
ar
X

iv
:2

10
3.

13
86

5v
1 

 [
cs

.S
E

] 
 2

5 
M

ar
 2

02
1

Towards a Model to Appraise and Suggest Identifier Names

Anthony Peruma
Rochester Institute of Technology, Rochester, New York, USA

axp6201@rit.edu
Advisor: Christian D. Newman (cnewman@se.rit.edu), Rochester Institute of Technology, USA

Abstract—Unknowingly, identifiers in the source code of a
software system play a vital role in determining the quality
of the system. Ambiguous and confusing identifier names lead
developers to not only misunderstand the behavior of the code but
also increases comprehension time and thereby causes a loss in
productivity. Even though correcting poor names through rename
operations is a viable option for solving this problem, renaming
itself is an act of rework and is not immune to defect injection.

In this study, we aim to understand the motivations that drive
developers to name and rename identifiers and the decisions they
make in determining the name. Using our results, we propose
the development of a linguistic model that determines identifier
names based on the behavior of the identifier. As a prerequisite to
constructing the model, we conduct multiple studies to determine
the features that should feed into the model. In this paper,
we discuss findings from our completed studies and justify the
continuation of research on this topic through further studies.

Index Terms—Program Comprehension, Identifier Names

I. INTRODUCTION

Software maintenance is the most costly phase of the soft-

ware development lifecycle [1], [2], with a significant portion

of this (about 58%) dedicated to source code comprehension

[3]. Developers must use identifier names to comprehend the

code that they will update. Identifiers are names (i.e., lexical

tokens) that uniquely identify entities in the code (such as

classes, methods, variables, etc.). It has been estimated that

identifiers contribute to, on average, 70% of a software sys-

tem’s codebase [4]. It has also been shown that poor identifier

names can cause developers to spend, on average, 19% more

time on comprehension activities [5]; a result supported by

[6]. It has also been repeatedly shown that the name of a

good identifier explicitly reflects its role [7], [8].
The need for strong identifier names is reflected in standard

software engineering practices, which provide guidelines [9],

[10], best practices [11], [12], and quality metrics [13]–[15]

to assist developers in naming identifiers. The idea is that,

through the use of unambiguous and intent-revealing names,

identifiers assist in communicating the purpose and behavior of

the source code and eventually the functionality of the system

to developers, which research has shown to be true [16].
Unfortunately, naming conventions and best practices can

only guide developers to strong names; they cannot be used

to provide a developer with a high-quality name, and they

cannot be used to provide a holistic comparison of multiple

candidate names for an identifier. Further, quality metrics for

readability [13]–[15] do not work at the level of identifiers

names; they cannot inform a developer if a name is high-

quality. Instead, they explicitly look at source code structure

and use static analysis to estimate, for example, complexity

and use that to measure comprehension. In short, there are

currently no methods that can be used to determine whether

an identifier name is high-quality or not. Furthermore, there

are no models that accurately tell us how developers create an

identifier name that reflects source code behavior.

The goal of this work is to begin the creation of a model that

understands the relationship between the name of an identifier

and the behavior of the source code entity it represents. To

accomplish this, we need first to understand how developers

choose names for identifiers. We can achieve this by studying

instances where developers rename existing identifiers in the

source code (i.e., rename refactorings) Developers perform

renames to reflect better the meaning of the identifier, which

can either result in a change or preservation in meaning [17].

To automate the process of identifier name evaluation, the

features that impact an identifiers name will be used as input

to our model. This will theoretically allow us to provide devel-

opers with real-time, context-aware suggestions and appraisals

of identifier names. Our proposed model will reduce the time

and costs involved in software maintenance and ensure that

production-ready code is readable and understandable before

deployment. We also envision that the broader impact of this

work will drive further research into program comprehension

and result in improvements to software engineering tools, for

example, in the area of source code generation.

