●●● ●● ●●●●●● ●●●● ●●● ● ● ●● ●●●●●●● ●● ● ●● ●●●●●●● ● ●●●●●●●●●●●●●● ●●●●●●●●●●● ● ●●●● ●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●● ●●●● ●● ●● ●●●●●●●●● ●● ●● ●● ●●●●●●●● ● ●● ●●●●●● ●● ●● ●●●● ●●●●● ●●●●●● ●●●● ●●●● ● ●● ●● ●●● ●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●● ●● ●● ●●●●● ●● ● ●●●●● ● ●● ● ●● ●● ●●●● ●● ● ● ●● ●● ●● ● ●●● ●●● ●●●● ●●●● ●●●●● ●●● ●● ●●●●●● ●●● ● ●●●●●●●● ●● ● ●● ●● ●● ●●●●● ●●● ● ● ●● ●●●●● ●●● ●● ●●● ●●●●●● ●● ●● ●● ●● ●●●● ●● ●●●●● ●●●● ●●● ●●●● ● ●●●●● ●● ● ● ●●●● ●●● ●●● ●●● ● ●●●● ●● ●●● ●●●●●● ●●● ●●● ●●●● ●●●●● ●●●●●● ●●●● ●●●●● ●●● ●● ●●● ●●●●●●●●●●● ●● ●●●●● ●●●●●● ●●●● ●●●●●●●●● ●●●●●● ●● ●● ●●●●●●●●●●● ● ●●●●●●●●● ●●●●●●● ●●●● ●● ●●●● ●●●●●● ●● ●●●●●● ●● ●● ●●● ●●● ●●●●●● ●● ● ●●●●●●●●● ●●●● ●● ●● ●●●●●● ●●●●● ●●●●●●●●●●● ●●●●●● ●●●●●●●●● ●●●● ●●●● ●● ●● ●●●●●●●● ●●●●● ●● ●●●● ● ●●●●● ●●●●●● ●●● ● ●● ●● ●●●●●● ●●● ●●●●● ●●●● ● ●●●● ● ●●●●● ●●● ●● ● ●●● ●●●●● ●●●●●●●●●●●● ● ●●●●●●●● ●● ●●●● ●●●●●●●●● ●●●● ●●● ●●●●● ●●●●● ●●●● ●●●● ●●● ●● ●●●●● ●●● ● ●●●● ●● ●●● ●● ●●● ● ●● ● ●●●● ●●● ● ●● ●●● ●●●● ●●●●● ●● ● ● ●●●● ●●●●● ●●● ●●●●● ●● ● ●● ●●●●●●●●●●●● ●●●● ●●●●●●●● ●●●●● ●●● ●●●●● ●●●● ●●● ● ●●●●● ● ●●●● ●●●● ●●● ●●●● ● ●● ●● ●●●● ●●● ● ●● ●● ●●● ●●●● ●●● ●● ● ●● ●● ●●●●●● ●●●● ●●●●● ● ●●●● ●●●●● ●● ●●●● ● ● ●●●●● ●●●● ●●● ● ●●●● ● ●●●● ● ●● ●●● ● ●● ●●●● ●● ● ●●●●● ●● ●●●●● ●●● ●● ● ● ●●● ●● ●● ●●●●●●●●● ●●●● ●●●●●●●● ●● ●●●●●●●●●●●●●● ● ● ●● ●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●● ●● ●● ●●● ●● ● ● ● ●● ●●● ● ●● ●●●● ●●●●● ●● ●●●● ●● ●●● ●● ●●● ●● ● ●● ●●● ●●●●● ● ●●● ●● ●●●●●●● ● ●● ●●●● ● ●●● ●●● ●●● ●● ●● ●●● ●●●●●●● ●●● ●●● ●●●●● ● ●● ●● ●● ●●● ● ●●●● ● ●●●● ●●●●●●● ● ●●● ●● ●●●●●● ●●●●●●●● ●●● ●● ●● ●● ●●● ●● ●●●● ● ●●●●●● ●●●●●● ●●● ●● ●● ●● ●● ●● ●●●●●●● ●● ●●●●●● ● ● ●●●●● ●● ●● ●● ●● ●● ●● ●● ● ●●● ●● ●● ● ●● ●● ●● ●● ●● ●● ● ●● ●●●●●●●● ●●● ● ●● ●●● ●●●● ●●●●●● ● ●● ● ●●●●●● ●●● ●●●● ● ●● ●●● ●●●●●● ● ●● ●●● ●●●● ●● ●●●●● ●●●●●● ●●●● ●●● ●● ●● ●●● ●●●●●●●●●●●●●● ●●● ●●●●●●●●●●● ●● ●● ●● ●●● ●●●●●●●● ●●● ●● ●●● ● ●●● ●● ●●●●●● ●●●●● ●●●●● ● ●●●●● ● ●●●● ●●●● ●●● ●●● ● ● ●●●●● ●● ●●● ● ● ●●●● ●●● ●●●●●●● ●●● ●●● ●●●●●● ● ● ●● ●●●● ●●● ●●● ●●●●●● ●● ● ●● ●●●●● ●● ● ●● ●●●●●●●●● ●●●●●●●●● ●● ●●●●● ●● ●●●●● ●●●● ●●●●● ●●● ●●● ●● ●●●●● ●●●●●●● ●●●●●●●●● ●●●●●●●●● ● ●●● ●●●● ●●●●● ● ● ●●● ●● ●● ●●● ●●● ●● ●● ●●●●● ●●●●●●● ●● ●● ●●●●●●●● ●●●●●●●● ●●●●●● ● ●● ●●● ●●● ●● ●● ●●● ●●●●● ● ●● ●●● ●● ●● ●●●●● ● ●●● ●●●● ●●● ●●●● ●●● ●●● ●●●●●●●●●●●●●● ●●●●●●●● ● ●●● ●●●● ●●●● ●●● ● ●●●●●●●●● ●●● ● ●● ●●●●●●●●●●●●●●● ●● ●●● ●● ●●●●● ● ●●● ● ● ●●●●● ●●●●● ●●● ●●●●●● ● ●● ●●●●●●●●● ●● ●● ●● ● ●● ●●● ●●●●● ●●●●●●● ●● ●●●●● ●●● ●●●●● ●● ●● ●●●●● ●●●● ●● ●● ●●● ●●●● ●●● ●● ●● ●●●● ●●●●●●● ●● ●●● ● ●●●● ● ●● ●●● ●●●●●●● ●●●● ●●●●● ● ●● ●●● ●●●●●●●● ● ●● ● ●● ●● ●● ●● ●●● ● ●● ●●●●●● ●●● ●●● ●●● ●● ● ●●●● ●●●● ●●●●● ● ●●●●● ●●●● ●● ●●● ● ●●● ● ●● ● ● ●●● ● ●●●●● ●●●● ●● ●● ●●●● ●●●● ●● ●● ●●● ●● ●●● ● ●● ● ●●●●●●●● ●●● ● ●●●●●● ●●● ●●●●●●● ● ●●●●● ●●● ●●●●● ●● ●● ●● ●● ● ●●●●●● ●●●● ● ●●● ● ●●●● ●●● ●●●● ●●●●●●●●●●●●●●●●●●●● ●● ●● ● ●● ●●● ●●●● ● ●●●● ●●● ●● ●● ●●● ●● ●●●●●● ●●●●● ●●● ● ●● ●●● ●●●●●● ●● ●●● ●●●● ●● ●●● ● ●●●●● ●● ●●●●●●● ● ●●● ●●● ●●● ● ●●● ●● ●● ●●● ●●● ●●●●●● ● ●● ●● ●●●● ●●● ●● ● ●●●●●● ●● ●●●● ●●● ●● ●● ●●●●● ●● ●●●●● ● ●● ●●●●● ●●● ●●● ●●●●●●●●● ●● ●● ●●● ●●●● ●●● ●●●● ●● ●● ●●●● ●●● ●●● ●●● ●● ●●●●●● ●● ●●● ● ●●● ●●● ●● ●●●● ●●● ●● ●●● ●●● ●● ●●● ●● ●● ●●●●●● ●●●●●●●●● ● ●●● ●● ●● ●●● ●● ●●●●● ● ●●●●● ●● ●●

● ●●●●●●●●●●●●●●●●●●●●● ●●● ●● ●●● ●● ●● ●●●●●●● ●●●●●●●●● ●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●● ●●● ●●●● ●● ●●● ●●● ●●●●●●●● ●●●● ●●● ●●●●● ●●●●● ●● ●●● ● ●● ●● ●●● ●● ●●●● ● ●● ●●●●● ● ●●● ●●●●●●●● ●● ●●●● ●● ●●● ●●●●● ●●● ●●●● ●●● ● ●●●●● ● ●●●● ●●● ● ●● ●● ● ●●● ●●●●● ● ●● ●● ●●●● ●●● ●● ●● ●● ●● ●●● ●●●● ●● ●●● ● ●●●●●●● ● ●●● ●● ●●● ● ●● ●● ●●●● ●● ●●●● ● ●● ●●● ● ●●● ●●● ●●● ●● ● ●● ●●●● ●●● ● ●● ●●● ● ●●● ● ●●●●● ●●●●●● ● ●● ● ●● ●● ●● ●●● ●● ● ●● ●●●● ●●●● ●●●●●●●● ●●●● ●●● ●● ● ●● ●● ●● ● ●●●●● ●●●● ●● ● ●●● ●●●● ●● ●● ●● ●●●●●●● ●●●● ●●●● ●●● ●●●●●●● ●● ●● ●● ●●●●● ●●●● ●●●● ●●● ● ●●● ● ●●● ●●● ● ●● ●● ● ● ●●● ● ●●●● ● ● ●● ●● ●●● ●●● ●●● ● ●● ● ●● ● ● ●● ● ●● ● ●●● ●● ●●● ● ●

● ● ●● ●●● ●●●● ●●●●● ●●● ●● ●●●●●● ● ●●●● ●●●●● ●● ●● ●● ●●●●●● ●●●● ●●●●●● ●●●●●● ●●●● ●●●●●●●● ● ●●●● ●●● ●●●● ● ● ●●● ●●● ●●● ●● ● ●●●●● ● ● ●●●●●● ●●● ●●●●●●● ● ●●● ● ●● ●●● ● ● ●● ●● ●●●● ●● ●● ● ●●● ●●●●● ●●●●●●● ●●●● ●●● ●●● ●● ●●●●●● ● ●●●● ●●●●●●● ●●●●●●●● ●●● ●● ●●● ● ●● ●● ●●●●● ●● ●● ●● ●●● ●●●●● ●●● ●●●●●● ●●●● ●●●● ● ● ●●● ●●●●● ●●●●●● ●● ●●● ●● ●●●●●● ●●● ●● ●●● ●● ●●●●●●●●●●●●●●● ●●● ●●●●●●● ●●●●● ●● ●●● ●●● ●● ●●●●● ●● ●●● ●●● ● ● ●●●● ●● ●● ●●●●● ●● ●● ●● ●●●●● ●●●●●●●● ●●●●●● ●● ● ●●●● ●●● ●● ●●● ● ● ●● ●●●● ●● ●● ●●●●●●●●● ●●●●●●● ●●●● ●●●●●●●●●●●● ●●● ●● ●●● ●● ● ● ●●● ●● ●●● ●●●● ● ●● ●● ●● ●●●● ●● ●● ●● ●● ●●● ●●●●● ●● ●●● ● ●● ●● ●● ●● ●●● ●●●● ●●●● ●●●●●●●●● ●●●●●●●●● ●●●●●●●● ●●●●●● ●●●●●● ●●●● ●●●●●●●●●● ●●●●●●●●●●● ●●● ●●●●● ●● ●●● ● ●●●●●● ●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●● ●●● ●●●●●●●●●●● ●●● ●●●●● ●●●● ●● ●● ●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●● ●●●●● ●● ● ●●●●●● ●●●● ● ●●●●● ●●●● ● ●● ●●●●●●● ●●●●●●● ●●●●●●●●● ●● ●● ●●● ●●●● ●● ●●●●●●●● ●● ●●● ●●●●●●● ●●●● ●●● ●●●●● ●●●●●●●● ●●●●●●●● ●●●●●● ●●●●●●●●●● ●● ●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●● ● ●●●● ●●●● ●●●● ●●●●●●●●●●●●●●●●●●● ●●● ● ●● ●● ●● ●● ●●●●● ●● ●● ●●●●● ●● ●●● ●●● ●●●● ●●●●● ●●● ● ●● ●●●●●●●●●● ●●● ●●● ● ● ●●● ●●●● ●●●● ●●●●●● ●●● ●● ●● ●●●● ●● ●●●●● ● ●●●●●● ●●● ●●● ●● ●● ●● ●●●● ●●●●● ● ●●● ●● ● ●●●●● ●●● ●● ●● ● ●● ●●●●●●● ●● ●●● ●●● ●● ●● ● ●●●●● ●●● ●● ● ● ●● ● ●●●● ●●●●● ● ●●●● ●●● ●●●● ●● ●●●●●●● ●● ●●● ●●●●●●●● ●●●● ● ● ●● ●●●●● ● ●●●● ● ● ●● ● ● ●● ●●● ●●●●● ●●● ●● ●●● ●●●●●●● ●●●●●●●●●●●● ●●● ●●●●● ●●● ●●● ●● ●●●●● ●● ●●●●●●●● ●● ● ●●●●●●●●●●● ● ● ●●● ●● ●● ●●●●●● ● ●●●● ● ●● ●● ● ●● ●● ●● ● ●● ●● ●●● ●● ● ●●● ●●●●●● ●●●●● ●●●●● ●●●●●●●● ●●●● ●● ●● ●●●●●● ●● ●●● ●●●●●●● ●●●● ●● ●●● ●● ●● ●●●●●●●● ●●● ●●●●●●● ●●●●●●●●●● ●● ●● ●●● ● ●● ●●●● ●●●●● ● ●●● ●●●● ● ●● ●● ● ●●●● ●● ● ●●●● ●●● ●● ●●●●●● ● ●●●● ● ●●●●●●● ●●●● ●●●● ●●●● ●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●● ●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●● ●●● ●● ●● ●●● ●● ●●● ●●● ●● ●● ●● ●●●●● ●●● ● ●● ●● ●●●● ●●● ●● ●●●● ●●● ●● ●● ●●● ●●●● ●●● ●●● ●●●● ● ●● ● ●●● ● ●●●●● ● ●●●● ●●●●●●● ●● ●● ●●●● ●● ●●●●●●●● ●●●●● ●●●●● ● ●● ●● ●●●●● ●●●●●●●● ●●● ●● ●●●●●●●● ●●● ●●● ●● ●●●●●● ●●● ●●●●●●●●●●●●●● ● ●● ●● ●●● ●●●●● ●● ●● ●●●● ● ●●●●●●●● ●●●●●● ●●● ●●●●●● ●● ●● ●●●●●● ● ●●●●● ●●● ●●● ●●●●●● ●●●●●●●●●● ●●● ●● ●●●● ● ●● ●●●●● ●● ●●● ●●● ●●●●●●●●●●● ●●● ●●●●● ●●●●●●●● ●●●●●●●●●●●●● ●● ●●●●●●●● ●●●●●● ●●● ● ●●● ●● ●●●●● ●●●●●● ●●●●● ●●●●●● ●●● ●●● ●●●●● ●●●●● ●●●●●●●● ●●●● ●● ●●●●●● ●●●●● ●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●● ●●●● ●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●● ●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●● ●●● ●●●●●●●●●●●● ●●●●●● ●●●●●● ●●●●●●●●●●●●●●● ●●●●●●● ●● ●●● ●●●● ●●●●●●●●● ●● ●●●● ●●● ●●●● ● ●●●●●●●●●●●●●●●●● ●●● ●●● ●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●● ●●● ●● ●●●●●●● ●●●●●● ●● ●●●●●● ●● ●● ● ●●● ●●●●●● ●● ●● ● ●● ●●●● ●● ●● ●●● ●● ● ● ●● ●● ●●● ●●●●● ●●● ● ●●●●● ●●●● ● ● ●●● ●●● ● ●● ● ●●●●● ● ●●●● ● ●●●● ●●●● ●●●●●● ●●●● ●●●● ●●● ● ●● ●● ● ●●●● ●● ● ●●● ●● ●●●●●● ●● ●●● ●●●● ●●● ●●● ●●●●●●● ●● ●● ● ●●● ●●● ●●●●●● ●●●●●●●● ●●● ●● ●● ●●●●●●● ●●●●● ● ●●● ●● ●●●●●●●● ●●●●● ●●● ● ● ●●●● ●● ●● ●●●● ●● ●●●● ●● ●● ●●● ● ●● ●●● ●●● ●●●●●● ●●● ●●●●●●●● ●●●● ●● ●● ●●● ● ● ●●● ● ●● ●●● ●●● ●● ●●●●●●●●● ●● ●● ●●●●●● ●● ●●●● ●● ●●● ●●● ●●●●● ●●● ●●●● ●●● ●● ● ●● ● ●●●●●● ●●●●● ●●●● ●●● ● ●●●● ●●●● ●● ●● ●● ●● ● ●●●●●●● ●●●●●●●●●●●●●● ●●● ● ●● ●●● ●● ● ●●●● ●●● ●●●●● ● ●●●●●● ●● ●●● ●●● ●●●●●●● ●●●

