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Abstract—Code completion is widely used by software develop-
ers to provide coding suggestions given a partially written code
snippet. Apart from the traditional code completion methods,
which only support single token completion at minimal positions,
recent studies show the ability to provide longer code completion
at more flexible positions. However, such frequently triggered
and longer completion results reduce the overall precision as
they generate more invalid results. Moreover, different studies are
mostly incompatible with each other. Thus, it is vital to develop
an ensemble framework that can combine results from multiple
models to draw merits and offset defects of each model.

This paper conducts a coding simulation to collect data from
code context and different code completion models and then apply
the data in two tasks. First, we introduce an acceptance model
which can dynamically control whether to display completion
results to the developer. It uses simulation features to predict
whether correct results exist in the output of these models. Our
best model reduces the percentage of false-positive completion
from 55.09% to 17.44%. Second, we design a fusion ranking
scheme that can automatically identify the priority of the
completion results and reorder the candidates from multiple
code completion models. This scheme is flexible in dealing with
various models, regardless of the type or the length of their
completion results. We integrate this ranking scheme with two
frequency models and a GPT-2 styled language model, along with
the acceptance model to yield 27.80% and 37.64% increase in
TOP1 and TOP5 accuracy, respectively. In addition, we propose a
new code completion evaluation metric, Benefit-Cost Ratio(BCR),
taking into account the benefit of keystrokes saving and hidden
cost of completion list browsing, which is closer to real coder
experience scenario.

Index Terms—Code completion, neural networks, acceptance
model, ranking model, evaluation metrics

I. Introduction
Research shows that code completion is one of the most

frequently used functions in the IDEs [1]. Code completion
tools such as IntelliSense was first released as the main
feature of Visual Basic 5.0 in 1996 and activated by default
in the Visual Studio 2005 installation package. In recent
years, the development of machine learning raises interest in
research of the intelligent code completion area. Microsoft
and Kite successively released IntelliCode [2] and Intelligent
Snippets [3] as code completion plug-ins for multi IDEs,

respectively. TabNine [4] also developed a code completion
plug-in based on a deep learning model, which supports over
30 programming languages. When the developer writes code,
the code completion engine can infer the potential following
code fragments at the cursor position based on the written code
context. Thus, it helps developer to improve the efficiency of
coding by decreasing typing costs.
Traditional code completion methods embedded in IDEs

rely on compile-time type information and specific grammat-
ical rules to predict next tokens [1], [5], which are costly
and could not capture human’s programming patterns well.
In addition, they only trigger at the limited position with the
completion results sorted in the alphabetic order. To address
these problems, the concept of intelligent code completion
was proposed [6]. With the naturalness of the programming
languages had been proved [7], researchers started to apply
various learning-based algorithms and train models to learn
code characteristics from large-scale codebases. At an early
stage, statistical language model [7], such as N-gram, is a
promising approach for code completion tools [8], [9]. [10]
proposed a Hidden Markov Model to complete multiple tokens
at a time with abbreviated input. With the development of
deep learning, researchers started to apply Recurrent Neural
Networks (RNNs) styled models in source code modelling [5],
[11]–[13] in the last five years. However, the performance of
RNNs-styled models is limited by their vanishing/exploding
gradients and sequential processing mechanism [14]. Most
recently, transformers styled pretraining language models have
overtaken RNNs and shown their advantages by achieving
SOTA results in natural language processing (NLP) and natural
language understanding (NLU) tasks [15]–[18]. [19] transfers
source code into Abstract Syntactic Tree (AST) based node
sequence and predict type and value of next node at the same
time with Transformer-XL. [20] introduces IntelliCode based
on GPT-2 models to provide up to entire line completion.
However, with all the progress, code completion is not without
drawbacks as a system.

a) Displaying too many false-positive suggestions. In-
telligent code completion algorithms can provide completion
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results at almost arbitrary positions within the code. Thus,
the completion display frequency of these intelligent code
completion algorithms increases a lot when the developer
is typing code. Such frequently display results can improve
coding efficiency by increasing the recall of completion.
Meanwhile, it might also cause a drop of precision as too much
false-positive suggestion is presented which reduces the coder
experience. In general, user experience plays a more important
role when developer choosing plug-ins, so it is vital to block
the display of completion results when they are invalid.