II. RENAME TAXONOMY

When renaming an identifier, a developer may add, remove

or replace terms to/from the original name. Either one of

these actions (or even a combination of these actions) updates

semantic meaning of the name. In other words, this act of

renaming can either change the meaning of the name or

preserve the original meaning. In this study, we utilize the

taxonomy created by Arnaoudova et al. [17] to examine

rename refactorings and categorize them into the different

types prescribed by this taxonomy.

At its basic form, preservation of meaning occurs if the

terms in the name are reordered or special characters are

included/excluded. For more complex forms, meaning preser-

vation is maintained if the replaced terms are synonyms or are

a singular/plural of the original. An example of preservation in

meaning occurred when a developer renamed pictureLock →

photoLock. In this instance, the term ‘picture’ is a synonym of

‘photo’ and hence preserves the meaning of the original name.

A change in meaning can occur for multiple reasons.

Developers can perform a specialization of an identifiers name

by replacing a term in the original name with a hyponym

http://arxiv.org/abs/2103.13865v1


or adding an adjective or noun to the original name as in

the instance when the developer performed the following

rename: button → customMediaRouteButton. In this example,

the newly added terms are nouns hence the semantic change

is considered a narrowing in meaning. By replacing a term

with a hypernym or through the removal of terms (e.g.,

author name → contact), a developer can generalize (i.e.,

broaden) the meaning of the identifiers name. Adding new

terms to the identifiers name (without causing a specialization)

like scanPortsButton → scanWellKnownPortsButton, leads to

an addition to the meaning of the name. In this example,

the newly added terms are an adverb and verb. Hence the

semantic change is not considered a specialization, therefore

it is categorized under add meaning. Similarly, the removal

of terms (without causing a generalization) removes details

from the meanings name (e.g., mPendingDeletedMessages →

mPendingMessages). Additionally, an identifiers meaning is

also modified if terms in the original name are replaced with

antonyms (e.g., chartTop → chartBottom).

III. MOTIVATING EXAMPLE

A prerequisite to constructing the linguistic model is deter-

mining how and why identifier names change. To this extent,

a key feature that we can exploit from renames is that we can

see the actions performed by developers before and after a

rename. In other words, using a static analysis approach, we

can determine the types of refactorings that occur either before,

with or after a rename refactoring. Furthermore, combining

messages in the commit log and the type of semantic change

that the identifier name undergoes, we can aim to contextualize

the rationale behind the rename. For example, in [18] a

developer moves a class from one package to another with

the message: “Incremental changes, some package refactorings

etc”. The next refactoring operation [19] on this class is the

renaming of the class from JsonViewResult→JsonView. This

rename broadens the meaning of the name by removing the

term ‘Result’, making the identifier more general in meaning.

The commit message for this rename is: “Cleaned up some

file names for easier usage...”, meaning the developer was

likely going through and renaming things after the move class

refactoring. Considering such patterns in the implementation

lifecycle of the system, there exists the possibility of extract-

ing appropriate features from the source code to construct

our proposed identifier name appraisal and recommendation

model. We envision our model being available as an extension

in the developers integrated development environment (IDE)

thereby providing the developer with real-time suggestions and

appraisals for identifier names during the implementation and

maintenance phases.

IV. APPROACH

Our goal of constructing a high performing linguistic model

is composed of multiple studies. These are studies that aim to

determine the features that are most appropriate to feed into

the model. Hence, in this section, we discuss the results of our

completed studies and propose future studies on this topic.

A. Completed Studies

Contextualizing renames to commit messages: We briefly

report on the findings of our prior study [20] in which we

investigated the contextualizing of different semantic changes

of identifier names. A topic modeling analysis using Latent

Dirichlet Allocation (LDA) yielded interesting results but

proved insufficient to pinpoint the developer’s intention. Words

like ad and add frequently occurred with narrow, broaden and

add meaning categories. This may indicate that the addition of

code correlates with these types of changes. Interestingly, we

observed that preserve and remove meaning lacked the words

ad and add in their commit message. If we assume adding

tends to modify meaning somehow (i.e., narrow, broaden,

add) then preserve and remove meaning should not include

these terms. Instead, terms like rename and refactor are

more common in these categories than in others. Interestingly,

remove meaning does not include terms like remove, delete,

etc. Even though commit messages provide interesting trends

around semantic updates to identifier names, they cannot be

solely relied on for contextualizing renames. In other words,

results from our LDA analysis did not yield clear-cut topics

for each of the semantic categories. There were overlapping of

terms between some topics, or some topics were missing key

terms that are usually associated with the semantic change.