●●●●●●●●●●●● ●● ●●●●●●●●●●●● ● ● ●●●●● ●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●● ●●●●●●● ●●●●●● ● ●●●●●● ●●●● ● ●● ●●●●●● ●● ●● ●●● ●● ●●●●●●● ●●●●●●●● ●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●● ●●●●●●●●●● ●●●●●● ●● ●●● ●●●●●●●●●●●● ●● ●●●●●●●● ●●● ●●●●●●●●●● ● ●● ●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●● ●●●●●●●●●●● ●● ●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●● ●●●● ● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●● ●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●● ● ●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●● ●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●● ●●●●● ●●●●●● ●●●●

●●●● ●● ●●● ● ●●●●● ●●●●● ●● ●●●● ●●●●●● ●●●●● ●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●● ●● ●● ●●●●● ●● ●●●● ●● ●●●●●● ●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●● ●● ●● ●● ●●●●●●●●●● ●●●●●●●● ● ●●● ●● ●● ●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●● ●● ●●●●●●●●●●●● ● ●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●● ●●●●●●●● ●● ●●●●●●●● ●●● ●● ●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●● ●●●●● ●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●● ●●● ●●●● ●●●●●●●●●●●●● ●●●●●● ●●●●●●●● ●●● ●●●● ●●● ●● ●●● ●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●● ●●●●●●●● ●●●●●●● ●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ● ●●●●●● ●●●●● ●● ●●●● ●● ●●●●●●●●● ●● ●●● ●●●●●●●●●●●●● ●●●●●●●● ●●●● ●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●● ●●●●● ●● ●●●● ●●● ●●●●●●●●●● ●●● ●●● ●●●●●●●●●●●●● ● ●●●●●●● ●●● ●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●● ●●●●●●● ●●●●● ●●●●●●● ●●●●● ●●●●●●●●●●●●●● ●● ●●●●● ●●●●●●●● ●●●●●●●●●●●●● ●●●● ●●● ●●● ●●●●●●● ●●●●●●●●●●● ●●● ●●●●●● ●●●●● ●●●● ●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●● ●● ● ●●● ●● ●●●●●●● ● ●●● ●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●● ●●● ● ●●● ●●● ●●●●●●●●● ●●●●●●●●●●● ●●●●●● ●●●●● ●●●●●● ●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●● ●●●● ●●●●●●●●●●●●●●●●●●●● ●● ●●●● ●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●● ●●●●● ●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●● ●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●● ●●● ●●●● ●●●● ●●● ●●●● ● ●●●●● ●●●●●●●●●●●●●●●● ●● ●● ●● ●●● ●●●●●● ●● ●●●● ●●● ●●● ●●●●●●●● ●●●● ●●●●● ●● ●●●●●●● ●●●●●●●●●●● ●●● ●●●●●●●● ●●●●●●●●●●●●●●●● ●● ●●●● ●●●● ●●●●●●●●●●●●●●●● ●●●●● ● ●●●●● ●●●● ●●● ●●●●●●●● ●●● ●●●●●●● ●●● ●●● ● ●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●● ●●●● ●● ●●● ●●● ●●●● ●●●● ● ●● ●●●●●● ● ●●●●●●●●●●●● ●●●●●●● ●●●●●● ●●●● ●●●● ●●●●●●●●●●● ●●●● ●●●●●●●●● ●●● ●● ●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ● ●●●● ●●● ●●● ●●● ●●●●● ● ●●● ● ●●●● ●●●● ●● ●●●●●● ●●●●● ●● ●●●●●●●● ●● ●●●●●●●●● ●●●●●●●●●● ●● ● ●●●●●●● ●●●●●●●●●● ●●● ●●●●●● ●●●●●●●●●● ●●●●● ●●●● ●●●● ●●●●●●● ●●● ●●●●●● ●●●●●● ●●●● ●●● ●●●●● ●●●● ●● ●●●●● ●●●●● ●●●●●●● ●●●●●● ●● ●●●●●●●●● ●●●●● ●● ●●● ●●●●●●●● ●●●●●●●●●●●●● ●●●●● ●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●● ●● ●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●● ●● ●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●● ●● ●●●●●● ●●●● ●● ●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●● ●●● ●●●● ●● ●●●●●●● ●● ●●●●● ●● ●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●● ●● ●●●●●●●●● ●●● ●●●●● ●●●● ●●●●●●●● ●●●●●●●● ●●●● ●●● ●●● ●●●●●●●●● ●●●●●●●●●●●●● ●●●● ●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●● ●●● ●●●● ●●●●●●●● ●● ●●●● ●● ●●●● ●● ●●● ●●● ●● ●●● ●●●●● ●●●●●●●● ●●●●● ● ●● ●●● ● ●●●● ● ● ●●●● ●●●● ●● ●●●●●●●●●●●●● ●●●●●●● ●● ●●●●●●● ●● ●● ●● ●●●●●● ●●●●●●● ●● ●●● ●●●●●●●●●●● ●●● ● ●●●●● ●●●●●● ●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●● ●●●●●● ●●●●●●● ●●●● ●●●● ●●●●● ●●●●●●● ●●●●●●● ●● ● ●●●●● ●●●●●●●●● ●●●● ● ●●●●●●●●●●●●●● ●●● ●●● ●●● ●● ●●● ●● ●●●● ● ●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●● ●●●●● ●●●●●● ●●● ●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●● ●●●●●● ●●●● ●●●●● ●●●●●●● ●●● ● ●●● ●●● ●●●● ●●●●●●●●●● ●●●●● ●● ●● ● ●●●●●●●●●● ●● ●●●●●●●●●●● ●● ●●●●●●●●●●●● ● ●●●● ●● ●●●●●●●●●●●●● ●●●●●● ●●●● ●●● ●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●● ●●● ●●●●● ●●●●●●●●●●●●● ●●● ●●●●●●●●●● ●●●●●●●●● ●●●● ●●●●●●● ●●●●●●●●●●●●●●●● ●● ●●●●●●●●●● ● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●● ●● ●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●● ●●●●●●●●●●●●● ●●●●●●● ● ●●●● ●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●● ●●● ●●● ●● ● ●●●●●●●●●● ●●● ● ●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●● ●●●●●● ●●●●●●●● ●● ●●●● ●● ●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●● ●●●●●●●●●● ●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●● ●●● ●● ●● ●● ●● ●● ●●●●●● ●●●●●● ●●●● ●●●●●●●● ●●● ●●●●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●● ●● ●● ●●●● ●●●●●●●●●● ●●●●●●● ●●●●●●●● ●● ●●●●●●●● ● ●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●● ●●●● ●●●● ●●●●●●● ●●●●●●●●●●●●●●● ●●● ●● ●●●● ●●●●●● ●●●● ●●●● ●●●●●●●● ●●●● ●● ●●● ●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●● ●●●●● ●●● ●●● ●● ●●●●●● ●● ●●● ●●●●●●●●●●●●●●●●●

checkout

compile

database

dependencies

deployment

infrastructure

machine

teardown

test

0% 25% 50% 75% 100%
Run Time

A
ct

io
n

Ty
pe

Project CI Usage

heavy

non−heavy

Figure 7.8: Runtime percentage of each action type in signal-generating builds in heavy CI users vs

others.

frastructure, checkout, database, and teardown action types. The e�ect size was medium for
dependencies action type, while for machine and test action types the e�ect sizes were small.

Because heavy users are likely to be lucrative as well, it may be worthwhile for the CI
services to provide dedicated resources for the heavy users based on their requirements. For
example, heavy users are spending more time downloading dependencies during the CI pro-
cess compared to other users. Therefore, the CI service can provide more bandwidth during
the dependency installation of the heavy users.

Approaches to make testing and compiling faster will bene�t a large proportion of CI

users. The heaviest users (and CI providers as a consequence) will bene�t most from more

bandwidth during dependency installation.

103

7.4. Study Results

(RQ3) Why are some builds unable to provide a signal?

RQ3: Approach. First, we enumerate the outcome of builds that failed to generate a signal.
With the help of more granular outcomes such as infrastructure_fail provided by the
CircleCI API, build outcome enumeration in this section goes beyond the four basic outcomes
introduced in Section 2.4. Then, we randomly select 150 random builds that terminated with
non-signal-generating build outcomes. Then, one author manually analyzed the CircleCI API
responses, build logs, and git commits of this sample of non-signal-generating builds to iden-
tify the circumstances that led to the non-signal-generating outcome. Next, another author
checked the sample to con�rm the �ndings. Any disagreements in the �ndings were resolved
through discussions between the authors. After completing this step, we formulated queries
to detect patterns in the CircleCI API responses to count the number of instances of each
non-signal-generating incident.

RQ3: Results. The bottom six rows of Table 7.2 show the outcomes of non-signal-generating
builds.

Observation 7: 50% of non-signal-generating builds (849,954 of 1,692,024) were abruptly ter-

minated with a build outcome of cancelled. These can be cancelled either on users’ request
or automatically by CircleCI if the build is determined to be redundant. If the Auto-cancel

redundant builds feature is enabled, CircleCI cancels any queued or running builds when
a newer build is triggered on that same branch, saving resources. However, we only found
64,077 builds cancelled automatically leaving 785,877 builds as cancelled by the users. Further
research is needed to understand the reasons behind this high proportion of user-cancelled
builds.

Observation 8: 36,184 builds terminated with a build outcome of No tests. In platform
version 1.0 of CircleCI, if a command was not de�ned for the testing phase of the CI process,
the build terminated with the special outcome of No tests. To avoid this behaviour inter-
fering with their work�ow, CircleCI users had to include a no-op command in the testing
phase of their CI con�guration. In version 2.0 of the CircleCI platform, this requirement was
removed such that a test section was not necessary in the CI con�guration. We were able

104

7.4. Study Results

to verify that all builds in our dataset with the No tests outcome was executed on the 1.0
platform con�rming that phenomenon.

Observation 9: 10,993 builds were unable to provide a signal due to infrastructure failures

in the CI service. According to the CircleCI support forum discussions, builds can terminate
with the outcome infrastructure_fail due to faults in CircleCI internal infrastructure or
other services that are contacted during the builds (e.g., GitHub and AWS). Although builds
that terminate due to infrastructure failures are restarted automatically, it wastes time and
resources. Investing in resources for increasing resiliency and fault tolerance in their back-
end services may help CircleCI to mitigate these occurrences.

Observation 10: 17,917 builds timed out without running to completion. If there is no output
from any of the commands during the CI process for ten minutes, CircleCI considers it as
timed out and the build is killed. We observe that builds can be timed out at any stage of
the CI process (e.g., setting up the environment, installing dependencies, testing) in practice.
Currently, users can extend the timeout in the CI con�guration if they expect a build step to
continue longer than ten minutes without any output. However, as a future user experience
improvement, CircleCI could suggest to increase the timeout automatically if a build step
regularly exceeds the time limit.

Observation 11: 776,976 builds were terminated prematurely due to other reasons and the

build outcome was reported as NULL. In 32,749 of these builds, builds were blocked by CircleCI
because users were requesting to trigger builds beyond the resource limits that were allowed
by their subscribed plans (e.g., no more user seats available on the plan, Docker Layer Caching
feature is not available on the plan, the trial period has ended, needs more containers than
plan allows, access to large machines is not available on the plan). At least 31,238 builds were
not run to completion because the CI process was not properly con�gured (e.g., missing CI
con�guration �le, specifying an unsupported Xcode version, GitHub was missing a CircleCI
SSH key). Providing more documentation and guiding the users through the con�guration
process may reduce future occurrences of the builds terminating due to miscon�guration and
users unknowingly requesting builds beyond their allocated resource limits.

Most builds are unable to provide a signal due to user interruptions. However, con�gura-

tion errors and resource allocation issues on the services’ side are also prevalent causing

the builds to terminate prematurely.

105

7.5. Practical Implications

7.5 Practical Implications

Tool builders can use existing research to improve CI services. Rapidly growing build
throughput and build durations of active CI users mean that build acceleration research can be
used by CI services to reduce costs. A high success rate in builds means that service providers
have a growing pool of candidate builds if they are using techniques proposed in research lit-
erature to skip builds. Automatic repairing techniques from the research literature can also be
implemented by the CI providers in their product o�erings to reduce the MTTR and therefore
increasing developer productivity.

Researchers can focus on compilation and testing stages to accelerate CI. Reducing
build durations will lead to increased developer productivity and savings on computational
resources for the CI providers. Based on our observations the CI builds are spending a large
proportion of the build run time in compilation and testing stages. Therefore, if researchers
can identify ways to optimize compilation and testing steps e�ectively reducing their run time
or skipping such steps altogether, it will greatly reduce the overall build duration providing
the highest return on investment. Incremental builds (i.e., identifying steps that are impacted
by the updated sources and run only these steps to generate correct build artifacts) is a well-
known technique in this regard. In Chapter 8 we discuss challenges and bene�ts involved in
enabling such techniques on continuous integration systems.

Further research to understand user cancellation of builds may help to improve user

experience. Because most common reason for abruptly terminating CI builds is cancellation
by the user, more research is needed to characterize this behaviour and identify ways to reduce
user cancellation. More documentation and tutorials may help users to avoid cancelling started
builds.

Investments to stabilize con�guration and resource allocation may improve the ro-

bustness of CI services. Builds are also abruptly stopped due to con�guration errors and
server allocation issues. By investing on infrastructure and research e�orts to mitigate build
termination due to internal errors, the robustness and reliability of the CI service will im-
prove. Furthermore, it will improve user experience helping to retain existing users and to
attract new users for the CI service.

106

7.6. Threats to Validity

7.6 Threats to Validity

This section describes the threats to the validity of results in our case study.

7.6.1 Construct Validity

We use the mapping of commands and action types provided by CircleCI API to determine
the CI stage that each command belongs to and then compute where time is spent during each
signal-generating build. The accuracy of this mapping depends on the technique followed by
CircleCI to label each command with an action type. To mitigate this threat, we manually
inspected a sample of 50 commands and their assigned action types for consistency.

Some software teams may have con�gured CI builds that �nish quickly and return a suc-
cessful build outcome in seconds without executing any useful tests at all. In such situations,
metrics such as build duration and success rate will not provide any value as indicators mea-
suring the e�ectiveness of CI. Therefore, we do not promote these metrics as straightforward
goals to strive for by software teams. Instead, we only use them as indicators to identify the
resource usage from the CI providers’ perspective.

7.6.2 Internal Validity

We manually analyze API responses, build logs, and respective source code changes to charac-
terize reasons that causes builds to terminate without providing a signal. There could be other
reasons that caused the builds to abruptly terminate, yet are not revealed by the inspected ar-
tifacts. Although such instances cannot be fully accounted for, two authors independently
veri�ed the samples to make sure the �ndings are realistic.

7.6.3 External Validity

External validity concerns the generalizability of our results to other systems. In this study,
we focus only on open source subject systems, which are hosted on GitHub and use Cir-
cleCI as the CI service provider. However, since CircleCI is one of the prominent CI services
and provides very similar functionality to other leading CI service providers we believe our
�ndings are applicable to other CI providers as well.

107

7.7. Chapter Summary

7.7 Chapter Summary

We bridge a gap in CI research literature by reporting on the perspective of the CI service
provider. We analyze 23.3 million builds spanning 7,795 open source projects that use CircleCI
service for nearly eight years and make the following observations:

• In terms of total number of builds and the number of users, the CI service has grown
rapidly over the last few years. However, the growth has stagnated over the last year.

• Build duration (95th percentile = 25mins) and throughput (95th percentile = 900 builds
per month) has grown to be very high for active users demonstrating opportunities for
using build acceleration techniques.

• MTTR of one hour shows that automatic build repair will be bene�cial for the developers
to reduce the time taken for resolution.

• The high success rate (67%–92%) of the CI builds shows that there is room for automat-
ically skipping builds to further reduce the load on CI servers.

• The compilation and testing actions consume a high proportion of the build times in the
CI pipeline of signal-generating builds (Median 33%). This demonstrates two bottlenecks
in the cloud CI services that can be optimized to improve e�ciency.

• Non-signal-providing builds are terminated mostly due to user cancellation. However,
con�guration errors and resource allocation issues are also commonplace, highlighting
the need for improving the robustness of CI services.

Our observations suggest that there are many existing research �ndings from research
literature that CI service providers’ can use to provide a better experience for software teams.
Researchers can focus on the compilation and testing stages of the CI services to improve
the e�ciency. Also, research on con�guration and resource allocation problems in large-scale
distributed systems may improve the robustness of CI services.

108

Chapter8
Accelerating Continuous Integration &

Continuous Delivery

Note. An earlier version of the work in this chapter appears in the IEEE Transactions on

Software Engineering (TSE) journal [101].