b) Lack of fusion ranking methods to combine results
from multi code completion algorithms. Due to the different
interests of research, such as the different semantic represen-
tation of programming language [21]–[23] and the different
completion targets (API calls [12], [24]–[27], AST node [5],
[28], entire line [20]), each code completion algorithm has its
distinct characteristics. In addition, the traditional code com-
pletion also has a different type of results sorted in alphabetical
order. Current ensemble methods usually sort the candidates
by the priority of the strategy. With all these comprehensive
traditional and intelligent completion results, there is a lack of
effective methods to integrate them, complement each other,
and maximize completion efficiency. Thus, there is still a large
room for completion result optimization, including the number
of items listed in the completion result and the order of the
items in the completion list.

c) Lack of comprehensive assessment method to evaluate
efficiency, including the hidden cost, of code completion
tool. Most tasks are to mask either code tokens or AST nodes
in the code file according to certain rules, then using context
to predict them. Since the targets of different researches are di-
verse, they proposed various evaluation metrics. For instance,
top n accuracy and mean reciprocal rank (MRR) is commonly
used for single token/AST node completion [11], [12], while
BLEU-4 and edit similarity are used for multi tokens/full line
completion [20]. Such various targets of code completion task
make it difficult to compare their overall effects. Moreover,
there is a gap between these offline evaluation metrics of the
code completion model and the user experience in real scenar-
ios. When using the code completion plug-in, it is impossible
to know which part of the code should mask in advance. The
accuracy evaluation metrics based on specific locations cannot
fully reflect the actual use effect of the code completion tools.
It ignores the time cost for developers to check the completion
list and the negative impact of frequent invalid lists [29].
This increases the difficulty of promoting the intelligent code
completion research achievements in real code completion
plug-ins. Therefore, a general method to evaluate the code
completion efficiency without adding specific constraints is
necessary.
To address the challenges mentioned above, we have con-

ducted extensive investigation and simulation to collect data
from code context and different code completion strategies(cf.
Section III and IV). Then, we apply the data to optimize the
code completion tool from the perspective of making it more
practical and user-friendly to developers. The following are

our three main contributions:
First, we introduce and train an acceptance model which

can dynamically control whether to accept the completion
results and display them to the developer. This model uses
features extracted from code context and the features of the
code completion results from different strategies as input and
outputs the probability that whether a correct result is in the
aggregate completion list(cf. Section V).

Second, we design and construct a fusion ranking
scheme that can automatically identify the priority of the
completion results and reorder the candidates provided
by different completion strategies. This scheme is flexible
in dealing with various code completion strategies, regardless
of the type or the length of their completion results (cf.
Section VI). In addition, our proposed scheme does not involve
complex models, and the additional calculation and time-
consuming are within a tolerable range. And it is easy to ex-
tend to new code completion algorithms and new development
languages.

Third, we design and implement a code completion
evaluation method that is closer to real coder experi-
ence scenario. It not only considers many factors such as
keystrokes saving and completion list browsing, but also can
be universally applied to the evaluation of different completion
strategies (cf. Section VII).
Experiments have proved that after using the acceptance

and fusion ranking models, even a simple frequency-style code
completion model superimposed on a GPT-2 styled model can
bring good benefits (cf. Section VIII and IX). At the end, we
conclude our study and mention future work (cf. Section X).

II. Motivation example
Fig. 1 shows two examples to illustrate the motivation of our

code completion scheme. Fig. 1(a) presents a code completion
system that integrates two different completion strategies,
Global Frequency and Local Frequency. These two strategies
provide completion candidates with their corresponding scores
in the table at the given cursor location. It should be noted that
different strategies might provide scores in different scales and
dimensions. However, these candidates are all incorrect. Thus,
the acceptance model should evaluate the confidence of all the
candidates and reject the display of the completion list. In Fig.
1(b), we integrate one completion strategy based on the deep
learning model (GPT-2) together with two frequency strategies
in the code completion system. The upper table presents a
list of the completion candidates and scores provided by each
strategy. As the correct results are involved in the candidate
list, the acceptance model accepts the completion results and
forwards the completion results to the fusion ranking model.
The fusion ranking model ranks the completion candidates by
their expected benefit shown in the lower table. This expected
benefit is evaluated by the accuracy confidence and the token
length of each completion candidate.