The topics generated by LDA were too high-level; unable

to provide us with fine-grain data about the context around

renaming practices. Therefore, in the next study, we considered

co-occurrence of other refactorings with renames.

Co-occurrence of renames and other refactorings: This study

[21] involved identifying refactorings preceding or following

a rename. Our study of 800 systems showed that in most

scenarios, renaming of an element does not generally seem

to be influenced by, nor does itself influence another type

of refactoring on the same element. However, there is a

subset of renames that occur directly before or after another

refactoring. From this subset, we observed that a majority

of the time developers perform a refactoring operation just

before the rename, these two operations happen in a short

(commit) interval. We also showed that developers frequently

change the semantic meaning of an identifier name when

performing a rename after a refactoring. Contextualizing these

refactorings with the commit log proved useful for filtering out

a set of commit messages closely related to different types

of renames. However, while the rationale for some semantic

changes can be derived from the commit log in addition to

the refactorings that occurred just prior to the rename, we still

encountered high-level LDA topics. In other words, the level

of detail described by developers about their activities/tasks

in the commit message is not sufficient for fine-grained

NLP-based analysis. This made it difficult to understand the

reasoning behind the application of renames fully. Hence, our

findings show that a significant amount of work is needed to

automatically derive these motivations more effectively from

commit messages, other natural language software artifacts,

and general source code changes. A final contribution from this



study showed that developers with limited project experience

are more inclined to perform only rename refactorings than

other types of refactorings (that may alter the systems design);

indicating that renames are applied by developers that may not

be very familiar with the system they are developing for.

Abbreviations in source code: In addition to our work on

renames, we also investigated abbreviation expansion. The act

of expanding abbreviations is valuable for studying identifiers

since it allows us to remove the threat that a developer might

not be familiar with a given abbreviation, and makes it easier

for tools such as part of speech taggers to work effectively.

In [22], we studied the expansion of abbreviations that appear

in the source code of five open-source systems. This study

enabled us to understand the effectiveness of different abbre-

viation expansion techniques on systems with varying quality

of documentation. Additionally, we manually created a gold

set of over 850 abbreviation-expansion pairs. This will help us

study the effect of abbreviations on comprehension and has the

potential to increase the quality of our proposed model.

In summary, while results from our analysis of identifier

renames, commits, and refactorings were promising, these

results do not provide a complete picture on the motivations

that drive developers to rename identifiers. In short, the results

were too high-level to serve as data for project-specific rename

contexts. Hence, to construct our model, we need to extend

our investigation to look beyond static analysis and begin

investigating renames from the perspective of developers. That

is, we will study how developers apply renames and their

thought process in determining a name. Additionally, we

would need to interact with developers to understand their

reasoning for changing each word in the target identifier.

This data will assist us in determining what data sources are

important to consider when building our model. It will also

help us determine ways to automate the contextualization of

renames since we will know what developers tend to look for

when applying renames.

B. Proposed Studies

As explained in our completed studies, we have shown that

even though we did notice patterns in identifier renames, trying

to contextualizing these renames using static analysis of source

code is not straightforward. The results we obtained are very

generic, and, at most, provides more of a high-level outline as

to why developers perform rename operations. While useful,

these results cannot be directly incorporated into our proposed

model. Hence, we need to further investigate developer imple-

mentation (and maintenance) activities to derive features for

our model. As such, we need to shift away from empirical

studies and focus on studies where we have explicit developer

involvement. With developer involvement, we will be able to

derive a more fine-grained rationale behind identifier renames,

and also the thought process involved in deciding on a new,

and more appropriate, name. Therefore, going forward, we

propose a more identifier-oriented exploratory study on the

developer’s viewpoint of identifier renames. This exploratory

study will constitute of an eye-tracking study on developer

actions and reactions to identifier names in source code. From

this study, we aim to answer the following research questions:

RQ1: What source code elements do developers look at when
renaming an identifier?