8.1 Introduction

CI is intended to provide quick feedback to developers about whether their changes will
smoothly integrate with other changes that team members have submitted. Unlike sched-
uled (e.g., nightly) builds, CI feedback is received while design decisions and tradeo�s are still
fresh in the minds of developers.

With the adoption of CI, software organizations strive to increase developer productiv-
ity [9] and improve software quality [7]. Open source [5] and proprietary [6, 67] software
organizations have invested in adopting CI. Cloud-based CI services such as CircleCI have
become popular, since they provide the bene�ts of CI without the burden of provisioning and
maintaining CI infrastructure.

Using a suboptimally con�gured CI service can slow feedback down and waste computa-
tional resources [30, 40, 84]. Indeed, Widder et al. [59] found that developers often complained
about slow feedback caused by builds that take too long as a pain point in CI.

Several build tools have been proposed to reduce build duration by executing incremental
builds. Google’s Bazel, Facebook’s Buck, and Microsoft’s internal CloudBuild [67] service are
prominent examples from large software companies. While these solutions make important

109

8.1. Introduction

contributions, in our estimation, they have two key limitations. First, the build acceleration
features rely upon a graph of build dependencies that is speci�ed by developers in build con�g-
uration �les (e.g., Bazel BUILD �les). These manually speci�ed build dependency graphs may
drift out of sync with the other system artifacts [72–83]. Indeed, build dependency graphs may
be overspeci�ed [106, 116], leading to acceleration behaviour that is suboptimal (i.e., an un-
necessary dependency forces potentially parallelizable steps to be executed sequentially), or
worse, underspeci�ed [75], leading to acceleration behaviour that fails non-deterministically
(i.e., a missing dependency may or may not be respected depending on whether or not the
acceleration service decides to execute the dependent steps sequentially or in parallel).

Second, the accelerated build tools are designed to replace existing build tools, increasing
the barrier to entry. For example, a team that has invested a large amount of e�ort in designing
a build system with an existing tool may be reluctant to migrate their build code to a new
language.

To address these limitations, we propose Kotinos—a build acceleration approach for CI
services that disentangles build acceleration from the underlying build tool. Kotinos acceler-
ates CI by inferring dependencies between build steps. Rather than parsing build con�guration
�les, Kotinos infers the build dependency graph by tracing system calls and testing opera-
tions that are invoked during the execution of an initial (cold) build. This inferred dependency
graph is then used to reason about and accelerate future (warm) CI builds. First, the environ-
ment setup is cached for reuse in future builds. Second, by traversing the inferred dependency
graph, we identify build steps or tests that can be safely skipped because they are not impacted
by the change under scrutiny. Since the Kotinos approach is agnostic of the programming
languages and build tools being used, Kotinos can yield bene�ts for teams without requiring
considerable build migration e�ort. Currently, Kotinos is at the core of a CI service1 with a
growing customer base.

We evaluate Kotinos by mining 14,364 historical CI build records spanning ten software
projects (three proprietary and seven open source) and nine programming languages. Our
evaluation focuses on assessing the frequency of activated accelerations, the savings gained
by these accelerations, and the computational cost of Kotinos, and is structured along the
following three research questions:

1https://yourbase.io/

110

https://yourbase.io/

8.1. Introduction

RQ1:Howoften are accelerations activated in practice?Motivation: To determine whether
an acceleration can be applied to a build, Kotinos checks what �les have changed and how
those �les impact the previously inferred dependency graph. Therefore, it is important to
know how frequently these opportunities for acceleration occur in practice. If such oppor-
tunities for acceleration are rare, adopting Kotinos might not be worthwhile. Therefore,
we set out to study how often each type of acceleration (i.e., environment cache, step skip-
ping) is activated in sequences of real-world commits.

Results: We �nd that in practice, at least 87.9% of builds activate at least one Kotinos ac-
celeration type. Among the accelerated builds, 100% leverage the build environment cache,
while 94% skip unnecessary build steps.

RQ2: How much time do the proposed accelerations save?

Motivation: The primary goal of Kotinos is to reduce build duration. Therefore, we set
out to measure the improvements to build duration that Kotinos provides.

Results: By mining the CI records of the studied proprietary systems, we observe that, build
duration reductions in accelerated builds are statistically signi�cant (Wilcoxon signed rank
test, ? < 0.05; large Cli�’s delta, i.e., > 0.474). Moreover, the accelerated builds achieve a
clear speed-up of at least two-fold in 74% of the studied builds. By replaying past builds of
the studied open source systems, we observe that build durations can be reduced in �ve
out of seven open source subject systems.

RQ3: What are the costs of the proposed accelerations?

Motivation: Build acceleration approaches often increase computational overhead or hin-
der build correctness. Therefore, it is important to quantify the costs of Kotinos in terms
of resource utilization and correctness.

Results: We observe that Kotinos can accelerate builds with minimal CPU (median < 1%),
memory (median 53 MB), and storage (median 5.2 GB) overhead. Furthermore, 100% of the
open source builds that we repeated in the Kotinos environment report the same build
outcome (pass, fail) as the currently adopted CircleCI service, suggesting that Kotinos
outcomes are sound.

Chapter organization. The remainder of the chapter is organized as follows: We demon-
strate the potential of Kotinos using an example scenario in Section 8.2. Section 8.3 describes
the Kotinos approach to accelerating CI builds. Section 8.4 presents our study of the fre-

111

8.2. Motivating Example

Table 8.1: The duration of build steps in a proprietary system.

Build Step Duration

Environment Initialization 1m 14s

Provision OS 42s
Setup DB Services (MySQL & Redis) 22s
Install Ruby 7s
Install Node.JS 3s

Dependency Installation 5m 5s

apt-get update 7s
apt-get install 1m 48s
gem install bundler 8s
bundle install 3m 37s
npm install 25s

Database Population 1m 23s

rake db:create 11s
rake db:setup 9s
rake db:migrate 1m3s

Test Execution 1hr 23m 17s

npm run test:javascript 4s
rake spec 1hr 23m 13s

Total 1hr 31m 6s

quency of activation of Kotinos acceleration types (RQ1), while Section 8.5 reports on the
extent to which Kotinos accelerations save time (RQ2). Section 8.6 presents our study of the
costs of the proposed accelerations (RQ3). Section 8.7 discusses the broader implications of
our study. Section 8.8 outlines the threats to validity. Finally, Section 8.9 draws conclusions.

8.2 Motivating Example

To demonstrate the reasons for long durations in a typical build, we use the build log of a
proprietary software project. The log include diagnostic information about the execution of
all jobs belonging to a build. We �rst classify each command in the build log according to
its build phase, which includes: (1) environment initialization; (2) dependency installation; (3)
database population; and (4) test execution. Second, for each command, we use its timestamp
to estimate the execution duration of the command.

112

8.3. The Kotinos Approach

Table 8.1 shows the durations of these commands and phases. A non-negligible propor-
tion (8.5%) of the time is spent on preparatory steps for build execution (i.e., environment
initialization, dependency installation, and database population); however, the vast majority
of time (91.5%) is spent (re-)executing tests. This suggest that substantial build acceleration
may be achieved by skipping the re-execution of unnecessary tests and by reusing previously
prepared build environments.

Table 8.1 also shows that the build process of this project uses multiple tools (i.e., apt,
bundler, npm, and rake) and runs tests written in multiple languages (i.e, JavaScript/Node.js and
Ruby). This suggests that tool-speci�c acceleration solutions are unlikely to achieve optimal
results.

It is observations like these that inform our design of Kotinos—a programming language
and build tool-agnostic approach to accelerate CI builds. Kotinos addresses the challenge
of environmental reuse by building and leveraging a cache of previously established build
environment images. Moreover, Kotinos addresses the challenge of excessive re-execution
of test steps (but more broadly, build steps) by reasoning about build dependencies using an
inferred, system-level dependency graph.

8.3 The Kotinos Approach

A CI build is comprised of jobs, each executing an isolated set of tasks. A typical approach is
to have one job for each targeted variant of the programming language toolchain or runtime
environment of the project. Once the CI service receives a build request, jobs are created
based on the CI con�guration �le. These jobs are placed into a queue of pending jobs. When
job processing nodes become available, they execute jobs from this queue. In this chapter, we
focus on reducing the duration of the job processing phase.

We propose two acceleration techniques. Listings 8.3.1 and 8.3.2 provide a running exam-
ple of the CI con�guration of the Wallaby project (https://github.com/reinteractive/
wallaby). Listing 8.3.1 shows the original steps speci�ed for the Travis CI service. We mi-
grated this CI con�guration to the format of Kotinos (Listing 8.3.2), which simpli�es parsing
and enables acceleration features; however, the existing build system (Rake and Bundler in
this case) remains unmodi�ed.

113

https://github.com/reinteractive/wallaby
https://github.com/reinteractive/wallaby

8.3. The Kotinos Approach

1 language: ruby
2 cache: bundler
3 node_js: ’10.5.1’
4 rvm:
5 - 2.6.0
6 gemfile:
7 - gemfiles/Gemfile.rails-5.0
8
9 env:

10 global:
11 - DB=postgresql
12 - RAILS_ENV=test
13
14 addons:
15 postgresql: "9.6"
16
17 before_install:
18 - gem install bundler
19
20 install:
21 - bundle install
22
23 before_script:
24 - psql -c ’CREATE DATABASE dummy_test;’ -U postgres
25
26 script:
27 - bundle exec rake db:setup
28 - bundle exec rake db:migrate
29 - bundle exec rake spec

Listing 8.3.1: Travis CI Configuration

Commit DCommit CCommit BCommit A

RUBY RUBY

Modifed
files

Impacts
dependency

graph

True True TrueFalse

Build Cold Warm WarmWarm

TEXTRUBY

Figure 8.1: An example of commits in chronological order. In Commit A, all source code files are added.

In Commit B, the README.md file is modified. In commits C and D, source code files that can a�ect

multiple tests are modified.

114

8.3. The Kotinos Approach

8.3.1 Caching of the Build Environment (L1)

Before invoking the commands speci�ed in a project’s CI con�guration, build job processing
nodes need to be initialized and prepared. First, a programming language runtime and basic
toolchain need to be installed within an execution environment. Next, the libraries and ser-
vices (e.g., databases, message brokers, browsers) that are required to build the project are
also installed. Since systems rarely migrate from one programming language to another and
their dependencies often reach a stable point, we conjecture that these steps for preparing the
build processing environment are rarely changed over the lifetime of a project. Repeatedly
installing the same runtime and downloading the same dependencies at the start of each build
wastes time.

We propose to reuse the environment across builds. We implement this behaviour in Koti-
nos by caching a Docker container that is created during the �rst passing (cold) build, and
reusing that image during subsequent (warm) builds. If the environment changes in the later
builds (e.g., due to updates in dependency versions), the environment cache will be invalidated
and the cold build procedure will be re-executed (i.e., a fresh image will be created and stored).

To illustrate these concepts, consider the series of commits from the Wallaby project
(https://github.com/reinteractive/wallaby) that are shown in Figure 8.1. When the
�rst commit (Commit A) is built, Kotinos executes all of the initialization and preparation
steps because no prior build for the project has been executed. First, an Ubuntu 16.04 build
image must be provisioned (line 18 of Listing 8.3.2). Next, Ruby and Node.js language runtimes
must be installed (lines 3–4). Then, environment variables must be set to speci�ed values (lines
21–25). Finally, the build commands (lines 8–14) can be executed. After the build �nishes, a
Docker image that encapsulates the initialization and preparation steps is saved to the cache
to be reused in subsequent builds. The procedure for Docker image encapsulation is described
below.

When later warm builds (for Commits B, C, and D) are requested, Kotinos checks its cache
for build images of ancestors in the version history of the project and selects the most recently
created image. This reuse of images avoids repeating installation and preparation steps.

Environment Caching Details. Every request to initiate a CI build is accompanied by build
metadata: (1) a reference to a build image; (2) the URL of the source code repository; and (3) the
unique identi�er (e.g., SHA) of the commit to be built. Kotinos uses this metadata to look-up
previous builds executed for this repository.

115

https://github.com/reinteractive/wallaby

8.3. The Kotinos Approach

1 dependencies:
2 build:
3 - ruby:2.6.0
4 - node:10.15.1
5
6 build_targets:
7 - commands:
8 - apt-get update
9 - apt-get install -y postgresql-client libpq-dev

10 - gem install bundler
11 - bundle install
12 - bundle exec rake db:setup
13 - bundle exec rake db:migrate
14 - bundle exec rake spec
15
16 name: daily_ci
17 container:
18 image: yourbase/yb_ubuntu:16.04
19
20 environment:
21 - DB=postgresql
22 - BUNDLE_GEMFILE=gemfiles/Gemfile.rails-5.0
23 - PGUSER=ci
24 - PGPASSWORD=ci
25 - RAILS_ENV=test

Listing 8.3.2: Kotinos Configuration

If there are no previous builds for the speci�ed repository, a cold build is initiated. Based
on the user-speci�ed container build image (e.g., ubuntu:latest) a pre-built image that is hosted
in an internal Docker registry is downloaded and a container is created based on this image.
This container is used for running the remainder of the build.

Using the source code repository URL and the commit ID, the revision of the code to be
built is downloaded within the container. Then, the build steps (e.g., compiling, running tests),
which are speci�ed in the con�guration �le, are executed within the container. Once the build
process �nishes, if it was successful, the state of the container is saved, and is stored in the
environment cache along with the repository name and the commit ID. This image is later
used for subsequent warm builds of the same repository, saving the set up time needed before
every build. If a cold build fails, the container is retained for debugging purposes, but is not
used for accelerating subsequent builds.

8.3.2 Skipping of Una�ected Build Steps (L2)

Changes for which CI builds are triggered often modify a small subset of the �les in a repos-
itory. If build steps that a change does not impact can be pinpointed, those steps could be
safely skipped. These sorts of incremental builds that only re-execute impacted commands

116

8.3. The Kotinos Approach

have been at the core of build systems for decades [108]. Typically, build tools create and tra-
verse a Directed Acyclic Graph (DAG) of dependencies to make decisions about which build
steps are safe to skip. These DAGs are explicitly speci�ed by developers in tool-speci�c DSLs
(e.g., make�les).

To implement step skipping in a tool-agnostic manner at the level of the CI provider, we
�rst collect traces of system calls that are made during build execution. We then mine these
system call traces to understand the processes that are created, �le I/O operations, and network
calls associated with each build step. This information is then used to construct a dependency
graph. Later, we traverse this dependency graph to identify skippable steps.

For example, during Commit A of Figure 8.1, the dependency graph is inferred based on
the system call trace log. Later, when the build for Commit B is requested, Kotinos checks
whether �les modi�ed in Commit B are part of the dependency graph. In this case, README.md
is not part of the dependency graph. Therefore, all build steps (line 8–14) are skipped. This
e�ectively skips an entire CI build like the approach proposed by Abdalkareem et al. [65, 75]
without relying on heuristics. On the other hand, in Commits C and D, the modi�ed source
code �les are part of the dependency graph, and therefore Kotinos decides to run the tests
(line 14: bundle exec rake spec).

By default, each command that is speci�ed in the con�guration �le can be skipped sep-
arately. However, users can choose to skip subprocesses at a �ner granularity by wrapping
invocations using the skipper command. If users require an even �ner granularity for skip-
ping, Kotinos provides test-level skipping via plug-ins for popular testing frameworks like
RSpec (Ruby) and JUnit (Java).

Below, we de�ne the inferred dependency graph, and the approaches we use to construct,
update, and traverse it.

The inferred dependency graph is a directed graph ��� = (), �) where: (1) nodes repre-
sent targets) =)5 ∪)B ,)5 is the set of �les produced or consumed by the build,)B is the set
of build commands, and)5 ∩)B = ∅; and (2) directed edges denote dependencies 3 (C, C ′) ∈ �
from target C to target C ′ of three forms: (a) A403 (C 5 , CB), i.e., �le C 5 is read by command CB ;
(b) FA8C4 (CB, C 5), i.e., command CB writes �le C 5 ; and (c) ?0A4=C (CB1, CB2), i.e., command CB1 is the
parent process of command CB2 .

Inferring the Build Dependency Graph. The �rst build of a project is a cold build. As the
�rst step during the cold build, Kotinos creates a fresh container based on a user-speci�ed

117

8.3. The Kotinos Approach

container image. Then, the build steps speci�ed by the user in the con�guration �le are exe-
cuted inside the freshly-created container. Another process monitors all the system calls being
executed during each build step. This monitoring process records: (1) the path of �les being
read and written; (2) the commands being invoked; (3) the Process ID (PID) of started pro-
cesses; and (4) the PID of the parents of started processes. Prior to constructing the ��� , we
�lter the system call traces to remove �les that do not appear in the VCS. After the cold build
is completed, the ��� is stored for later use in subsequent warm builds.