III. Dataset
To generate the dataset, we take the Java-small dataset of

Alon et al. [30], which is a reselect of the dataset of Allamanis



Fig. 1. Completion examples with acceptance and fusion ranking models.
Example (a) shows a scenario that no candidate is correct; example (b) shows
a scenario that two candidates are correct, the longer one is ranked at the top
position

et al. [31]. It involves the most popular eleven Github projects,
such as Cassandra, ElasticSearch, Gradle, etc. There are about
96.5k Java source files in total. It removes the overridden,
abstract or class constructor methods in every Java file, and
rewrite the names of camelCase into snake_case. We further
conduct the following filters:

• Remove the files which name contains the word “test”;
• Remove the methods named “toString”, “equals”, “final-
ize”, and “clone”;

• Remove the methods longer than twenty lines as they are
normally used for configuration or initialization.

Finally, the dataset contains 89.3k/1.6k/3.5k train-
ing/simulation/test files. The training dataset is used to
train each integrated code completion strategy. The simulation
dataset is used to run the simulation scenario and collect
completion results from each strategy to train the acceptance
and fusion ranking models. Finally, the test dataset is used
for the result evaluation.

IV. Simulation Data Generation

To optimize the completion list from the user experience
perspective, we use a simulation method to collect the candi-
date sets of each completion strategy. Then automatically label
validated candidates according to the actual code content at
completion position. Considering that the simulation process
is relatively time-consuming, we speed up the entire data
collection process through parallelism.

A. Data generation
In actual application, the more diverse strategies are inte-

grated, the more significant effect of the model ensemble can
be observed. We select three recall strategies for optimization:

• Global Frequency provides the completion of common
words when developers define new variables or functions.

• Local Frequency captures the local repetition of the
variables, classes and methods, which can infer the cor-
responding item based on the characters you have typed.

• GPT-2 styled language model trained from the large code-
base can provide intelligent full line code completion.

Their implementation details will be described in the exper-
iment setup. And the results section also shows the statistical
data of their different characteristics.
When entering a code snippet, for instance, in the black font

of the Java file in Fig. 2, each strategy will give a completion
list. In addition to candidate items themselves, each strategy
output scores for its candidates to support the sorting within
the strategy. But the meanings of scoring in different strategies
are diverse:

• Global Frequency has three scoring dimensions: word
count, the number of occurrences in different documents,
and projects involved. These statistics are counted from
the entire codebase. Word count is used to sorting candi-
dates within the strategy.

• Local Frequency only counts the token occurrences of the
code before the cursor in the current file.

• The score of GPT-2 is the cumulative sum of the output
of the log-softmax function at each step. The score is
decreasing with the increase of the output token sequence
length, so the top candidates tend to have a short result.

When different strategies suggest a candidate at the same
time, such as "DefaultEntries" in Fig. 2, the scores of it will
merge from each dimension for the subsequent tasks.

B. Coding simulation

It would be great if the online usage data could be collected
from the developers when coding. However, it isn’t easy to
collect the candidate selected by the user in real scenarios
and the corresponding context due to factors such as personal
privacy. In addition, the cold start is also a problem when
system builders want to implement new strategies, as they do
not have any data for analysis in advance. So we simulate
the developers’ coding process, including the typing and the
completion selection. Thus we can collect the input code
before the cursor, the prediction results from each completion
strategy, and the matching labels close to the real scenarios.
In addition, because the simulation is offline, the combination
of various strategies is possible.
In the process of generating simulation data, we know the

actual code context after the cursor, for example, the code
snippet in blue font of Java file in Fig. 2. Therefore, we
can label each candidate by the prefix matching method. The
"Hit" column in the bottom table of Fig. 2 marks the correct
completion results as 1 and keeps the others as 0.
For each file in our simulation dataset, we conduct the

simulation by moving the cursor from the beginning to the end
by one character per step. We generate one sample at each step.
This sample includes the input code snippet (the code context



Fig. 2. Example simulation result at a certain location. The black font in
the Java file is the code fragment before the cursor. The blue font is the
code snippet after the cursor, which the target to predict. The three tables in
the middle show the original output of the different strategies. The bottom
table shows the aggregate completion candidates with a "Hit" column. If one
completion candidate matches the target, we set its corresponding value in the
"Hit" column as 1, otherwise 0.

before the cursor) and its corresponding set candidates from
integrated strategies. Thus, the number of simulation samples
generated from a file is equal to the length of the file.