RQ2: Do developers look at certain code elements more when
applying different types of semantic changes?

RQ3: What are the trends in the types of semantic change applied to

an identifier and the reason a developer applied that semantic change?

Eye-tracking in software engineering studies is not new. It is

primarily utilized for studies that involve the comprehension

of software artifacts such as models and source code [23].

Other studies have used this technology to study developer

interactions in performing change tasks [24], defect identifi-

cation [25], and debugging [26] among others. However, at

present, there does not exist work that focuses on software

refactorings, and more specifically rename refactorings. With

eye-tracking, the medium of our study will be the developer’s

environment, and we plan on utilizing iTrace [27] to integrate

eye-tracking into this environment. This will provide us with

the opportunity to determine elements or concepts in the

source code (or even in the IDE) that developers rely on when

either performing a rename or comprehending a rename. Un-

like in static analysis, where we are presented with after-the-

fact results associated with a rename, eye-tracking provides us

with the ability to capture/measure concepts such as fixations,

scanpaths, and areas of interest [28] which are, in reality,

part of the implementation process. With these concepts, we

can refine the efficiency of our proposed model. For example,

while static analysis informs us of the refactorings that occur

prior to a rename, eye-tracking will aid us in understanding

the number and types of elements developers refer to before

performing a rename. Additionally, this technique can act as a

proxy to measure the comprehensibility of identifier names and

its likelihood to undergo a rename. For instance, a developer

renaming an identifier after a relatively high gaze/fixture

duration can act as an indicator of a poor name. Furthermore,

patterns around the semantic change a name undergo based on

the gaze/fixture duration can be used to support developers in

their naming activities. Finally, we plan on interviewing the

participants of the study to understand their rationale for per-

forming renames (if any) and their thought process on deciding

the new name for the identifier. As a means of mitigating

risks involved in the experiment, we plan on conducting a

series of trials to uncover shortcomings in our methodology

(such as task clarity/complexity, participant behavior, and

environmental factors). Additionally, each participant in the

experiment will be allotted time to become familiar with the

environment before the commencement of the experiment.

V. LITERATURE REVIEW

We divided our discussion of related work into two areas

- studies that explore identifier renamings from a natural

language perspective and studies that investigate the quality

attributes that an identifier should exhibit.



A. Identifier Renaming

A survey on identifier renaming conducted by Arnaoudova

et al. [17] showed that developers primarily perform renames

in conjunction with other refactorings with most of the renam-

ings due to updates in existing functionality. In the same study,

the authors proposed REPENT, an approach to first detect

identifier renamings in the source code, and then analyze

and classify the detected renamings based on their semantic

change. Through an empirical study, the authors demonstrate

a high accuracy of their approach in the detection of identifier

renamings and show the impact of proper naming has on

minimizing software development effort.

Allamanis et al. [29] implemented NATURALIZE, a frame-

work that utilized statistical language models in mining natural

source code naming conventions. The authors demonstrated

the high accuracy of NATURALIZE by utilizing it in a sample

set of open source projects. NATURALIZE learns the coding

conventions in the source code via syntactic restrictions,

sub-grammars on existing identifier names and utilizes this

knowledgebase to evaluate snippets of new code for potential

variables that should be renamed. In an extension of their

work [30], the authors proposed an approach to suggest

renaming methods based on their bodies and renaming classes

based on their methods. Their recommendation uses a neural

probabilistic language model to input a set of words which is

fed to a hidden layer of the neural network.

Liu et al. [31] proposed a simplistic approach to identify

renaming opportunities due to renaming refactorings. Their

approach relies upon the source code containing identifiers that

are similar to the renamed identifier. If a similar identifier is

detected, their approach recommends the developer to rename

these identifiers as well. An empirical study on four appli-

cations yielded high precision values for their approach. An

exploratory study on the lexical similarities between method

arguments and parameters by Liu et al. [32] demonstrated

mixed results, i.e., either very low or high similarities. The

authors state that further research is needed.