Updating the Inferred dependency graph. To make correct decisions during the acceler-
ation, the BDG must re�ect the state of project dependencies that is relevant to commit �C .
Since �C represents a unique state of source code at a given time C , we can say that the initial
build �0 is derived from�0 (i.e., �0 ← 5 (�0)). The BDG inferred from a commit�C is denoted
as �C ← $1B4AE0C8>=$5 (�C).

After build �0 completes, there exists a BDG (�0) that contains the inferred dependencies
for that build. Since Kotinos acceleration strives to skip unnecessary build steps, the BDG
from a warm build will be incomplete. We solve this by implementing a pairwise BDG update
operationl (�=−1,�=), which updates the previous BDG with the current observed behaviour
of the build.

To ensure that graph �= is updated to include new dependencies from �= we:

[1] Clone the graph from the parent build (�=−1).
[2] Process the recorded observations from the incremental build (�=) and create a partial

dependency graph (�′=)
[3] For each step recorded in �′=:

(a) Look for the identical step in �= .
(b) If found, prune its dependencies replacing them with the newly identi�ed nodes

using existing nodes as needed (e.g., if another step shares a dependency).
(c) If no step is found, then this step is new and is added to the existing dependency

graph in the correct location, also linking to existing nodes where applicable.
(d) Remove the step from �′= .

[4] Store the merged graph, �= as a new graph so that it can be referenced for subsequent
warm builds.

For example, consider a build process that consists of three steps, npm install, npm lint,

and npm test. These commands will download the dependencies, statically analyze the source

118

8.3. The Kotinos Approach

Changed Files

F1

Build Steps

S1 S2 S3

F2 F3

Unchanged Files

Reads Writes Reads Reads

Skipped

Figure 8.2: An example of how the Build Dependency Graph is used to identify which steps to skip.

S1 and S2 cannot be skipped because they are directly and transitively dependent on the changed

file F1, respectively. However, S3 can be skipped because it does not depend on any changed files.

code for errors (i.e., linting), and then run the tests. At the �rst commit, all the build steps will
be executed and�0 will be generated. In the second commit, if a test �le is modi�ed, Kotinos
will only run the npm test step and generate a partial graph �′1. If new �les are read during
this run, they will be recorded as dependencies in�′1. Then, the subgraph of�0 that is a�ected
by the npm test step will be replaced by �′1 and this modi�ed �0 will be saved as �1.

To avoid incorrect build behaviour, BDG-based acceleration is bypassed for commits that
will likely modify the structure of the BDG (e.g., those that add or rename �les).

In cases where Kotinos determines that it cannot con�dently make a decision about ap-
plying acceleration, it will revert to cold build behaviour to guarantee an accurate build output
and dependency graph. For example, in the case where new �les are added to a project, prior
BDGs are considered invalid and a cold build is performed.

Traversing the Build Dependency Graph. For each build request, Kotinos �rst derives
the set of �les being changed in the changeset to be built (ChangedFilesList). Kotinos
determines which build steps should be run, given the ChangedFilesList and the inferred
build dependency graph (BDG). We �rst compute the impacted steps using the union of the
transitive closures within the BDG for each �le f in ChangedFilesList. For each build step,
we check whether it is in the set of impacted steps. If it is, we must re-execute the step, and if
not, the step can be safely skipped.

Figure 8.2 provides an example of a BDG and highlights the behaviour when one �le (�le
F1) is modi�ed by a changeset being built. The example illustrates how Kotinos handles the
three types of scenarios that may occur for a step within the graph. We describe each scenario
below:

119

8.4. RQ1: How often are accelerations activated in practice?

Direct dependency (S1). Step S1 or one of its subprocesses reads from �le F1. Therefore, S1
cannot be skipped.

Transitive dependency (S2). Step S1 reads from F1 and writes to �le F2. The step S2 reads
from F2. Therefore, S2 transitively depends on F1 and cannot be skipped.

No dependency (S3). Step S3 only depends on the �le F3, which was not modi�ed by the
change set being built. Since step S3 does not have a direct or transitive dependency on
modi�ed �les, step S3 can be safely skipped.

8.4 RQ1: How often are accelerations activated in prac-

tice?

In this section, we address RQ1 by studying the frequency at which Kotinos accelerations are
activated. We �rst introduce the subject systems, then describe our approach to addressing
RQ1, and �nally, present our observations.

Subject Systems. The top three rows of Table 8.2 provides an overview of the three propri-
etary systems that we use to evaluate RQ1. We study a sample of 13,864 passing builds from
September 1st, 2019 to December 31st, 2019.

These three subject systems are sampled from the pool of projects that primarily use the
commercial CI service that implements Kotinos techniques at its core. We selected these
systems for analysis because they are implemented using a variety of programming languages
and frameworks, and use a variety of build and test tools.

Approach. During each build execution, Kotinos prints detailed diagnostic logging mes-
sages to an internal datastore. Each Kotinos build includes a diagnostic log in that datastore.
Messages in those diagnostic logs indicate when an acceleration is activated (among other
things). To answer RQ1, we analyze the logs of all passing builds in our studied timeframe
to determine which levels of acceleration were activated during each build execution. If the
log mentions that the build was performed within a container that was based on a previously
cached image, that build is labelled as accelerated by caching. If the log mentions that at least
one of the build steps was skipped, that build is labelled as accelerated by skipping build steps.

Observation 1: At least 87.9% of the builds in the studied systems are accelerated. Table 8.3
shows the percentages of studied builds that activate the di�erent types of acceleration. We
�nd that 87.9%, 98.9%, and 97.6% of the studied builds are accelerated by at least one type of ac-

120

8.4. RQ1: How often are accelerations activated in practice?

Table 8.2: Overview of the subject systems.

Project ID

Application

Domain

Programming

Languages

LOC

Passing

Builds

Non-accelerated

Build Duration

(Median)

Commercial A Fintech
Android,
Dart, Go,

Ruby, Node.js
455,470 5,202 18min 33s

Commercial B Blockchain Python,
Node.js 208,768 7,273 2min 40s

Commercial C E-commerce Ruby,
Node.js 1,218,980 1,389 1hr 7min 33s

apicurio-studio

Development
Tools

Java,
TypeScript,
HTML, CSS

84,446 100 8min 28s

forecastie Weather Java, Python,
HTML, CSS 10,012 96 2min 19s

gradle-gosu-plugin

Development
Tools Groovy, Java 3,773 82 3mins

Robot-Scouter Robotics Kotlin 1,442,304 27 16min 36s

aerogear-android-push

Development
Tools Java 2,280 23 1min 34s

magarena Entertainment Groovy, Java 165,199 26 1hr 18min 22s

cruise-control

Development
Tools Java, Python 61,426 71 36min 17s

celeration in the A, B, and C systems, respectively. This indicates that Kotinos can frequently
accelerate CI builds. We delve into why system A has a lower rate of acceleration activation
below.

Observation 2: Environment caching is themost commonly activated strategy. Indeed, 87.9%–
97.6% of builds leverage the environment cache. In system A, all of the builds that are accel-
erated by environment caching also skip steps. In systems B and C, 9.2% and 24.8% of the
accelerated builds only use the environment cache, respectively.

We follow an iterative process to identify why 548 builds did not use the environment
cache. First, we select and inspect a random sample of 30 logs from the builds that missed ac-
celeration. The inspection reveals the root cause for missing acceleration. For each root cause,
we implement a detection script to automatically identify occurrences in the other logs. We
repeat this sampling, inspection, and scripting process until root causes for all 548 builds. In 2%
(twelve of 548) of the cache-missing builds, the user explicitly overrode Kotinos’ decision-
making, forcing the cache to be ignored (via a build request parameter). Users may decide

121

8.4. RQ1: How often are accelerations activated in practice?

Table 8.3: The frequency of activated build accelerations.

Project

ID

Studied

Builds

% Builds

Accelerated

by Caching

% Builds

Accelerated

by Skipping

Steps

% Builds

Accelerated

by Any

Strategy

A 5,202 87.9 87.9 87.9
B 7,273 98.9 89.7 98.9
C 1,389 97.6 72.8 97.6

to override caching in multiple scenarios. For example, if users want to invalidate an exter-
nal dependency, ignoring the caching will force a fresh copy of external dependencies to be
downloaded. Moreover, if users expect to encounter inconsistencies in the generated depen-
dency graph, they may override Kotinos’ decision-making to reset with a fresh build. This
often occurs when new �les are added to (a dynamically generated area of) the build graph.
Users who choose to override Kotinos’ decision-making are prioritizing the correctness of
the build over the speed of feedback—a common trade-o� in build systems [88].

Another 0.7% (four of 548) missed the cache because Kotinos had purged the cache and
had started with a fresh container. This purging behaviour triggers when users reach the
organizational limit of 100 cached image layers. However, the majority of the cache-missing
builds (97%) occurred because Kotinos was unable to �nd a cached image of a predecessor
for the commit that is being built.

Observation 3: Although less frequently activated than environment caching, step skipping

accelerations are activated regularly as well. Table 8.3 shows that 87.9%, 89.7%, and 72.8% of
the studied builds skip at least one build step in systems A, B, and C, respectively. This shows
that it is relatively rare for the changed �les in a commit to impact all of the build steps. Even
though steps are being skipped the majority of the time, when they are not skipped, builds
are still often accelerated by leveraging the environment cache.

In practice, a majority of builds (at least 87.9%) activate at least one of the Kotinos accel-

erations.

122

8.5. RQ2: How much time do the proposed accelerations save?

8.5 RQ2: How much time do the proposed accelerations

save?

In this section, we address RQ2 by studying the change in build durations of accelerated and
non-accelerated builds.

8.5.1 Overall Statistical Analysis

First, we conduct a statistical analysis to measure the e�ect of Kotinos acceleration on the
build durations of the three proprietary subject systems from Section 8.4. Below, we describe
our approach, present our results, and discuss the limitations of such a statistical analysis.

Approach.We extract build durations by using the build_start_time and build_end_time
�elds in our dataset. Then, we apply Wilcoxon signed rank tests (unpaired, two-tailed, U =

0.05) and compute the Cli�’s delta to check whether our acceleration strategies reduce build
durations to statistically and practically signi�cant degrees.

Observation 4: Kotinos achieves large, statistically signi�cant reductions to build durations.
Figure 8.3 shows the distributions of build durations. Based on the ?-values after applying
Holm-Bonferroni correction [105], the null hypothesis that there is no signi�cant di�erence
among the distributions of accelerated and non-accelerated build durations could be rejected
in all three subject systems. Moreover, for all three subject systems, the Cli�’s Delta values are
large (i.e., X > 0.58), indicating that the di�erence between non-accelerated and accelerated
builds is practically signi�cant.

Limitations. Although this analysis provides an overview of the bene�t of Kotinos acceler-
ations, the observations may be impacted by (at least) two confounding factors:

[1] Di�erences in jobs. Past builds may have targeted di�erent (groups of) jobs. For ex-
ample, while most builds of Project A target the entire software system, a subset of past
builds only target the backend.

[2] Changes in CI con�guration over time. Throughout a project’s history, build steps
may be added or removed from the CI con�guration.

Due to the above reasons, build durations from the same project can vary and may not be
directly comparable.

123

8.5. RQ2: How much time do the proposed accelerations save?

●

●

●
●
●

●
●

●

●

●
●

●
●

●

●●●
●

●
●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●●●
●

●
●●●

●

●●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●●

●
●

●

●

●
●
●●

●

●●

●

●

●

●

●

●

●

●

●
●

●●●

●
●●

●

●
●

●

●●
●●
●

●
●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●●
●

●

●

●

●●

●

●

●

●
●

●●

●

●●

●

●

●
●
●●
●

●

●
●

●
●●
●

●
●

●●●●
●

●

●

●

●

●
●

●
●●

●

●

●●
●
●

●

●
●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●
●

●
●●●

●

●

●

●
●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●●
●

●

●
●●●

●

●
●

●

●●

●

●●
●

●

●

●

●
●

●

●●

●
●

●●
●

●

●

●

●
●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●●

●●
●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●●
●

●

●
●●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●●●

●
●

●
●

●

●●

●

●

●

●●

●

●

●

●
●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●●
●
●●●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●●●●
●●

●
●
●

●

●

●

●●
●

●

●

●

●
●●

●●

●●

●
●
●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●●
●●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●●
●
●

●
●●

●
●

●

●●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●●

●

●
●●

●

●●
●
●

●
●

●

●●

●
●
●

●

●

●

●●

●

●

●

●
●
●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●●
●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●
●
●

●

●

●
●●
●

●

●

●

●

●

●
●●

●

●

●
●●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
10

100

1,000

10,000

A B C

Project ID

B
ui

ld
 D

ur
at

io
n

(S
ec

on
ds

)

Accelerated

FALSE

TRUE

Figure 8.3: Distribution of durations in accelerated and non-accelerated builds across the three subject

systems.

8.5.2 Longitudinal Analysis

To mitigate the limitations of the overall statistical analysis, we conduct a longitudinal analy-
sis. In a nutshell, the approach clusters related builds into streams. Builds within a stream can
be more meaningfully compared to one another.

Approach. Since it is unsafe to compare jobs with di�erent de�nitions, we �rst group builds
according to their unique job names. Next, within each job grouping, we further categorize
builds by the set of build steps that are being executed. For this purpose, we extract the set
of build steps by parsing each build log for the diagnostic messages that print the set of build
steps that were performed. It is important to note that the order of build steps is preserved by
this extraction step. We then feed this list of steps into a hash function (i.e., Python hash) to
compute a �ngerprint for the set of build steps that is easy to compare.

By comparing the hash �ngerprints across all of the builds in our sample, we �nd that
there are 25 streams of unique build steps within the build jobs of the three subject systems.

124

8.5. RQ2: How much time do the proposed accelerations save?

●●●●●●●●●●●●●● ●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●● ● ●●● ●●●

0%

50%

100%

O
ct

N
ov

D
ec Ja
nA

cc
el

er
at

ed
 B

ui
ld

 D
ur

at
io

n
/ N

on
−

ac
ce

le
ra

te
d

B
ui

ld
 D

ur
at

io
n

(a) Project A

● ●●●●●●●●●●●●●●

0%

50%

100%

150%

200%

O
ct

N
ov

D
ec Ja
n

(b) Project B

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●

0%

50%

100%

150%

200%

O
ct

N
ov

D
ec Ja
n

(c) Project C

Figure 8.4: Warm build duration as a percentage of cold build duration in each project’s main job.

The red line marks the cold build duration. The black circles indicate when cold builds were triggered.

Projects A and B uses only one CI configuration. Project C has modified the CI configuration in mid-

November as shown by the di�erent shades of gray.

Since the hash comparison can be too strict, we manually inspect the 25 sets of build steps
for opportunities to merge streams that only di�er in minor ways. We �nd four streams that
share similar commands and are unlikely to di�er substantially in terms of build duration.
These streams were not grouped together because of the overly strict matching of the hash-
ing function. The only di�erences between these streams are: (1) minor version changes in
external dependencies; (2) adding an external dependency that does not a�ect build steps; and
(3) renaming a build script. After merging these minor changes into their respective streams,
we are left with 22 streams of builds with durations that may be compared within the streams.

For every warm build 1F , we �nd the cold build 12 to which it should be compared by
searching backwards within the stream to which 1F belongs. The build 12 is the most recent
preceding cold build of 1F in the version control history. Finally, we plot the build duration of
warm builds in each stream in comparison to the corresponding cold build.

Observation 5: The vast majority of warm builds are faster than cold ones. Figure 8.4 shows
how the warm build duration changes over the studied period as a percentage of cold build
duration in the main job of each subject system. Due to space constraints, we only include the
line plot for each project’s main job. The plots for all jobs are available in the online appendix.2

Each line segment with the same shade of gray shows the period in which the project was
using the same set of build steps. The black circles show when cold builds were triggered. The
red line marks the build duration of the most recent preceding cold build of each warm build.
Therefore, gray lines appearing below the red line in Figure 8.4 illustrate when warm builds

2https://doi.org/10.6084/m9.figshare.12106845

125

 https://doi.org/10.6084/m9.figshare.12106845

8.5. RQ2: How much time do the proposed accelerations save?

0%

50%

100%

200%

A B C
Project ID

%
 A

cc
el

er
at

ed
 B

ui
ld

 D
ur

at
io

n

Figure 8.5: The gray-shaded violin plots show the kernel probability density of warm build durations

as a percentage of cold builds across the three subject systems. The solid red line indicates the cold

build duration (baseline). The builds in red-shaded area (below the solid red line) are faster than their

cold counterparts. The builds in dark red-shaded area complete within 50% of their cold counterparts.

are faster than their cold counterparts. The lines with same shade of gray in these �gures also
show that the build steps are not changed throughout the studied period for the projects A
and B.

For project C, some warm builds took longer than cold builds during the �rst half of the
studied time period, as shown by the light gray line segment in Figure 8.4c. This was due to the
overhead of an experimental feature of Kotinos, which was enabled only for project C. Then,
after a change to the build steps that disabled the experimental feature in mid-November, the
warm builds appear consistently below the cold builds, as shown in the dark gray segment.