C. Critical position and Non-critical position
To emphasize the samples that most likely to appear in real

scenarios, we define critical/non-critical positions in the code
file and classify the simulation samples by the types of their
corresponding trigger positions. Critical position means the
position where the code completion request is more likely to be
triggered. We filter the simulation data samples by dynamically
skipping the non-critical positions where their corresponding
characters are generated by the completion tool. The remaining
positions are marked as critical positions as they are where
the code completion is triggered in real scenarios. Fig. 3
presents the critical position with underlined characters. It
should be noted that the critical positions can vary when
applying different completion strategies as they depend on the
completion results at each position. In this work, we mainly
use simulation samples at the critical positions for further
analysis as they are more representative. In our simulation,
the proportion of critical positions is about 23.17%. We also

Fig. 3. Training samples at critical position. The red underlined characters
are the critical positions.

found that the completion accuracy is as high as 90% when
considering all positions, while it drops to 55% when only
considering critical positions. It indicates that the chosen
critical positions are crucial for the overall code completion
evaluation.

D. Speed up through parallelism
Since the time to simulate a single file is at the level

of minutes or more, we deploy each completion strategy as
services that can be scalable. And the interaction between
master and worker is asynchronous. Master will take out
an idle worker from the pools and then send a file-level
simulation task request. The choice of server cluster size is
generally related to the number of code files involved in the
simulation and the efficiency of the strategy to generate the
completion list. We used 20 EC2s from cloud service with
the machine specifications of s3.xlarge.2 to generate results
for the simulation and test dataset. To simulate the data for
the code files mentioned in Section III, it took about 2.5 days
with the parallel mechanism, significantly shorter than 50 days
with only one worker.

V. Acceptance Model
In general, the increase in the number of integrated com-

pletion strategies will raise the trigger probability of code
completion. Although the recall is improved, it also produces
more false-positive completion results. These invalid results
will superimpose additional costs that reduce development
efficiency. So we design a module to judge whether or not to
accept the completion list by evaluating its confidence. If the
module accepts the completion result, the result will display at
the corresponding position; otherwise, the module will block
the completion result.

A. Module design with candidate-set level samples
It is time-consuming to manually design a set of acceptance

rules for this module based on expert experience. In addition, if
the integrated completion strategies are changed, it is difficult
to update the bespoke rules in time. Therefore, we design an
acceptance model, adopting the method of binary classification
modelling. This model is trained by the simulation samples
at critical positions (Section IV-C) to better fit with coder
experience. When the cumulative of "hit" columns (Fig. 2) in
a candidate set is greater than 0, label this completion action
as a positive sample; otherwise it is negative.

B. Model algorithm
To construct this binary classification model, we use Au-

togluon package [32] in the pipeline of data preprocessing,
model selection and hyperparameter tuning. Autogluon can
train models with commonly used classification algorithms.



TABLE I
Offline evaluation results of different classification models trained

by Autogluon

Model Accuracy Pred Time (s) Train Time (s)
Weighted_ensemble 93.49% 3.331 3881
RandomForestClassifier 92.98% 0.246 77
ExtraTreesClassifier 92.45% 0.446 62
CatboostClassifier 89.24% 0.114 23
NeuralNetClassifier 91.02% 1.836 3586
LightGBMClassifier 90.94% 0.069 5
KNeighborsClassifier 90.36% 4.643 488

Moreover, it can construct ensemble models with multiple
algorithms and different hierarchical structures. Table I shows
the offline evaluation results of six classification models and
one ensemble model trained by Autogluon with our training
dataset for the acceptance model. In addition, the table presents
the classification accuracy, prediction time and training time
of each model. Considering the time constraint in the real-time
code completion scenario, we finally chose the LightGBM
algorithm. LightGBM is a distributed gradient boosting frame-
work based on the decision tree algorithm, providing fast and
accurate prediction with a low memory footprint. To further
improve the online inference performance, we apply the native
LightGBM [33] in our online service and reduce the prediction
time to less than 50ms.