Studies by Høst and Østvold [7], [33] on method names

showed that even though method names and behavior are

mutually dependent, there is more research required in this

area to better determine high-quality names.

In summary, prior work in this area has focused on either the

type of semantic change occurring in a renamed identifier or

the identification of identifiers that are candidates for renaming

based on similar identifiers in the codebase. However, research

into the thought process of a developer in determining the ra-

tionale for performing a rename or, for that matter, determining

the correct choice of a replacement name is lacking.

B. Identifier Quality

In terms of metrics for source code readability and un-

derstandability measurements, most research has focused on

complete code snippets [14], [15]. However, within these

quality models are components that focus on identifier name

characteristics such as length, number of dictionary terms the

identifier comprises of, and the broadness/specialization of the

name. Studies on the length of identifier names by Lawrie et

al. [6] and Hofmeister et al. [5] show that names consisting

of abbreviations are harder to comprehend than full-word

identifiers. Similarly, a study by Schankin et al. [34] shows that

descriptive names improve program comprehension. Studies

on systems using camel case and underscores for identifier

names [35], [36] have shown that developer experience plays

an important part in comprehending such names.

Arnaoudova et al. [37] proposed a catalog of linguistic

anti-patterns in the source code. The seventeen anti-patterns

span across methods and attributes. Contained in this catalog

are anti-patterns that are related to the name of the identifier

and its purpose/behavior. Furthermore, via a developer survey,

the authors confirmed that the presence of linguistic anti-

patterns in source code is a poor programming practice. Using

a subset of these linguistic anti-patterns Fakhoury et al. [38]

demonstrated that a developers’ cognitive load increases when

reviewing code containing such anti-patterns.

As described, current research has focused on the quality of

code snippets/chunks and not on individual identifier names.

While this corpus of studies considers structural characteristics

of an identifiers name, they do not consider the relationship

between the name of the identifier and its intended purpose

nor do they provide a formal definition for high-quality names.

VI. CHALLENGES AND CONSTRAINTS

This section highlights only the key challenges and con-

straints we encountered. Our research is constrained to Java

as the external tools used in our studies are Java specific. Addi-

tionally, obtaining a representative dataset is also challenging;

we are constrained to open-source Java systems and these

systems vary vastly in size. Presently, there does not exist a

goldset of high-quality identifier names for us to study and use

as benchmarks. Similarly, a software engineering specific set

of stopwords are not available for text prepossessing activities,

which is prerequisite for topic modeling and n-gram analysis.

VII. CONCLUSION

Identifiers play an essential role in informing developers

about the behavior of the software system. Poor identifier

names result in increased code comprehension time and hence,

loss in developer productivity. To address this issue of poor

names, developers perform renaming operations on identifiers.

However, renames are considered rework and can hurt code

quality and developer productivity. To help developers name

identifiers with high-quality names during implementation, we

need to understand the thought process of the developer. Our

static analysis based research has shown us that contextu-

alizing semantic changes of identifier names with commit

messages is not sufficient. Therefore, we propose studies to

investigate concepts that cannot be captured through static

code analysis. Hence, our future studies will involve eye-

tracking. We envision our findings feeding into a linguistic

model that provides developers with real-time, context-aware

identifier name suggestions during implementation.



REFERENCES

[1] E. Burch and H. K. Hsiang-Jui Kungs, “Modeling software maintenance
requests: a case study,” in International Conference on Software Main-

tenance, pp. 40–47, Oct 1997.
[2] L. Erlikh, “Leveraging legacy system dollars for e-business,” IT Profes-

sional, vol. 2, pp. 17–23, May 2000.
[3] X. Xia, L. Bao, D. Lo, Z. Xing, A. E. Hassan, and S. Li, “Measuring

program comprehension: A large-scale field study with professionals,”
IEEE Transactions on Software Engineering, vol. 44, no. 10, 2018.