Figure 8.5 shows the distribution of warm build durations as a percentage of cold builds
within the same stream. The solid red line indicates the cold build duration. The builds in
red-shaded areas are faster than their cold counterparts. In the best case (Project A), 99.9% of

126

8.5. RQ2: How much time do the proposed accelerations save?

warm builds outperform cold builds. Even in the worst case (Project C), 86.4% of warm builds
outperform cold builds. Overall, 93% of warm builds outperform their cold counterparts.

Observation 6: Acceleration often yields substantial build speed improvements. In Figure 8.5,
the builds in dark red-shaded area (below the dashed red line) complete within 50% of the du-
ration of comparable cold builds. Indeed, 99.1%, 53.2%, and 74.5% of the studied warm builds
complete within 50% of their cold counterparts in the A, B, and C systems, respectively. Over-
all, 74% of the studied warm builds complete within 50% of the build duration of similar cold
builds.

8.5.3 Replay Analysis

The historical build records from the studied proprietary systems provide a concrete perspec-
tive on build savings, but it is not possible to analyze the impact of each acceleration tech-
nique. To enable such an analysis, we expand our study to include subject systems from the
open source community.

Approach. We select a sample of seven repositories that use CircleCI (a market leader in
cloud-native CI3). Using the CircleCI API, we select the seven systems with the longest me-
dian build duration from the set of systems with passing builds in between January and July
2020. The bottom seven rows of Table 8.2 provide an overview of the subject systems.

We extract the most recent sequence of commits from the master branch of each reposi-
tory, along with their CI con�guration, in the reverse chronological order, until a limit of 100
commits is reached or the CI con�guration is modi�ed to the extent that builds start failing. We
collect 425 commits across the seven subject systems for further analysis. Then, we migrate
the most recent CI con�guration �le of each subject system to Kotinos’ con�guration format.
To replay builds following the sequence of development, we build each commit in the order in
which they appeared on the master branch (oldest to newest). For each commit, we perform
three types of builds: (1) without Kotinos accelerations; (2) with environment caching en-
abled (i.e., L1); and (3) with both caching and step-skipping enabled (i.e., L1+L2). To mitigate
the impact that �uctuations in the workload on our experimental machines may have in our
observations, we repeat each build variant ten times. To check whether the acceleration levels
di�er in terms of build duration to a statistically signi�cant degree, we rank the build dura-
tions of each commit in each acceleration level using the Scott-Knott ESD test [86]. Finally,

3https://www2.circleci.com/forrester-wave-leader-2019.html

127

https://www2.circleci.com/forrester-wave-leader-2019.html

8.6. RQ3: What are the costs of the proposed accelerations?

we compute the likelihood of each acceleration type appearing in the lowest (i.e., fastest) rank
across the seven subject systems.

Observation 7: In a majority of open source subject systems, accelerated builds are faster

than non-accelerated builds. Figure 8.6 shows the results of the replay experiment on the seven
open source subject systems. The lines indicate the median build performance across ten rep-
etitions, while the error bars indicate the 95% con�dence interval. In �ve of the seven subject
systems (i.e., aerogear-android-push, apicurio-studio, forecastie, gradle-gosu-plugin, and Robot-

Scouter), all commits except the �rst one are built faster when accelerations are enabled. The
�rst build of each subject system is slow because an environment cache does not yet exist
and the inferred graph needs to be constructed. In the other two subject systems (i.e., cruise-
control and magarena), accelerations rarely reduce build duration considerably. Inspection of
the source code reveals that all test groups in these systems are invoked by a single process.
This resulted in an “all or nothing” re-execution of tests. If code that impacts just one test
was changed, all tests would be re-executed. To enable skipping at the �ner granularity of
individual tests, we plan to implement a language-speci�c extension capable of decomposing
large test groups in future work.

Figure 8.7 shows the likelihood of each acceleration approach appearing in the top rank
of the Scott-Knott ESD test. The builds without acceleration rarely appear in the top rank
(median 1%), where as L1 and L1+L2 acceleration levels achieve top-rank performance much
more frequently (medians of 47% and 52%, respectively).

Accelerated builds are statistically signi�cantly faster than non-accelerated builds with

large e�ect sizes. Moreover, the builds accelerated by Kotinos achieve a clear speed-up of

at least two-fold in 74% cases in practice. The bene�ts of Kotinos can also be replicated in

open source systems that practice process-level test invocation.

8.6 RQ3:What are the costs of the proposed accelerations?

Build speed is often a trade-o� with other non-functional build requirements, e.g., computa-
tional footprint [67] and build correctness [109]. In prior sections, we quanti�ed the bene�ts
of Kotinos. In this section, we set out to quantify the costs in terms of resource utilization
and correctness.

128

8.6. RQ3: What are the costs of the proposed accelerations?

gr
ad

le
−

go
su

−
pl

ug
in

m
ag

ar
en

a
R

ob
ot

−
S

co
ut

er

ae
ro

ge
ar

−
an

dr
oi

d−
pu

sh
ap

ic
ur

io
−

st
ud

io
cr

ui
se

−
co

nt
ro

l
fo

re
ca

st
ie

5010
0

15
0

0

10
00

20
00

30
00 0

25
0

50
0

75
0

10
00

12
50

0

20
0

40
0

60
0

80
0 0

10
00

20
00

30
00

40
00

50
00

25507510
0 5010
0

15
0

C
om

m
it

Build Duration (Seconds)

A
cc

el
er

at
io

n
Le

ve
l:

N
on

−
ac

ce
le

ra
te

d

L1 L1
+

L2

F
i
g
u

r
e

8
.6

:
M

e
d

i
a
n

b
u

i
l
d

t
i
m

e
f
o
r

e
a
c
h

a
c
c
e
l
e
r
a
t
i
o
n

l
e
v
e
l
i
n

t
h

e
o
p

e
n

s
o
u

r
c
e

s
u

b
j
e
c
t
s
.
B

l
a
c
k

v
e
r
t
i
c
a
l
b

a
r
s

i
n

d
i
c
a
t
e

t
h

e
9
5
%

c
o
n

f
i
d

e
n

c
e

i
n

t
e
r
v
a
l
.

(
A

c
c
e
l
e
r
a
t
i
o
n

L
e
v
e
l
s
:
L

1
=

C
a
c
h

i
n

g
o
f

t
h

e
b

u
i
l
d

e
n

v
i
r
o
n

m
e
n

t
,
L

2
=

S
k

i
p

p
i
n

g
o
f

u
n

a
�

e
c
t
e
d

b
u

i
l
d

s
t
e
p

s
)
.

129

8.6. RQ3: What are the costs of the proposed accelerations?

●

●

●

None

L1

L1+L2
0% 20

%

40
%

60
%

Likelihood of being the best performing technique

A
cc

el
er

at
io

n
Le

ve
l

Figure 8.7: The likelihood of each acceleration technique appearing in the top rank. Circles indicate

the median, while the error bars indicate the 95% confidence interval.

8.6.1 Resource Utilization

As Kotinos relies on cached information and trace logs of build execution, memory, CPU, and
storage are consumed in exchange for the performance improvement. Thus, when addressing
RQ3, we �rst measure the resource overhead.

Approach. We study the seven open source systems from Section 8.5. We measure memory
and CPU usage by collecting process-level metrics from each VM in which the seven systems
are built during the execution of three Kotinos processes: (1) system call monitoring; (2)
graph creation/update; and (3) graph traversal. To compute storage usage, we �rst download
the source code of each subject system and the language toolchain that is required to build
that source code into a Docker container. Next, all the build steps are executed without using
Kotinos. The size of the image at this point is recorded as the baseline. Then, each studied
commit is built using Kotinos, after which, the size of the image is computed. The storage
overhead of Kotinos is computed as the di�erence in the sizes of a post-build Kotinos image
and the post-build baseline image.

Observation 8: Kotinos does not consume resources heavily. Table 8.4 shows the CPU and
memory usage of the three Kotinos components. Five of the seven subject systems have
minimal CPU (median < 1%) and memory usage (median 2 MB – 231 MB) during their builds.
Yet the Robot-Scouter and magarena systems have greater CPU and memory usage (median
693 MB – 2.2 GB). The logs indicate that these two subject systems made �vefold as many
system calls as other systems, leading to a larger memory footprint when parsing system calls
and inferring the BDG.

130

8.6. RQ3: What are the costs of the proposed accelerations?

Table 8.4: CPU and memory usage of Kotinos during the builds of seven open source systems.

Normalized CPU

Usage (%)

Memory Usage

(MB)

Project ID Process Type

Median Max Median Max

System Call Monitoring 0.30 5.20 53 54
Graph Creation/Update 0.42 4.32 231 348apicurio

Graph Traversal 0.05 0.10 64 90
System Call Monitoring 0.70 1.10 53 54
Graph Creation/Update 0.64 1.05 129 130forecastie

Graph Traversal 0.01 0.05 2 29
System Call Monitoring 0.15 0.90 53 156
Graph Creation/Update 0.20 0.57 35 182gradle-gosu

Graph Traversal 0.04 0.05 8 9
System Call Monitoring 1.26 2.77 53 105
Graph Creation/Update 0.11 14.51 2,241 2,592Robot-Scouter

Graph Traversal 0.04 6.20 22 62
System Call Monitoring 0.50 0.87 53 88
Graph Creation/Update 0.45 1.04 49 153aerogear

Graph Traversal 0.01 0.04 6 7
System Call Monitoring 0.02 2.45 53 159
Graph Creation/Update 0.08 13.34 693 720magarena

Graph Traversal 0.05 0.06 41 50
System Call Monitoring 0.01 0.54 53 54
Graph Creation/Update 0.08 1.11 149 190cruise-control

Graph Traversal 0.04 0.05 13 20

Table 8.5: Storage overhead of Kotinos build images.

Project ID

Baseline

Image

Size

(GB)

Median

Post-build

Image Size

(GB)

E�ective

Post-build

Image Size

(GB)

apicurio-studio 3.12 49.08 45.96
forecastie 3.45 4.94 1.49
gradle-gosu-plugin 1.53 3.03 1.50
robot-scouter 4.19 7.74 3.55
aerogear-android-push 3.59 3.99 0.40
magarena 0.57 5.81 5.23
cruise-control 1.64 5.87 4.23

131

8.7. Implications

Table 8.5 shows the median image size created by Kotinos builds. In six of the seven
subject systems, Kotinos introduced between 0.4 GB and 5.23 GB of storage overhead. In the
extreme case of apicurio-studio system, median image size was 45.96 GB. By inspecting the
builds of this system further, we identi�ed that Maven generated a JAR �le that included all
the transitive dependencies of the �nal deliverable. This caused the image to grow in size
during each subsequent build. Even in this extreme case, the cost of storing a build image
for a month will only be US$1 (50 GB × $0.020 per GB) based on cloud storage prices o�ered
by popular service providers. By exploiting the layered �le system of Docker, the size of the
image on disk is further reduced, e�ectively minimizing storage costs.

8.6.2 Correctness

Although build steps are being skipped, it is important that build outcomes are preserved.
Therefore, we set out to compare the outcomes provided by Kotinos and CircleCI (i.e., a
traditional CI service) for a common set of commits.

Approach. We select 500 commits of the seven studied open source systems, irrespective of
the original build outcome in their CircleCI builds. To mitigate the risk of non-deterministic
(i.e., “�aky”) build outcomes, we check that the outcomes of two cold builds are identical for
each studied commit. We remove 34 commits because the build outcome was inconsistent. We
then build the remaining 466 commits with Kotinos acceleration and compare the outcome
with the corresponding CircleCI builds.

Observation 9: 100% of the Kotinos build outcomes are consistent with CircleCI builds. All
425 builds that passed originally, resulted in passing Kotinos builds. The 41 builds that failed
in CircleCI also failed in Kotinos.

Kotinos can accelerate builds with minimal resource overhead and without compromising

build correctness.

8.7 Implications

Kotinos saves time and computational resources by accelerating CI builds. By iden-
tifying which steps in the CI process can be safely skipped, Kotinos helps software teams to
reduce CI build duration. Since the accelerated CI results are available within minutes, devel-
opers will be able to stay focused on their tasks, avoiding costly context switches [97, 110].

132

8.8. Threats to Validity

Moreover, since unnecessary build steps will not be re-executed, Kotinos also helps organi-
zations to reduce the computational footprint of their CI pipelines.

Language-agnostic build accelerations allow systems written in various languages

using heterogeneous build chains to bene�t. As long as a software project has a build
script that speci�es a series of steps for converting source code into software deliverables,
Kotinos can infer its graph and accelerate future builds. Irrespective of the language runtime
or tools that are used in each step, the Kotinos approach should apply. This allows teams
to use the programming languages and build tools that they are comfortable with while still
bene�ting from modern CI acceleration.

Software teams can immediately bene�t by migrating to Kotinos with minimal dis-

ruptions. The accelerations provided by Kotinos are available to projects without requiring
changes to source code or build system speci�cations. The users only need to introduce a
high-level con�guration �le (e.g., Listing 8.3.2), which invokes steps in existing build �les.
This approach of not modifying existing project artifacts means that teams are able to im-
mediately derive bene�ts from migration to Kotinos without a substantial initial investment
(e.g., migration of build tools [76, 86]) and with minimal disruptions to development activities.

8.8 Threats to Validity

This section describes the threats to the validity of our case study-based evaluations in Sec-
tions 8.4 and 8.5.

Internal Validity. Threats to internal validity are concerned with (uncontrolled) confound-
ing factors that may o�er plausible alternative explanations for the results that we observe.
It is possible that factors other than the studied ones may be slowing CI builds down. This
work aims to tackle two major causes of slow builds and is not intended to be exhaustive. In
our future work, we plan to identify more causes and to add additional acceleration types to
Kotinos.

External Validity. Threats to external validity refer to limitations to the generalizability of
our observations to examples outside of our study setting. We analyze and demonstrate our
approach on three proprietary and seven open source subject systems. As such, our results
may not generalize to all software systems. However, the subject systems that we analyze,
use nine di�erent programming languages and nine build tools. By evaluating Kotinos using

133

8.9. Chapter Summary

these subject systems, we show that the language-agnostic nature of Kotinos can bene�t
systems implemented using a broad variety of languages and build tools.

Construct Validity.Threats to construct validity refer to the relationship between theory and
observation. Infrastructure used by Kotinos could be very di�erent from the CircleCI one. In
other words, it may be possible that, if leveraging the infrastructure of CircleCI or other cloud
services, the bene�ts could be less evident. To mitigate this, we run non-accelerated builds in
a non-instrumented environment with vanilla OS to replicate the Circle CI infrastructure as
much as possible. Therefore, the performance results relative to the non-accelerated environ-
ment should generalize, although the absolute values may di�er.

8.9 Chapter Summary

A main goal of practicing CI in software teams is to provide quick feedback to developers.
While existing build acceleration tools have made important advances, in our estimation, they
su�er from two key limitations: (1) reliance upon explicitly speci�ed dependencies in build
con�guration �les; and (2) the barrier to entry for adopting a new build tool.

To overcome these limitations, we propose Kotinos—an approach to build acceleration
that is language- and tool-agnostic. At its core, Kotinos accelerates CI builds by: (1) populat-
ing and leveraging a cache of build images to avoid repeating environmental setup steps; and
(2) inferring and reasoning about dependencies between build steps by tracing system calls
during build execution. Our case study of three consumers of Kotinos shows that accelera-
tions are regularly triggered (87.9%–97.6% of the time) and when they are triggered, provide
signi�cant reductions in build time (74% of accelerated builds take at most half of the time of
their non-accelerated counterparts). Furthermore, Kotinos accelerates builds in open source
software systems that practice process-level test invocation, with minimal resource overhead
and without compromising build outcome.

Future Work. In future work, we will relax the conditions that Kotinos currently requires
in order to achieve robust acceleration. We list these conditions below.

[1] Use a build tool that supports deterministic dependency resolution. If the project’s
build tool relies on an external service to determine the version of dependencies to be
used during each build, Kotinos will not re-invoke this dependency resolution service
during builds unless the build speci�cation �le changes. This can lead to dependencies
getting resolved to outdated or missing versions. To mitigate this problem, we currently

134

8.9. Chapter Summary

require projects to pin dependency versions (including transitive dependencies) explic-
itly, using the lock �le mechanisms that are provided by dependency management tools
(e.g., Gemfile.lock in Bundler).

[2] Test suite is isolated and idempotent. If state is persisted using �les or database
storage during the test execution and not restored to its original state after the test
execution, subsequent builds will have access to the persisted state due to environment
caching. This can yield misleading test results. Therefore, Kotinos users must ensure
that the testing environment is reset to its initial state before the test execution.
Since most modern testing frameworks perform an environment reset during test exe-
cution, idempotency and isolation issues have been rarely observed in projects that use
Kotinos. In cases where idempotency issues persist, Kotinos provides a mechanism
that allows users to explicitly exclude (sub)processes from acceleration. For example, if
a database needs to be re-created on every test run, then the command can be forced to
re-execute rather than short-circuited.