C. Feature importance for acceptance model
The features we used are from two sources: the code context

to capture position and structure features from the existing
code and the completion results to capture features from each
code completion model.

1) Code context features: Extract context features from the
code before the position to be completed, mainly from the
following aspects:

• Position: line number, token number of the line, etc.
• Uncompleted token: prefix length, capitalized token, etc.
• Adjacent tokens: last token, last symbol, etc.
2) Completion result features: Collect features from com-

pletion results of each integrated strategy. Some additional
features are generated by aggregating the results from all
strategies.

• Feature from each strategy: candidate number, score of
each candidate, candidate length, etc.

• Aggregate features: the times of simultaneous occurrences
of a candidate in multiple strategies, etc.

Fig. 4 presents the top fifteen critical features in the Light-
GBM model, the importance score denotes the number of
times the feature used in this model. It can be noticed that
the top three important features come from the current line
code context. The adjacent token and symbol play an essential
role as they are most related to the code to be predicted. On
the other hand, eleven out of these fifteen features are from
the completion results, especially from the length and scores
of the top two candidates of each strategy. In addition, one
aggregate feature, the times of simultaneous occurrences of a
candidate in multiple strategies, is presented as the fourteenth
important feature.

Fig. 4. Feature importance of the acceptance model

VI. Fusion Ranking Model

When a correct candidate does not present at the top of
the completion list, the developer has to increase the checking
time to scan all the invalid candidates above it and increase
the tap times to select it. Thus, the position of the correct
candidate in the list significantly affects the coding efficiency.
When the code completion system has multiple strategies, the
candidate scores given by different strategies are usually on
various scales, and sometimes one strategy might have a multi-
dimensional score. To display the candidates from all inte-
grated strategies in an ordered list, adjusting the candidates’
priority is needed.

A. Module design with candidate level samples
Unlike the candidate-set level sample granularity of the

acceptance module, we extract candidate level samples from
the simulation data at critical positions for this fusion ranking
module. In this manner, one completion candidate is treated
as a sample. Thus, the total number of samples will expand
dramatically. Assuming the acceptance model has blocked the
completion without any correct candidate, we only select the
samples from the completion list with the correct candidate,
which also solves the problem of the unbalanced samples.
Similar to the acceptance model’s sample features, each

candidate sample in the ranking model has code context
features and features related to the candidate itself. The goal of
the ranking model is to give a score as a unified measurement
index to each candidate sample from different strategies. This
score then ranks all the candidates in a completion list.

B. Model algorithm
To rank candidates from multi strategies, we have explored

the following two methods:
1) Normalized Ranking: The first method we considered

is to normalize the candidate scores from each strategy by
the StandardScaler function in the scikit-learn package [34].
It scales each input score separately by subtracting the mean
and dividing by the standard deviation to shift the distribution
to a mean of zero and a standard deviation. Then we rank all
candidates by this normalized score. However, the top-ranking
candidates tend to be more accurate and shorter in length with
this method as the candidate length factor is not considered
here.



Fig. 5. Example of fusion ranking module

2) Fusion Ranking: It is not easy to introduce a length
factor [20], [35] into the ranking score and to achieve a com-
promise between the two indicators. We innovatively introduce
the concept of expected benefit together with a regression
model to deal with this problem. In this regression model,
the input is the feature vector of a candidate, and the output
is the expected completion length of this candidate. More
specifically, for the correct candidate, use its length as the
model’s output; for the wrong candidate, set the output as 0
directly. The physical meaning of this method represents the
potential benefits of choosing this candidate. If the candidate
is wrong, there is no help to improve the coding efficiency,
and when it turns out to be correct, the longer the candidate’s
length will bring more significant benefit.
We still choose the LightGBM algorithm to train this regres-

sion model with simulation data. The output of the regression
model inherently considers both the correct probability and
the length of the candidate. Thus, our fusion ranking module
takes the output of the regression model as the final score
and ranks candidates by this score. Fig. 5 is an example of
the fusion ranking module. It can be seen that the output
score from the regression model believes that compared with
candidates 4 or 5, candidate 1 has a greater profit of giving
longer completion compared to its risk of accuracy. In contrast,
the risk of accuracy overrides the length benefits for candidates
2 and 3. In this manner, the fusion ranking module gives the
top-ranking place to the correct candidate with the longest
length.