[4] F. Deissenbock and M. Pizka, “Concise and consistent naming [software
system identifier naming],” in 13th International Workshop on Program

Comprehension, pp. 97–106, May 2005.
[5] J. Hofmeister, J. Siegmund, and D. V. Holt, “Shorter identifier names

take longer to comprehend,” in International Conference on Software

Analysis, Evolution and Reengineering, 2017.
[6] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “Effective identifier

names for comprehension and memory,” Innovations in Systems and

Software Engineering, vol. 3, pp. 303–318, Dec 2007.
[7] E. W. Høst and B. M. Østvold, “Debugging method names,” in Object-

Oriented Programming (S. Drossopoulou, ed.), (Berlin, Heidelberg),
pp. 294–317, Springer Berlin Heidelberg, 2009.

[8] B. Liblit, A. Begel, and E. Sweetser, “Cognitive perspectives on the role
of naming in computer programs,” in PPIG, 2006.

[9] “C# coding conventions - c# programming guide — microsoft docs.”
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/inside-a-program/coding-conventions.

[10] “Java style guide.” https://google.github.io/styleguide/javaguide.html.
[11] R. C. Martin, Clean code: a handbook of agile software craftsmanship.

Pearson Education, 2009.
[12] P. Goodliffe, Code Craft: The Practice of Writing Excellent Code. No

Starch Press Series, No Starch Press, 2007.
[13] S. Scalabrino, M. Linares-Vásquez, R. Oliveto, and D. Poshyvanyk,

“A comprehensive model for code readability,” Journal of Software:

Evolution and Process, vol. 30, no. 6, p. e1958, 2018. e1958 smr.1958.
[14] R. P. L. Buse and W. R. Weimer, “Learning a metric for code readabil-

ity,” IEEE Transactions on Software Engineering, vol. 36, no. 4, 2010.
[15] D. Posnett, A. Hindle, and P. Devanbu, “A simpler model of software

readability,” in Proceedings of the 8th Working Conference on Mining

Software Repositories, (New York, NY, USA), ACM, 2011.
[16] S. Butler, “The effect of identifier naming on source code readability and

quality,” in Proceedings of the Doctoral Symposium for ESEC/FSE on

Doctoral Symposium, (New York, NY, USA), pp. 33–34, ACM, 2009.
[17] V. Arnaoudova, L. M. Eshkevari, M. D. Penta, R. Oliveto, G. Antoniol,

and Y.-G. Gueheneuc, “Repent: Analyzing the nature of identifier
renamings,” IEEE Trans. Softw. Eng., vol. 40, pp. 502–532, May 2014.

[18] https://github.com/3wks/thundr/commit/53aaf15.
[19] https://github.com/3wks/thundr/commit/9b02920.
[20] A. Peruma, M. W. Mkaouer, M. J. Decker, and C. D. Newman, “An

empirical investigation of how and why developers rename identifiers,”
in International Workshop on Refactoring, 2018.

[21] A. Peruma, M. W. Mkaouer, M. J. Decker, and C. D. Newman, “Con-
textualizing rename decisions using refactorings and commit messages,”
in International Working Conference on Source Code Analysis and

Manipulation, 2019.
[22] C. Newman, M. Decker, R. Alsuhaibani, D. Kaushik, A. Peruma, and

E. Hill, “An empirical study of abbreviations and expansions in software
artifacts,” in International Conference on Software Maintenance and

Evolution, Sep. 2019.
[23] Z. Sharafi, Z. Soh, and Y.-G. Guéhéneuc, “A systematic literature review

on the usage of eye-tracking in software engineering,” Information and

Software Technology, vol. 67, pp. 79 – 107, 2015.
[24] K. Kevic, B. M. Walters, T. R. Shaffer, B. Sharif, D. C. Shepherd, and

T. Fritz, “Tracing software developers’ eyes and interactions for change
tasks,” in 10th Joint Meeting on Foundations of Software Engineering,
(New York, NY, USA), pp. 202–213, ACM, 2015.