[3] Conditional behaviour during the build should be kept to a minimum. Kotinos
relies on system call traces to infer the dependency graph. Like any dynamic analysis,
this may yield an incomplete view of the artifact under evaluation (i.e., build dependen-
cies) if there is conditional behaviour. To mitigate this risk, after each build execution,
the dependency graph is updated by isolating the steps of the build that were re-executed
during warm builds.

Since these are best practices that are recommended for e�ective and robust automated
testing, we believe that software projects should be striving for these build properties whether
or not they choose to adopt Kotinos. Even for the projects that are not currently follow-
ing these best practices, adopting them will help not only to accelerate CI builds with Koti-
nos, but will also yield other bene�ts (e.g., preventing false positive or false negative test
results). Nonetheless, in future work, we aim to expand the capabilities of Kotinos so that
even projects that do not ful�ll the above conditions can bene�t from build acceleration.

135

Chapter9
Final Conclusion & Future Work

This chapter provides a summary and concluding remarks regarding the contributions of this
thesis in Section 9.1, while Section 9.2 discusses future work.

9.1 Thesis Summary

In this thesis, we investigate the robustness and e�ciency of CI/CD services in �ve empirical
studies. For this purpose, we leverage data stored in software repositories and within the
CI/CD services. Below, we reiterate our main �ndings.

9.1.1 Usage of Features in CI/CD Environments

As a community, knowing how CI/CD is being used in practice is important for several rea-
sons. Researchers will be able to target elements of CI/CD that are of greater impact to users
of CI/CD. Service providers and tool builders will be able to tailor their solutions to �t the
needs of target users.

Analysis of the features that are adopted by projects reveals that explicit deployment code
is rare. The CI/CD code that con�gures job processing nodes appear in the most projects and
accounts for the most modi�cations. Supporting the con�guration of job processing nodes or
reducing the complexity of deployment con�guration via tooling would have the most imme-
diate impact. Moreover, research and tooling for CI/CD con�gurations should focus on the
creation of an initial speci�cation rather than supporting speci�cation maintenance because
the con�guration �les are modi�ed rarely.

136

9.1. Thesis Summary

9.1.2 Misuse of Features in CI/CD Environments

Like other software artifacts, CI/CD speci�cations can be misused. If improperly con�gured,
CI/CD jobs may have unintended behaviour, resulting in broken or incorrect builds. Violating
the semantics of CI/CD speci�cations could also introduce maintenance and comprehensibil-
ity problems. Furthermore, the CI/CD providers may be unable to optimize the provisioning
of CI/CD job processing nodes for speci�cations where semantics are violated.

Hansel, our anti-pattern detector, can detect misuse and miscon�guration of CI/CD spec-
i�cations. Hansel-detected anti-patterns can be removed (semi-)automatically with Gretel
to avoid the consequences of CI/CD misuse and miscon�guration. Automated �xes for CI/CD
anti-patterns are often accepted by developers and integrated into their projects, implying
that Hansel & Gretel produce patches that are of value to active development teams.

9.1.3 Noise and Heterogeneity in CI/CD Build Data

Without a closer analysis of the nature of CI/CD build outcome data, practitioners and re-
searchers are likely to make two critical assumptions: (1) build results are not noisy; however,
passing builds may contain failing or skipped jobs that are actively or passively ignored; and
(2) builds are equal; however, builds vary in terms of the number of jobs and con�gurations.

To investigate the degree to which these assumptions about build breakage hold, we per-
form an empirical study of 3.7 million build jobs spanning 1,276 open source projects. We �nd
that: (1) 12% of passing builds have an actively ignored failure; (2) 9% of builds have a mislead-
ing or incorrect outcome on average; and (3) at least 44% of the broken builds contain passing
jobs, i.e., the breakage is local to a subset of build variants. Like other software archives, build
data is noisy and complex. Analysis of CI/CD build data requires nuance.

9.1.4 CI/CD Service Providers’ Perspective

Identifying opportunities for managing resources e�ciently will help CI/CD service providers
to keep operational costs low while delivering fast and reliable CI/CD services. By making use
of research �ndings, CI/CD providers can improve the usability of the service helping to attract
new users and to retain existing ones.

Our observations suggest that CI/CD providers would bene�t most from CI/CD build ac-
celeration approaches that tackle long build durations and high throughput rates of heavy

137

9.2. Future Work

CI/CD users. Approaches to make testing and compiling faster will bene�t a large proportion
of CI/CD users. Furthermore, we �nd that future investments to stabilize con�guration and
resource allocation may improve the robustness of CI/CD services.

9.1.5 Accelerating Continuous Integration / Continuous Delivery

While recent work has made several important advances in the acceleration of CI/CD builds,
optimizations often depend upon explicitly de�ned build dependency graphs (e.g., make, Gra-
dle, CloudBuild, Bazel). These hand-maintained graphs may be (a) underspeci�ed, leading to
incorrect build behaviour; or (b) overspeci�ed, leading to missed acceleration opportunities.

In this thesis, we propose Kotinos—a language-agnostic approach to infer data from which
build acceleration decisions can be made without relying upon build speci�cations. After in-
ferring this data, our approach accelerates CI/CD builds by caching the build environment
and skipping una�ected build steps. Kotinos is at the core of a commercial CI service with a
growing customer base. Results of our empirical evaluation suggest that migration to Hansel
yields substantial bene�ts with low resource overhead and minimal investment of e�ort (e.g.,
no migration of build systems is necessary).

9.2 Future Work

We believe that this thesis has made contributions toward improving the robustness and e�-
ciency of CI/CD services. Nevertheless, there is plenty of room for future research. We outline
several promising avenues for future research below.

• In Chapter 4 we present the domains of subject systems that we study for CI/CD usage.
As future work, we plan to study if the domain is a decisive factor that correlates with
their practice of CI/CD. This includes studying how CI/CD is used in certain domains
where practising CI/CD is challenging (e.g., testing in games or mobile applications) and
the impact of programming languages/tools used in the domain for CI/CD. Furthermore,
we plan to investigate ML-intensive systems as one of the studied domains since the role
of CI/CD can be unique and challenging in a MLOps context.

• In Chapter 5, we deduce CI/CD speci�cation anti-patterns by referring to the formal
Travis CI documentation and informal documentation from the Travis CI user commu-
nity (e.g., blogs, posts on Q&A sites, such as StackOverflow). The list of anti-patterns
that we present in the paper is not exhaustive. Building upon our set of anti-patterns

138

9.2. Future Work

as a starting point, future work can de�ne anti-patterns using other data sources, e.g.,
developer surveys. Moreover, we plan to extend our study to systematically understand
the impact of such misuse.

• AlthoughHansel&Gretel only support anti-pattern detection and removal in projects
that use the Travis CI service, other popular CI/CD services, such as CircleCI, Wer-
cker, and AppVeyor also use YAML DSLs for specifying CI/CD con�guration. Thus,
the anti-patterns that we de�ne in Chapter 5 may also apply to these services. Future
work may extend Hansel & Gretel to support these other CI/CD service providers.

• Hansel & Gretel support anti-pattern detection and removal in projects that use NPM
to manage dependencies. Future work may add support for Yarn and other package
managers.

• In Chapter 6, we de�ne seven metrics to analyze build breakage. Future work can build
upon and extend our initial set of metrics to study noise and heterogeneity. Further-
more, future work may quantify the impact that noise and heterogeneity can have on
common analyses of historical build data. Moreover, we plan to study and the purpose
of allow_failures in builds.

• In Chapter 7, we observe that a larger proportion of the CI/CD runtime is spent on
the compilation and testing stages in signal-generating builds. Future work may focus
on techniques for accelerating testing and compilation steps in the CI/CD pipeline to
yield the largest reductions in CI/CD workload costs for service providers and feedback
delays for users.

• Furthermore, in Chapter 7, we identify that approaches for automatic program repair
and build acceleration will help to reduce CI/CD operational costs and to improve user
experience. Future work may further empirically validate these �ndings.

• Currently, the CI/CD acceleration approach that we present in Chapter 8 requires the
projects to ful�ll several conditions in order to achieve robust acceleration. For exam-
ple, candidate projects should use a build tool that supports deterministic dependency
resolution. Test suites in the projects should be isolated and idempotent. Conditional
behaviour during the builds should be kept to a minimum. Future work may look into
approaches that will allow users to relax these conditions.

• Expanding on our observations of cloud CI/CD services in this thesis, we plan on an
in-depth study of migration between CI tools and technologies. Ultimately, we aim to
integrate the tools developed in di�erent chapters as a comprehensive CI solution.

139

Bibliography

[1] Chuck Rossi, Elisa Shibley, Shi Su, Kent Beck, Tony Savor, and Michael Stumm. Contin-
uous deployment of mobile software at Facebook (showcase). In: Proceedings of Sym-

posium on Foundations of Software Engineering (FSE), 2016. doi: 10.1145/2950290.
2994157.

[2] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig. Usage,
costs, and bene�ts of continuous integration in open-source projects. In: Proceedings of
International Conference on Automated Software Engineering (ASE), pp. 426–437. 2016.
doi: 10.1145/2970276.2970358.

[3] Bram Adams and Shane McIntosh. Modern release engineering in a nutshell: why re-
searchers should care. In: Proceedings of International Conference on Software Analysis,
Evolution, and Reengineering (SANER), vol. 5, pp. 78–90. 2016. doi: 10.1109/SANER.
2016.108.

[4] Paul M. Duvall, Steve Matyas, and Andrew Glover. Continuous Integration: Improving

Software Quality and Reducing Risk. Pearson Education, 2007.

[5] Chris AtLee, Lukas Blakk, John O’Duinn, and Armen Zambrano Gasparnian. Firefox
release engineering. In: Amy Brown and Greg Wilson (eds.), The Architecture of Open
Source Applications: Structure, Scale, and a FewMore Fearless Hacks, Creative Commons,
2012. url: http://www.aosabook.org/en/ffreleng.html.

[6] Hyunmin Seo, Caitlin Sadowski, Sebastian Elbaum, Edward Aftandilian, and Robert
Bowdidge. Programmers’ build errors: a case study (at Google). In: Proceedings of Inter-
national Conference on Software Engineering (ICSE), pp. 724–734. 2014. doi: 10.1145/
2568225.2568255.

[7] Ade Miller. A hundred days of continuous integration. In: Proceedings of the Agile Con-
ference, pp. 289–293. 2008.

[8] Carmine Vassallo, Gerald Schermann, Fiorella Zampetti, Daniele Romano, Philipp Leit-
ner, Andy Zaidman, Massimiliano Di Penta, and Sebastiano Panichella. A tale of CI
build failures: an open source and a �nancial organization perspective. In: Proceedings

140

https://doi.org/10.1145/2950290.2994157
https://doi.org/10.1145/2950290.2994157
https://doi.org/10.1145/2970276.2970358
https://doi.org/10.1109/SANER.2016.108
https://doi.org/10.1109/SANER.2016.108
http://www.aosabook.org/en/ffreleng.html
https://doi.org/10.1145/2568225.2568255
https://doi.org/10.1145/2568225.2568255

Bibliography

of International Conference on Software Maintenance and Evolution (ICSME), pp. 183–
193. 2017. doi: 10.1109/icsme.2017.67.

[9] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir Filkov.
Quality and productivity outcomes relating to continuous integration in GitHub. In:
Proceedings of Joint Meeting on European Software Engineering Conference and Sym-

posium on Foundations of Software Engineering (ESEC/FSE), pp. 805–816. 2015. doi:
10.1145/2786805.2786850.

[10] Jez Humble and David Farley. Continuous Delivery: Reliable Software Releases through
Build, Test, and Deployment Automation. Pearson Education, 2010.

[11] Gustavo Pinto, Fernando Castor, Rodrigo Bonifacio, and Marcel Rebouças. Work prac-
tices and challenges in continuous integration: a survey with Travis CI users. Software:
Practice and Experience 48(12), 2018, pp. 2223–2236. doi: 10.1002/spe.2637.

[12] Yang Luo, Yangyang Zhao, Wanwangying Ma, and Lin Chen. What are the factors
impacting build breakage? In: Proceedings of the Web Information Systems and Appli-

cations Conference, 2017. doi: 10.1109/wisa.2017.17.

[13] Mathias Meyer. Continuous integration and its tools. IEEE Software 31(3), 2014, pp. 14–
16. doi: 10.1109/MS.2014.58.

[14] Daniel Ståhl and Jan Bosch. Modeling continuous integration practice di�erences in
industry software development. Journal of Systems and Software (JSS) 87, 2014, pp. 48–
59. doi: 10.1016/j.jss.2013.08.032.

[15] Gustavo Pinto, Marcel Reboucas, and Fernando Castor. Inadequate testing, time pres-
sure, and (over) con�dence: a tale of continuous integration users. In: Proceedings of
International Workshop on Cooperative and Human Aspects of Software Engineering

(CHASE), pp. 74–77. 2017. doi: 10.1109/chase.2017.13.

[16] Omar Elazhary, Colin Werner, Ze Shi Li, Derek Lowlind, Neil A. Ernst, and Margaret-
Anne Storey. Uncovering the bene�ts and challenges of continuous integration prac-
tices. IEEE Transactions on Software Engineering (TSE), 2021. doi: 10.1109/tse.2021.
3064953.

[17] Michael Hilton, Nicholas Nelson, Timothy Tunnell, Darko Marinov, and Danny Dig.
Trade-o�s in continuous integration: assurance, security, and �exibility. In: Proceed-
ings of Joint Meeting on European Software Engineering Conference and Symposium on

141

https://doi.org/10.1109/icsme.2017.67
https://doi.org/10.1145/2786805.2786850
https://doi.org/10.1002/spe.2637
https://doi.org/10.1109/wisa.2017.17
https://doi.org/10.1109/MS.2014.58
https://doi.org/10.1016/j.jss.2013.08.032
https://doi.org/10.1109/chase.2017.13
https://doi.org/10.1109/tse.2021.3064953
https://doi.org/10.1109/tse.2021.3064953

Bibliography

Foundations of Software Engineering (ESEC/FSE), pp. 197–207. 2017. doi: 10.1145/
3106237.3106270.

[18] Moritz Beller, Georgios Gousios, and Andy Zaidman. Oops, my tests broke the build:
an explorative analysis of travis CI with GitHub. In: Proceedings of International Con-
ference on Mining Software Repositories (MSR), pp. 356–367. 2017. doi: 10.1109/msr.
2017.62.

[19] Sebastian Elbaum, Gregg Rothermel, and John Penix. Techniques for improving re-
gression testing in continuous integration development environments. In: Proceedings
of the International Symposium on Foundations of Software Engineering (FSE), pp. 235–
245. 2014. doi: 10.1145/2635868.2635910.

[20] José Campos, Andrea Arcuri, Gordon Fraser, and Rui Abreu. Continuous test gener-
ation: enhancing continuous integration with automated test generation. In: Proceed-
ings of International Conference on Automated Software Engineering (ASE), pp. 55–66.
2014. doi: 10.1145/2642937.2643002.

[21] Stefan Dösinger, Richard Mordinyi, and Stefan Bi�. Communicating continuous in-
tegration servers for increasing e�ectiveness of automated testing. In: Proceedings of
International Conference on Automated Software Engineering (ASE), pp. 374–377. 2012.
doi: 10.1145/2351676.2351751.

[22] Fabrizio Cannizzo, Robbie Clutton, and Raghav Ramesh. Pushing the boundaries of
testing and continuous integration. In: Proceedings of the Agile Conference, pp. 501–
505. 2008. doi: 10.1109/Agile.2008.31.

[23] William J. Brown, Hays W. McCormick III, and Scott W. Thomas. AntiPatterns and
Patterns in Software Con�guration Management. John Wiley & Sons, Inc., 1999.

[24] Rian Shambaugh, Aaron Weiss, and Arjun Guha. Rehearsal: a con�guration veri�ca-
tion tool for puppet. In: Proceedings of International Conference on Program. Language

Des. and Implementation (PLDI), pp. 416–430. 2016. doi: 10.1145/2908080.2908083.

[25] Tushar Sharma, Marios Fragkoulis, and Diomidis Spinellis. Does your con�guration
code smell? In: Proceedings of International Conference on Mining Software Repositories

(MSR), pp. 189–200. 2016. doi: 10.1145/2901739.2901761.

142

https://doi.org/10.1145/3106237.3106270
https://doi.org/10.1145/3106237.3106270
https://doi.org/10.1109/msr.2017.62
https://doi.org/10.1109/msr.2017.62
https://doi.org/10.1145/2635868.2635910
https://doi.org/10.1145/2642937.2643002
https://doi.org/10.1145/2351676.2351751
https://doi.org/10.1109/Agile.2008.31
https://doi.org/10.1145/2908080.2908083
https://doi.org/10.1145/2901739.2901761

Bibliography

[26] Eduard Van der Bent, Jurriaan Hage, Joost Visser, and Georgios Gousios. How good is
your puppet? an empirically de�ned and validated quality model for puppet. In: Pro-
ceedings of International Conference on Softw. Anal., Evolution Reengineering (SANER),
pp. 164–174. 2018. doi: 10.1109/SANER.2018.8330206.