VII. Evaluation Metrics Considering Hidden Cost

In this section, we provide a novel comprehensive evaluation
method. Unlike the simple accuracy metrics used in the pre-
vious code completion research, our metric takes into account
the benefits from the code completion, meanwhile considers
the hidden cost of it. Thus, this metric is closer to the real
coder experience.

A. Common metrics

The following performance indicators are commonly used to
evaluate code completion models and algorithms: in academia,
Accuracy of top K completion results (Accuracy@K) [36] and
Mean Reciprocal Rank (MRR) [37], [38] are representative
evaluation metrics. On the other hand, the keystroke is com-
monly used in industry to evaluate code completion systems,
such as the well-known code auxiliary tools aiXcoder [39],
Kite [3] and TabNine [4].

In this paper, we use Accuracy@K as the common metric
for evaluating the effect of code completion. The definition
formula is as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦@𝐾 =

∑
𝑖∈𝑊 𝑖𝑠𝐻𝑖𝑡 (𝑖,𝐾 )

|𝑊 | (1)

𝑊 represents the set of locations that have completion
results in the test code file. For each location 𝑖 in 𝑊 , the value
of 𝑖𝑠𝐻𝑖𝑡 (𝑖,𝐾 ) is 1 when the correct completion result is in the
top 𝐾 results of the completion list. Otherwise, the value is 0.

B. Benefit-Cost Ratio
In the industry, when propagating the effect of the com-

pletion plug-in, it is more inclined to use the concept of
the keystrokes, which is the number of times that a human
needs to type to complete a document. Therefore, if the code
completion tool can significantly reduce the keystrokes, coding
can be more efficient.
Although the accuracy index can compare the performance

of some models to some extent, it is incapable of evaluating
models with different types of output. For example, the model
with single token output generally has higher accuracy than
the model with multi-token output. On the other hand, the
keystrokes benefit reflects the extent to which code completion
tools improve user efficiency. However, it ignores the hidden
cost of browsing the completion list. To solve these issues,
we propose our comprehensive evaluation metric, Benefit-Cost
Ratio(BCR), for the code completion task.

1) Benefit: First we define the 𝐵𝑒𝑛𝑒 𝑓 𝑖𝑡, which is the
number of keystrokes reduced by using the code completion
tool, with the following formula:

𝐵𝑒𝑛𝑒 𝑓 𝑖𝑡 = 𝑁𝑜𝑟𝑖 − 𝑁𝑐𝑐 (2)

where 𝑁𝑜𝑟𝑖 is the number of characters in the test file,
more specifically, it means the keystrokes without using the
code completion tool; 𝑁𝑐𝑐 represents the number of actual
keystrokes with the usage of code completion tool. It should
be noted that 𝑁𝑐𝑐 defined here does not involve the taps used
to selecting the right answer in the completion list as this will
be counted in the hidden cost.

2) Hidden Cost: Code completion tools not only improve
development efficiency but also bring inevitable usage costs to
developers. These extra costs, such as the time to browse the
completion list and the keystrokes cost to select the correct
answer, are often implicit and ignored by previous evaluation
metrics. From a practical perspective, we only consider the
time to browse the completion list in our work. The costs of
the keystrokes to select the correct answer are negligible as
they often happen during the browsing procedure and do not
need much mental work.
Assuming developers scan the completion list in a top-down

manner and the effect of evaluating each candidate is identical,
we can define the browsing cost by the following rules:

• if the correct answer is in the completion list, the brows-
ing cost is equal to the ranking of the correct answer in



the completion list as the developer would evaluate all
the invalid answer above it. In case of more than one
correct answers appeared in the completion list, we use
the position of the longest correct answer;

• if none result in the completion list is correct, the brows-
ing cost is equal to the length of the completion list, as the
developer would have to evaluate all the invalid candidates
in the list.