[25] B. Sharif, M. Falcone, and J. I. Maletic, “An eye-tracking study on the
role of scan time in finding source code defects,” in Proceedings of the

Symposium on Eye Tracking Research and Applications, (New York,
NY, USA), pp. 381–384, ACM, 2012.

[26] Y. Lin, C. Wu, T. Hou, Y. Lin, F. Yang, and C. Chang, “Track-
ing students’ cognitive processes during program debugging—an eye-
movement approach,” IEEE Transactions on Education, vol. 59,
pp. 175–186, Aug 2016.

[27] D. T. Guarnera, C. A. Bryant, A. Mishra, J. I. Maletic, and B. Sharif,
“itrace: Eye tracking infrastructure for development environments,” in
ACM Symposium on Eye Tracking Research & Applications, (New York,
NY, USA), pp. 105:1–105:3, ACM, 2018.

[28] Z. Sharafi, T. Shaffer, B. Sharif, and Y. Guéhéneuc, “Eye-tracking
metrics in software engineering,” in Asia-Pacific Software Engineering

Conference, pp. 96–103, Dec 2015.
[29] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Learning natural

coding conventions,” in Proceedings of the 22Nd ACM SIGSOFT Inter-

national Symposium on Foundations of Software Engineering, 2014.
[30] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Suggesting accurate

method and class names,” in 10th Joint Meeting on Foundations of

Software Engineering, (New York, NY, USA), pp. 38–49, ACM, 2015.
[31] H. Liu, Q. Liu, Y. Liu, and Z. Wang, “Identifying renaming opportunities

by expanding conducted rename refactorings,” IEEE Transactions on

Software Engineering, vol. 41, pp. 887–900, Sep. 2015.
[32] H. Liu, Q. Liu, C. Staicu, M. Pradel, and Y. Luo, “Nomen est omen:

Exploring and exploiting similarities between argument and parameter
names,” in International Conference on Software Engineering, 2016.

[33] E. W. Høst and B. M. Østvold, “The java programmer’s phrase book,”
in Software Language Engineering, (Berlin, Heidelberg), pp. 322–341,
Springer Berlin Heidelberg, 2009.

[34] A. Schankin, A. Berger, D. V. Holt, J. C. Hofmeister, T. Riedel, and
M. Beigl, “Descriptive compound identifier names improve source code
comprehension,” in Proceedings of the 26th Conference on Program

Comprehension, (New York, NY, USA), ACM, 2018.
[35] D. Binkley, M. Davis, D. Lawrie, and C. Morrell, “To camelcase

or under score,” in IEEE 17th International Conference on Program

Comprehension, pp. 158–167, May 2009.
[36] B. Sharif and J. I. Maletic, “An eye tracking study on camelcase and

under score identifier styles,” in IEEE 18th International Conference on

Program Comprehension, pp. 196–205, June 2010.
[37] V. Arnaoudova, M. Di Penta, and G. Antoniol, “Linguistic antipatterns:

what they are and how developers perceive them,” Empirical Software

Engineering, vol. 21, pp. 104–158, Feb 2016.
[38] S. Fakhoury, Y. Ma, V. Arnaoudova, and O. Adesope, “The effect of poor

source code lexicon and readability on developers’ cognitive load,” in
Proceedings of the 26th Conference on Program Comprehension, (New
York, NY, USA), pp. 286–296, ACM, 2018.

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/inside-a-program/coding-conventions
https://google.github.io/styleguide/javaguide.html
https://github.com/3wks/thundr/commit/53aaf15
https://github.com/3wks/thundr/commit/9b02920


This figure "method.png" is available in "png"
 format from:

http://arxiv.org/ps/2103.13865v1

http://arxiv.org/ps/2103.13865v1

	I Introduction
	II Rename Taxonomy
	III Motivating Example
	IV Approach
	IV-A Completed Studies
	IV-B Proposed Studies

	V Literature Review
	V-A Identifier Renaming
	V-B Identifier Quality

	VI Challenges and Constraints
	VII Conclusion
	References