[27] Akond Rahman and Laurie Williams. Characterizing defective con�guration scripts
used for continuous deployment. In: Proceedings of International Conference on Softw.

Testing, Validations, and Veri�cation (ICST), pp. 34–45. 2018. doi: 10.1109/ICST.
2018.00014.

[28] Ajay Kumar Jha, Sunghee Lee, and Woo Jin Lee. Developer mistakes in writing An-
droid manifests: an empirical study of con�guration errors. In: Proceedings of Inter-
national Conference on Mining Software Repositories (MSR), pp. 25–36. 2017. doi: 10.
1109/msr.2017.41.

[29] Jürgen Cito, Gerald Schermann, John Erik Wittern, Philipp Leitner, Sali Zumberi, and
Harald C. Gall. An empirical analysis of the Docker container ecosystem on GitHub. In:
Proceedings of International Conference on Mining Software Repositories (MSR), pp. 323–
333. 2017. doi: 10.1109/MSR.2017.67.

[30] Carmine Vassallo, Sebastian Proksch, Harald C. Gall, and Massimiliano Di Penta. Au-
tomated reporting of anti-patterns and decay in continuous integration. In: Proceed-
ings of International Conference on Software Engineering (ICSE), pp. 105–115. 2019. doi:
10.1109/ICSE.2019.00028.

[31] Fiorella Zampetti, Carmine Vassallo, Sebastiano Panichella, Gerardo Canfora, Harald
Gall, and Massimiliano Di Penta. An empirical characterization of bad practices in
continuous integration. Empirical Software Engineering (EMSE) 25(2), 2020, pp. 1095–
1135. doi: 10.1007/s10664-019-09785-8.

[32] Carmine Vassallo, Sebastian Proksch, Timothy Zemp, and Harald C. Gall. Un-break my
build: assisting developers with build repair hints. In: Proceedings of International Con-
ference on Program Comprehension (ICPC), pp. 41–51. 2018. doi: 10.1145/3196321.
3196350.

[33] Foyzul Hassan and Xiaoyin Wang. HireBuild: An Automatic Approach to History-
Driven Repair of Build Scripts. In: Proceedings of International Conference on Software

Engineering (ICSE), pp. 1078–1089. 2018. doi: 10.1145/3180155.3180181.

143

https://doi.org/10.1109/SANER.2018.8330206
https://doi.org/10.1109/ICST.2018.00014
https://doi.org/10.1109/ICST.2018.00014
https://doi.org/10.1109/msr.2017.41
https://doi.org/10.1109/msr.2017.41
https://doi.org/10.1109/MSR.2017.67
https://doi.org/10.1109/ICSE.2019.00028
https://doi.org/10.1007/s10664-019-09785-8
https://doi.org/10.1145/3196321.3196350
https://doi.org/10.1145/3196321.3196350
https://doi.org/10.1145/3180155.3180181

Bibliography

[34] Christian Macho, Shane McIntosh, and Martin Pinzger. Automatically repairing dependency-
related build breakage. In: Proceedings of International Conference on Software Analysis,
Evolution, Reengineering (SANER), pp. 106–117. 2018. doi: 10.1109/SANER.2018.
8330201.

[35] Carmine Vassallo, Sebastian Proksch, Anna Jancso, Harald C. Gall, and Massimiliano
Di Penta. Con�guration smells in continuous delivery pipelines: a linter and a six-
month study on GitLab. In: Proceedings of Joint Meeting on European Software Engi-

neering Conference and Symposium on Foundations of Software Engineering (ESEC/FSE),
pp. 327–337. 2020. doi: 10.1145/3368089.3409709.

[36] Radu Marinescu. Detection strategies: metrics-based rules for detecting design �aws.
In: Proceedings of International Conference on Software Maintenance (ICSM), pp. 350–
359. 2004. doi: 10.1109/ICSM.2004.1357820.

[37] Joshua Garcia, Daniel Popescu, George Edwards, and Nenad Medvidovic. Toward a
catalogue of architectural bad smells. In: Proceedings of International Conference on the
Quality of Software Architectures: Architectures for Adaptive Software Systems, pp. 146–
162. 2009. doi: 10.1007/978-3-642-02351-4_10.

[38] Naouel Moha, Yann-Gaël Guéhéneuc, Laurence Duchien, and Anne-Francoise Le Meur.
Decor: a method for the speci�cation and detection of code and design smells. IEEE
Transactions on Software Engineering (TSE) 36(1), 2010, pp. 20–36. doi: 10.1109/TSE.
2009.50.

[39] Mansoor Alicherry and Angelos D. Keromytis. DoubleCheck: multi-path veri�cation
against man-in-the-middle attacks. In: Proceedings of International Symposium on Com-

puters and Communications (ISCC), 2009. doi: 10.1109/iscc.2009.5202224.

[40] Akond Rahman, Chris Parnin, and Laurie Williams. The seven sins: security smells in
infrastructure as code scripts. In: Proceedings of International Conference on Software

Engineering (ICSE), pp. 164–175. 2019. doi: 10.1109/icse.2019.00033.

[41] Noureddine Kerzazi, Foutse Khomh, and Bram Adams. Why do automated builds break?
an empirical study. In: Proceedings of International Conference on Software Maintenance

and Evolution (ICSME), 2014. doi: 10.1109/icsme.2014.26.

[42] Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto,
Andrea De Lucia, and Denys Poshyvanyk. There and back again: can you compile that

144

https://doi.org/10.1109/SANER.2018.8330201
https://doi.org/10.1109/SANER.2018.8330201
https://doi.org/10.1145/3368089.3409709
https://doi.org/10.1109/ICSM.2004.1357820
https://doi.org/10.1007/978-3-642-02351-4_10
https://doi.org/10.1109/TSE.2009.50
https://doi.org/10.1109/TSE.2009.50
https://doi.org/10.1109/iscc.2009.5202224
https://doi.org/10.1109/icse.2019.00033
https://doi.org/10.1109/icsme.2014.26

Bibliography

snapshot? Journal of Software: Evolution and Process 29(4), 2016, e1838. doi: 10.1002/
smr.1838.

[43] Foyzul Hassan, Shaikh Mostafa, Edmund S.L. Lam, and Xiaoyin Wang. Automatic
building of java projects in software repositories: a study on feasibility and challenges.
In: Proceedings of International Symposium on Empirical Software Engineering andMea-

surement (ESEM), 2017. doi: 10.1109/esem.2017.11.

[44] Ahmed E. Hassan and Ken Zhang. Using decision trees to predict the certi�cation
result of a build. In: Proceedings of International Conference on Automated Software

Engineering (ASE), 2006. doi: 10.1109/ase.2006.72.

[45] Timo Wolf, Adrian Schroter, Daniela Damian, and Thanh Nguyen. Predicting build
failures using social network analysis on developer communication. In: Proceedings of
International Conference on Software Engineering (ICSE), 2009. doi: 10.1109/icse.
2009.5070503.

[46] Irwin Kwan, Adrian Schroter, and Daniela Damian. Does socio-technical congruence
have an e�ect on software build success? a study of coordination in a software project.
IEEE Transactions on Software Engineering (TSE) 37(3), 2011, pp. 307–324. doi: 10 .
1109/tse.2011.29.

[47] Panagiotis Dimitropoulos, Zeyar Aung, and Davor Svetinovic. Continuous integration
build breakage rationale: travis data case study. In: Proceedings of International Con-
ference on Infocom Technologies and Unmanned Systems (Trends and Future Directions)

(ICTUS), 2017. doi: 10.1109/ictus.2017.8286087.

[48] John Downs, Beryl Plimmer, and John G. Hosking. Ambient awareness of build status
in collocated software teams. In: Proceedings of International Conference on Software

Engineering (ICSE), 2012. doi: 10.1109/icse.2012.6227165.

[49] Tijs van der Storm. Backtracking incremental continuous integration. In: Proceedings
of European Conference on Software Maintenance and Reengineering (CSMR), 2008. doi:
10.1109/csmr.2008.4493318.

[50] Mahdis Zolfagharinia, Bram Adams, and Yann-Gaël Guéhéneuc. A study of build in�a-
tion in 30 million CPAN builds on 13 Perl versions and 10 operating systems. Empirical

Software Engineering (EMSE) 24(6), 2019, pp. 3933–3971. doi: 10.1007/s10664-019-
09709-6.

145

https://doi.org/10.1002/smr.1838
https://doi.org/10.1002/smr.1838
https://doi.org/10.1109/esem.2017.11
https://doi.org/10.1109/ase.2006.72
https://doi.org/10.1109/icse.2009.5070503
https://doi.org/10.1109/icse.2009.5070503
https://doi.org/10.1109/tse.2011.29
https://doi.org/10.1109/tse.2011.29
https://doi.org/10.1109/ictus.2017.8286087
https://doi.org/10.1109/icse.2012.6227165
https://doi.org/10.1109/csmr.2008.4493318
https://doi.org/10.1007/s10664-019-09709-6
https://doi.org/10.1007/s10664-019-09709-6

Bibliography

[51] Taher Ahmed Ghaleb, Daniel Alencar da Costa, Ying Zou, and Ahmed E. Hassan.
Studying the impact of noises in build breakage data. IEEE Transactions on Software

Engineering (TSE). doi: 10.1109/tse.2019.2941880.

[52] Moritz Beller, Georgios Gousios, and Andy Zaidman. TravisTorrent: synthesizing travis
CI and GitHub for full-stack research on continuous integration. In: Proceedings of In-
ternational Conference on Mining Software Repositories (MSR), pp. 447–450. 2017. doi:
10.1109/msr.2017.24.

[53] Keheliya Gallaba, Christian Macho, Martin Pinzger, and Shane McIntosh. Noise and
heterogeneity in historical build data: an empirical study of Travis CI. In: Proceedings
of International Conference on Automated Software Engineering (ASE), pp. 87–97. 2018.
doi: 10.1145/3238147.3238171.

[54] Taher Ahmed Ghaleb, Daniel Alencar da Costa, and Ying Zou. An empirical study
of the long duration of continuous integration builds. Empirical Software Engineering

(EMSE) 24(4), 2019, pp. 2102–2139. doi: 10.1007/s10664-019-09695-9.

[55] Thomas Durieux, Rui Abreu, Martin Monperrus, Tegawendé F. Bissyandé, and Luis
Cruz. An analysis of 35+ million jobs of Travis CI. In: Proceedings of International
Conference on Software Maintenance and Evolution (ICSME), pp. 291–295. 2019. doi:
10.1109/ICSME.2019.00044.

[56] Thomas Rausch, Waldemar Hummer, Philipp Leitner, and Stefan Schulte. An empir-
ical analysis of build failures in the continuous integration work�ows of java-based
open-source software. In: Proceedings of International Conference on Mining Software

Repositories (MSR), pp. 345–355. 2017. doi: 10.1109/msr.2017.54.

[57] Wagner Felidré, Leonardo Furtado, Daniel Alencar da Costa, Bruno Cartaxo, and Gus-
tavo Pinto. Continuous integration theater. In: Proceedings of International Symposium

on Empirical Software Engineering and Measurement (ESEM), pp. 1–10. 2019. doi: 10.
1109/ESEM.2019.8870152.

[58] Yangyang Zhao, Alexander Serebrenik, Yuming Zhou, Vladimir Filkov, and Bogdan
Vasilescu. The impact of continuous integration on other software development prac-
tices: a large-scale empirical study. In: Proceedings of International Conference on Auto-
mated Software Engineering (ASE), pp. 60–71. 2017. doi: 10.1109/ase.2017.8115619.

146

https://doi.org/10.1109/tse.2019.2941880
https://doi.org/10.1109/msr.2017.24
https://doi.org/10.1145/3238147.3238171
https://doi.org/10.1007/s10664-019-09695-9
https://doi.org/10.1109/ICSME.2019.00044
https://doi.org/10.1109/msr.2017.54
https://doi.org/10.1109/ESEM.2019.8870152
https://doi.org/10.1109/ESEM.2019.8870152
https://doi.org/10.1109/ase.2017.8115619

Bibliography

[59] David Gray Widder, Michael Hilton, Christian Kästner, and Bogdan Vasilescu. A con-
ceptual replication of continuous integration pain points in the context of Travis CI.
In: Proceedings of Joint Meeting on European Software Engineering Conference and Sym-

posium on Foundations of Software Engineering (ESEC/FSE), pp. 647–658. 2019. doi:
10.1145/3338906.3338922.

[60] Yue Yu, Huaimin Wang, Vladimir Filkov, Premkumar Devanbu, and Bogdan Vasilescu.
Wait for it: determinants of pull request evaluation latency on GitHub. In: Proceedings
of International Conference on Mining Software Repositories (MSR), pp. 367–371. 2015.
doi: 10.1109/msr.2015.42.

[61] Carlene Lebeuf, Elena Voyloshnikova, Kim Herzig, and Margaret-Anne Storey. Un-
derstanding, debugging, and optimizing distributed software builds: a design study.
In: Proceedings of International Conference on Software Maintenance and Evolution (IC-

SME), pp. 496–507. 2018. doi: 10.1109/icsme.2018.00060.

[62] Graham Brooks. Team pace keeping build times down. In:Agile 2008 Conference, pp. 294–
297. 2008. doi: 10.1109/agile.2008.41.

[63] Qi Cao, Ruiyin Wen, and Shane McIntosh. Forecasting the duration of incremental
build jobs. In: Proceedings of International Conference on Software Maintenance and Evo-

lution (ICSME), pp. 524–528. 2017. doi: 10.1109/icsme.2017.34.

[64] Michele Tufano, Hitesh Sajnani, and Kim Herzig. Towards predicting the impact of
software changes on building activities. In: Proceedings of International Conference on
Software Engineering: New Ideas and Emerging Results (ICSE-NIER), pp. 49–52. 2019.
doi: 10.1109/ICSE-NIER.2019.00021.

[65] Rabe Abdalkareem, Suhaib Mujahid, Emad Shihab, and Juergen Rilling. Which com-
mits can be CI skipped? IEEE Transactions on Software Engineering (TSE), 2019. doi:
10.1109/tse.2019.2897300.

[66] Rabe Abdalkareem, Suhaib Mujahid, and Emad Shihab. A machine learning approach
to improve the detection of CI skip commits. IEEE Transactions on Software Engineering
(TSE), 2020. doi: 10.1109/tse.2020.2967380.

[67] Hamed Esfahani, Jonas Fietz, Qi Ke, Alexei Kolomiets, Erica Lan, Erik Mavrinac, Wol-
fram Schulte, Newton Sanches, and Srikanth Kandula. CloudBuild: Microsoft’s dis-
tributed and caching build service. In: Proceedings of International Conference on Soft-

ware Engineering Companion, pp. 11–20. 2016. doi: 10.1145/2889160.2889222.

147

https://doi.org/10.1145/3338906.3338922
https://doi.org/10.1109/msr.2015.42
https://doi.org/10.1109/icsme.2018.00060
https://doi.org/10.1109/agile.2008.41
https://doi.org/10.1109/icsme.2017.34
https://doi.org/10.1109/ICSE-NIER.2019.00021
https://doi.org/10.1109/tse.2019.2897300
https://doi.org/10.1109/tse.2020.2967380
https://doi.org/10.1145/2889160.2889222

Bibliography

[68] Yingling Li, Junjie Wang, Yun Yang, and Qing Wang. Method-level test selection for
continuous integration with static dependencies and dynamic execution rules. In: Pro-
ceedings of the International Conference on Software Quality, Reliability and Security,
pp. 350–361. 2019. doi: 10.1109/qrs.2019.00052.

[69] August Shi, Peiyuan Zhao, and Darko Marinov. Understanding and improving regres-
sion test selection in continuous integration. In: Proceedings of International Sympo-

sium on Software Reliability Engineering (ISSRE), 2019. doi: 10.1109/issre.2019.
00031.

[70] Shin Yoo and Mark Harman. Regression testing minimization, selection and prioriti-
zation: a survey. Software Testing, Veri�cation and Reliability 22(2), 2012, pp. 67–120.
doi: 10.1002/stv.430.

[71] Atif Memon, Zebao Gao, Bao Nguyen, Sanjeev Dhanda, Eric Nickell, Rob Siemborski,
and John Micco. Taming google-scale continuous testing. In: Proceedings of Interna-
tional Conference on Software Engineering: Software Engineering in Practice Track (ICSE-

SEIP), 2017. doi: 10.1109/icse-seip.2017.16.

[72] Shane McIntosh, Bram Adams, Meiyappan Nagappan, and Ahmed E. Hassan. Mining
co-change information to understand when build changes are necessary. In: Proceed-
ings of International Conference on Software Maintenance and Evolution (ICSME), 2014.
doi: 10.1109/icsme.2014.46.

[73] Xin Xia, David Lo, Shane McIntosh, Emad Shihab, and Ahmed E. Hassan. Cross-project
build co-change prediction. In: Proceedings of International Conference on Software Anal-
ysis, Evolution, Reengineering (SANER), 2015. doi: 10.1109/saner.2015.7081841.