Thus, we define the 𝐻𝑖𝑑𝑑𝑒𝑛𝐶𝑜𝑠𝑡 with Eq. (3):

𝐻𝑖𝑑𝑑𝑒𝑛𝐶𝑜𝑠𝑡 =
∑︁

𝑖∈𝐻𝑖𝑡𝑠𝑒𝑡
𝐻𝑖𝑡𝑃𝑜𝑠𝑖 +

∑︁
𝑗∈(𝑊−𝐻𝑖𝑡𝑠𝑒𝑡)

𝐿𝑖𝑠𝑡𝐿𝑒𝑛 𝑗 (3)

where 𝐻𝑖𝑡𝑠𝑒𝑡 represents a set of locations in the test files
where the correct result is in their completion lists;𝑊−𝐻𝑖𝑡𝑠𝑒𝑡
indicates the set of locations where all the completion results
in the completion list are invalid; The 𝐻𝑖𝑡𝑃𝑜𝑠𝑖 indicates the
longest correct result position in the completion list at location
𝑖 of the test file; 𝐿𝑖𝑠𝑡𝐿𝑒𝑛 𝑗 indicates the length of completion
list when there is no correct result in the completion list at
location 𝑗 of the test files.
Based on Eq. (2) and (3), BCR can be defined with Eq. (4).

𝐵𝐶𝑅 =
𝐵𝑒𝑛𝑒 𝑓 𝑖𝑡

𝐻𝑖𝑑𝑑𝑒𝑛𝐶𝑜𝑠𝑡
(4)

This equation considers the total benefit brought by the code
completion tool together with its hidden cost. The physical
meaning of BCR can be roughly regarded as the average
saving keystrokes by browsing one candidate in the completion
list during the coding process. Taking Fig. 5 as an example,
the top 1 candidate is correct and has a length of 14. If the
developer browses and select this candidate, the browsing cost
is 1 and the tap times is 1. It saves 13 keystrokes comparing
to manually tap 14 times to complete this token, so the benefit
is 13. Thus, the BCR is 13/1 in this case. A higher value of
BCR indicates the lower the effort required for the developer
and the better the overall effect of the code completion tool.

VIII. Experiment Setup
This section introduces the implementation details of the

three strategies (two frequency models and a GPT-2 model)
and their corresponding parameter configuration during the
experiment. The data set and the evaluation method have
been introduced in Section III and Section VII) respectively.
Thus, this section focuses on the setup of the code completion
strategies. Each strategy provides up to five candidates to our
acceptance and fusion ranking models for the subsequent tasks.

A. Frequency strategies
Traditional code completion tools usually provide comple-

tion list sorted alphabetically. Such kind of list requires an
extra cost to the developer to find the correct result. Sorting by
the probability of the candidate occurrences in the historical
codebase can improve the relevance of the suggestions, and
it can automatically adapt to the changes in the codebase.
Thus, we introduce two word-frequency-statistics methods in
our experiment. They are integrated as different completion

strategies to provide candidates for our acceptance model and
fusion sorting model.

1) Global Frequency: When defining variables or func-
tions, developers usually name them with multi-words linked
by camel-case or underscore to explain the specific meaning.
If we perform code segmentation by token granularity, the
long tail effect of the programming language will be more
evident than the general natural language. Therefore, we adopt
a finer-grained sub-token segmentation method [27] to further
segment tokens when encountering underscore or camel case
naming rules. In addition, we filter out the sub-tokens that
only appear in one project, and the length is smaller than
5. As a result, the vocabulary size is dramatically reduced
from 600,000 for the token level segmentation to 15,916 after
sub-token level segmentation and the filter. Such vocabulary
is sufficient to reflect the common words used in the coding
process. Besides the keywords and basic types, the most fre-
quently used tokens are (1) Terms that often appear in Java file
header comments such as "License", "Version", and "Apache",
(2) Words that often appear when importing packages such
as "Service", "Manager", and "kernel". It is also noted that
"result" has the highest probability as the variable name, and
the "append" method has the highest usage rate.
We store the entire vocabulary with a tire tree to accelerate

the online inference. For each token, the total number of
occurrence in the training set, the number of involved files,
and the number of involved projects are recorded as the
three dimensions of token scores. Candidates are obtained by
searching the tire tree and then sorted according to the total
number of occurrences.
Global Frequency strategy is mainly used when defining

new variables, function names, and classes. It can effectively
complete the commonly used words in the code file.