[74] Christian Macho, Shane McIntosh, and Martin Pinzger. Predicting build co-changes
with source code change and commit categories. In: Proceedings of International Con-
ference on Software Analysis, Evolution, Reengineering (SANER), 2016. doi: 10.1109/
saner.2016.22.

[75] Cor-Paul Bezemer, Shane McIntosh, Bram Adams, Daniel M. German, and Ahmed E.
Hassan. An empirical study of unspeci�ed dependencies in make-based build systems.
Empirical Software Engineering (EMSE) 22(6), 2017, pp. 3117–3148. doi: 10 . 1007 /
s10664-017-9510-8.

148

https://doi.org/10.1109/qrs.2019.00052
https://doi.org/10.1109/issre.2019.00031
https://doi.org/10.1109/issre.2019.00031
https://doi.org/10.1002/stv.430
https://doi.org/10.1109/icse-seip.2017.16
https://doi.org/10.1109/icsme.2014.46
https://doi.org/10.1109/saner.2015.7081841
https://doi.org/10.1109/saner.2016.22
https://doi.org/10.1109/saner.2016.22
https://doi.org/10.1007/s10664-017-9510-8
https://doi.org/10.1007/s10664-017-9510-8

Bibliography

[76] Milos Gligoric, Wolfram Schulte, Chandra Prasad, Danny van Velzen, Iman Narasamdya,
and Benjamin Livshits. Automated migration of build scripts using dynamic analysis
and search-based refactoring. In: Proceedings of International Conference on Object Ori-
ented Programming Systems Languages & Applications (OOPSLA), pp. 599–616. 2014.
doi: 10.1145/2660193.2660239.

[77] Roman Suvorov, Meiyappan Nagappan, Ahmed E. Hassan, Ying Zou, and Bram Adams.
An empirical study of build system migrations in practice: case studies on KDE and
the linux kernel. In: Proceedings of International Conference on Software Maintenance

(ICSM), pp. 160–169. 2012. doi: 10.1109/icsm.2012.6405267.

[78] Gerald Schermann and Philipp Leitner. Search-based scheduling of experiments in
continuous deployment. In: Proceedings of International Conference on Software Main-

tenance and Evolution (ICSME), pp. 485–495. 2018. doi: 10.1109/icsme.2018.00059.

[79] Ozan Günalp, Clement Esco�er, and Philippe Lalanda. Rondo: a tool suite for continu-
ous deployment in dynamic environments. In: Proceedings of International Conference
on Services Computing (SCC), 2015. doi: 10.1109/scc.2015.102.

[80] Somit Gupta, Lucy Ulanova, Sumit Bhardwaj, Pavel Dmitriev, Paul Ra�, and Alek-
sander Fabijan. The anatomy of a large-scale experimentation platform. In: Proceed-
ings of International Conference on Software Architecture (ICSA), 2018. doi: 10.1109/
icsa.2018.00009.

[81] Tony Savor, Mitchell Douglas, Michael Gentili, Laurie Williams, Kent Beck, and Michael
Stumm. Continuous deployment at Facebook and OANDA. In: Proceedings of Interna-
tional Conference on Software Engineering Companion, 2016. doi: 10.1145/2889160.
2889223.

[82] Eero Laukkanen, Juha Itkonen, and Casper Lassenius. Problems, causes and solutions
when adopting continuous delivery—a systematic literature review. Information and

Software Technology (IST) 82, 2017, pp. 55–79. doi: 10.1016/j.infsof.2016.10.001.

[83] M. Leppänen, S. Mäkinen, M. Pagels, V. P. Eloranta, J. Itkonen, M. V. Mäntylä, and T.
Männistö. The highways and country roads to continuous deployment. IEEE Software

32(2), 2015, pp. 64–72. doi: 10.1109/MS.2015.50.

[84] Keheliya Gallaba and Shane McIntosh. Use and misuse of continuous integration fea-
tures: an empirical study of projects that (mis)use Travis CI. IEEE Transactions on Soft-
ware Engineering (TSE), 2018. doi: 10.1109/tse.2018.2838131.

149

https://doi.org/10.1145/2660193.2660239
https://doi.org/10.1109/icsm.2012.6405267
https://doi.org/10.1109/icsme.2018.00059
https://doi.org/10.1109/scc.2015.102
https://doi.org/10.1109/icsa.2018.00009
https://doi.org/10.1109/icsa.2018.00009
https://doi.org/10.1145/2889160.2889223
https://doi.org/10.1145/2889160.2889223
https://doi.org/10.1016/j.infsof.2016.10.001
https://doi.org/10.1109/MS.2015.50
https://doi.org/10.1109/tse.2018.2838131

Bibliography

[85] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M. German,
and Daniela Damian. The promises and perils of mining GitHub. In: Proceedings of
International Working Conference on Mining Software Repositories (MSR), pp. 92–101.
2014. doi: 10.1145/2597073.2597074.

[86] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E. Hassan, and Kenichi Mat-
sumoto. An empirical comparison of model validation techniques for defect predic-
tion models. IEEE Transactions on Software Engineering (TSE) 43(1), 2017, pp. 1–18.
doi: 10.1109/tse.2016.2584050.

[87] Andrew John Scott and M Knott. A cluster analysis method for grouping means in the
analysis of variance. Biometrics 30(3), 1974, pp. 507–512.

[88] Bram Adams, Kris de Schutter, Herman Tromp, and Wolfgang de Meuter. The evolu-
tion of the linux build system. Electron. Commun. of the ECEASST 8, 2008.

[89] Shane McIntosh, Bram Adams, and Ahmed E. Hassan. The evolution of Java build
systems. Empirical Software Engineering (EMSE) 17(4-5), 2012, pp. 578–608. doi: 10.
1007/s10664-011-9169-5.

[90] Matthew B. Miles, A. Michael Huberman, and Johnny Saldaña. Qualitative data anal-
ysis: A methods sourcebook. Sage, 2013.

[91] Mahdis Zolfagharinia, Bram Adams, and Yann-Gaël Guéhéneuc. Do not trust build
results at face value - an empirical study of 30 million CPAN builds. In: Proceedings
of International Conference on Mining Software Repositories (MSR), pp. 312–322. 2017.
doi: 10.1109/msr.2017.7.

[92] Audris Mockus. Software support tools and experimental work. In: Victor R. Basili,
Dieter Rombach, Kurt Schneider, Barbara Kitchenham, Dietmar Pfahl, and Richard
W. Selby (eds.), Empirical Software Engineering Issues. Critical Assessment and Future

Directions: International Workshop, Dagstuhl Castle, Germany, June 26-30, 2006. Revised

Papers, pp. 91–99. 2007. doi: 10.1007/978-3-540-71301-2_25.

[93] Peter Kampstra. Beanplot: a boxplot alternative for visual comparison of distributions.
Journal of Statistical Software 28(Code Snippet 1), 2008, pp. 1–9. doi: 10.18637/jss.
v028.c01.

[94] E. Burton Swanson. The dimensions of maintenance. In: Proceedings of International
Conference on Software Engineering (ICSE), pp. 492–497. 1976. url: http://dl.acm.
org/citation.cfm?id=800253.807723.

150

https://doi.org/10.1145/2597073.2597074
https://doi.org/10.1109/tse.2016.2584050
https://doi.org/10.1007/s10664-011-9169-5
https://doi.org/10.1007/s10664-011-9169-5
https://doi.org/10.1109/msr.2017.7
https://doi.org/10.1007/978-3-540-71301-2_25
https://doi.org/10.18637/jss.v028.c01
https://doi.org/10.18637/jss.v028.c01
http://dl.acm.org/citation.cfm?id=800253.807723
http://dl.acm.org/citation.cfm?id=800253.807723

Bibliography

[95] Adriaan Labuschagne, Laura Inozemtseva, and Reid Holmes. Measuring the cost of re-
gression testing in practice: a study of Java projects using continuous integration. In:
Proceedings of Joint Meeting on European Software Engineering Conference and Sym-

posium on Foundations of Software Engineering (ESEC/FSE), pp. 821–830. 2017. doi:
10.1145/3106237.3106288.

[96] Shane McIntosh, Meiyappan Nagappan, Bram Adams, Audris Mockus, and Ahmed E.
Hassan. A Large-Scale Empirical Study of the Relationship between Build Technology
and Build Maintenance. Empirical Software Engineering (EMSE) 20(6), 2015, pp. 1587–
1633.

[97] Andre N. Meyer, Laura E. Barton, Gail C. Murphy, Thomas Zimmermann, and Thomas
Fritz. The work life of developers: activities, switches and perceived productivity. IEEE
Transactions on Software Engineering (TSE) 43(12), 2017, pp. 1178–1193. doi: 10.1109/
tse.2017.2656886.

[98] H. B. Mann and D. R. Whitney. On a test of whether one of two random variables is
stochastically larger than the other. The Annals of Mathematical Statistics, 1947, pp. 50–
60. url: http://www.jstor.org/stable/2236101.

[99] Norman Cli�. Dominance statistics: ordinal analyses to answer ordinal questions. Psy-
chological Bulletin 114(3), 1993, pp. 494–509. doi: 10.1037/0033-2909.114.3.494.

[100] David Gray Widder, Michael Hilton, Christian Kästner, and Bogdan Vasilescu. I’m leav-
ing you, Travis: a continuous integration breakup story. In: Proceedings of International
Conference on Mining Software Repositories (MSR), pp. 165–169. 2018. doi: 10.1145/
3196398.3196422.

[101] Keheliya Gallaba, Yves Junqueira, John Ewart, and Shane Mcintosh. Accelerating con-
tinuous integration by caching environments and inferring dependencies. IEEE Trans-
actions on Software Engineering (TSE), 2020. doi: 10.1109/TSE.2020.3048335.

[102] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. Automated program re-
pair. Communications of the ACM 62(12), 2019, pp. 56–65. doi: 10.1145/3318162.

[103] Xianhao Jin and Francisco Servant. A cost-e�cient approach to building in continuous
integration. In: Proceedings of International Conference on Software Engineering (ICSE),
2020. doi: 10.1145/3377811.3380437.

[104] Corrado Gini. On the measure of concentration with special reference to income and
statistics. Colorado College Publication, General Series 208(1), 1936, pp. 73–79.

151

https://doi.org/10.1145/3106237.3106288
https://doi.org/10.1109/tse.2017.2656886
https://doi.org/10.1109/tse.2017.2656886
http://www.jstor.org/stable/2236101
https://doi.org/10.1037/0033-2909.114.3.494
https://doi.org/10.1145/3196398.3196422
https://doi.org/10.1145/3196398.3196422
https://doi.org/10.1109/TSE.2020.3048335
https://doi.org/10.1145/3318162
https://doi.org/10.1145/3377811.3380437

Bibliography

[105] Sture Holm. A simple sequentially rejective multiple test procedure. Scandinavian Jour-
nal of Statistics, 1979. url: http://www.jstor.org/stable/4615733.

[106] Mohsen Vakilian, Raluca Sauciuc, J. David Morgenthaler, and Vahab Mirrokni. Auto-
mated decomposition of build targets. In: Proceedings of International Conference on
Software Engineering (ICSE), 2015. doi: 10.1109/icse.2015.34.

[107] Shane McIntosh, Bram Adams, Meiyappan Nagappan, and Ahmed E. Hassan. Identi-
fying and Understanding Header File Hotspots in C/C++ Build Processes. Automated

Software Engineering 23(4), 2015, pp. 619–647. doi: 10.1007/s10515-015-0183-5.

[108] Stuart I. Feldman. Make — a program for maintaining computer programs. Software:
Practice and Experience 9(4), 1979, pp. 255–265. doi: 10.1002/spe.4380090402.

[109] Bram Adams, Kris de Schutter, Herman Tromp, and Wolfgang de Meuter. MAKAO
(demo). In: Proceedings of International Conference on Software Maintenance (ICSM),
pp. 517–518. 2007.

[110] Manuela Züger and Thomas Fritz. Interruptibility of software developers and its pre-
diction using psycho-physiological sensors. In: Proceedings of International Conference
on Human Factors in Computing Systems (CHI), pp. 2981–2990. 2015. doi: 10.1145/
2702123.2702593.

152

http://www.jstor.org/stable/4615733
https://doi.org/10.1109/icse.2015.34
https://doi.org/10.1007/s10515-015-0183-5
https://doi.org/10.1002/spe.4380090402
https://doi.org/10.1145/2702123.2702593
https://doi.org/10.1145/2702123.2702593

	Abstract
	Abrégé
	Acknowledgements
	Related Publications
	List of Figures
	List of Tables
	I Preliminaries
	1 Introduction
	1.1 Problem Statement
	1.2 Thesis Overview
	1.3 Thesis Contributions
	1.4 Structure of the Thesis

	2 Background and Definitions
	2.1 Modern CI/CD Process
	2.2 Cloud-Based CI/CD Services
	2.3 Configuring Cloud-Based CI/CD Services
	2.3.1 Node Configuration
	2.3.2 Build Process Configuration

	2.4 The Anatomy of a CI/CD Build

	3 Related Work
	3.1 Continuous Integration
	3.2 Software Configuration Smells
	3.3 Build Breakage
	3.4 Analysis of CI Datasets
	3.5 Slow CI/CD Feedback and its Remedies
	3.6 Continuous Deployment

	II Robustness in CI/CD Services
	4 Usage of Features in CI/CD Environments
	4.1 Introduction
	4.2 CI/CD Feature Usage
	4.3 Study Design
	4.3.1 Corpus of Candidate Systems
	4.3.2 Data Filtering
	4.3.3 Domain of the Subject Systems

	4.4 Study Results
	4.5 Threats to Validity
	4.5.1 Internal Validity
	4.5.2 External Validity
	4.5.3 Construct Validity

	4.6 Chapter Summary

	5 Misuse of Features in CI/CD Environments
	5.1 Introduction
	5.2 Anti-patterns in CI/CD Specifications
	5.2.1 Research Questions

	5.3 Study Design
	5.4 Study Results
	5.5 Further Insights into CI/CD Misuse
	5.5.1 Dependence on Default Behaviour
	5.5.2 Storage of Sensitive Data
	5.5.3 Dependence on External Scripts
	5.5.4 Applicability to Other CI/CD Services

	5.6 Threats to Validity
	5.6.1 Internal Validity
	5.6.2 External Validity
	5.6.3 Construct Validity

	5.7 Chapter Summary

	6 Noise and Heterogeneity in CI/CD Build Data
	6.1 Introduction
	6.2 Study Design
	6.2.1 Corpus of Candidate Systems
	6.2.2 Retrieve Raw Data
	6.2.3 Clean and Process Raw Data
	6.2.4 Construct Meaningful Metrics
	6.2.5 Analyze and Present Results

	6.3 Noise in Build Breakage Data
	6.3.1 Actively Ignored by Developers
	6.3.2 Passively Ignored by Developers
	6.3.3 Staleness of Breakage
	6.3.4 Signal-To-Noise Ratio

	6.4 Heterogeneity in Build Breakage Data
	6.4.1 Matrix Breakage Purity
	6.4.2 Reason for Breakage
	6.4.3 Type of contributor

	6.5 Implications
	6.5.1 Research Community
	6.5.2 Tool Builders

	6.6 Threats to Validity
	6.7 Chapter Summary

	III Efficiency in CI/CD Services
	7 CI/CD Service Providers' Perspective
	7.1 Introduction
	7.2 Core Concepts in Modern CI
	7.2.1 CI Build Outcomes
	7.2.2 CI Indicators

	7.3 Study Design
	7.3.1 Subject Systems/Communities

	7.4 Study Results
	7.5 Practical Implications
	7.6 Threats to Validity
	7.6.1 Construct Validity
	7.6.2 Internal Validity
	7.6.3 External Validity

	7.7 Chapter Summary

	8 Accelerating Continuous Integration & Continuous Delivery
	8.1 Introduction
	8.2 Motivating Example
	8.3 The Kotinos Approach
	8.3.1 Caching of the Build Environment (L1)
	8.3.2 Skipping of Unaffected Build Steps (L2)

	8.4 RQ1: How often are accelerations activated in practice?
	8.5 RQ2: How much time do the proposed accelerations save?
	8.5.1 Overall Statistical Analysis
	8.5.2 Longitudinal Analysis
	8.5.3 Replay Analysis

	8.6 RQ3: What are the costs of the proposed accelerations?
	8.6.1 Resource Utilization
	8.6.2 Correctness

	8.7 Implications
	8.8 Threats to Validity
	8.9 Chapter Summary

	9 Final Conclusion & Future Work
	9.1 Thesis Summary
	9.1.1 Usage of Features in CI/CD Environments
	9.1.2 Misuse of Features in CI/CD Environments
	9.1.3 Noise and Heterogeneity in CI/CD Build Data
	9.1.4 CI/CD Service Providers’ Perspective
	9.1.5 Accelerating Continuous Integration / Continuous Delivery

	9.2 Future Work

	Bibliography