2) Local Frequency: The programming language often has
distinct localization characteristics [40]. When coding, devel-
opers may repeatedly call the variable or function defined in
the previous code fragment or the custom class under the same
project. Therefore, we use the Local Frequency strategy to
capture and predict the local characteristics. Local Frequency
strategy extracts the token-level vocabularies from the current
code file, meanwhile, counts the number of occurrence of each
token as the score. During the online inference, these vocab-
ularies are dynamically updated with the written code file.
Candidates are obtained by searching the vocabulary directly
and then sorted according to the number of occurrences.
As an illustration, we select a representative file ("AclStor-

age.java") from the testing dataset with 689 tokens and about
8000 characters. Among 689 tokens, 488 tokens have appeared
in the code before their location. In other words, the recall rate
is 69.91%. Table II shows the results sorted by the number of
token occurrences. It can be seen that the top-ranking tokens
repeatedly appear in the code file. In addition, further analysis
shows that in the case of the Local Frequency strategy hits,
there is about half chance that the correct candidate can be
found at the top one position of the completion list of Local
Frequency strategy.



TABLE II
number of token occurrences in a Java file

Index Token Count Index Token Count
1 AclEntry 30 6 FsPermission 15
2 accessEntries 27 7 import 14
3 List 20 8 permission 14
4 inode 19 9 featureEntries 13
5 if 19 10 new 13

TABLE III
GPT-2 model architecture hyper-parameters

Hyper-parameter Explanation Value
n_layer Number of transformer layers 12
n_model Dimension of hidden states 768
n_embd Dimension of embedding 768
n_head Number of attention heads 12
n_positions Max code token length 256
p_drop Drop probability 0.1
vocab_size Vocabulary size 30000

B. Sentence-level language model
With their self-attention and paralleled processing mech-

anism, the newly designed transformers present superiority
over RNNs in modelling the long-term dependency and the
inference speed. GPT-2 [16], as a transformers styled pre-train
language model, has demonstrate its strong ability in both text
and code generation area [20]. Thus, we use GPT-2 styled
model as the sentence-level language model in our research.

1) Model structure: GPT-2 consists of a multi-layer trans-
former decoder stack, which maps input token embedding and
position embedding into an output vector. The output vector is
then multiplied with the token embedding matrix and forward
into a log-softmax function to calculate the prediction score
for each vocabulary token. We train our GPT-2 model from
scratch with the training dataset.
Considering the trade-off between accuracy and perfor-

mance, we select a small GPT-2 124M model and apply a
minor modification to build our own GPT-2 model for the code
completion task. The maximum sequence length is reduced
from 1024 to 256, and the vocabulary size is reduced from
50257 to 30000. Final model hyper-parameters are shown in
Table III with 108M parameters in total.

2) Preprocessing: We apply the following preprocessing
steps to the source code, including:

• Partially remove comments, only keep comment lines
before the function definition and docstring below the
function definition;

• Remove non-English letters and symbols;
• Replace long string/number with special placeholders;
3) Tokenizer: The tokenizer is used to encode a code literal

into a sequence of tokens before feeding it into GPT-2 model
and decode the model output back to a code literal. We use the
same tokenization method, Byte-Pair Encoding (BPE), with
the original GPT2 model. It is an unsupervised tokenizer,
which recursively replaces the most frequently occurring pair
of Unicode characters with a new character in the vocabulary.
We retrain the BPE tokenizer from scratch using our source
code data and set the vocabulary size as 30000. Since this

customized tokenizer provides a better fit with source code,
it can consider more extended source code than the original
GPT-2 tokenizer with the same number of tokens.

4) Inference: The maximum online inference time for GPT-
2 model is set as 200ms to ensure displaying completion
results to the developer fluently. We apply the beam-search
method (Fig. 6) in the GPT-2 model inference procedure to
generate the code completion result. Beam-search reduces the
risk of missing high probability token sequences by keeping
the top 𝑘 (𝑘 is the beam size) highest aggregate probability
sequences at each step. To reduce the redundant calculation
and accelerate the inference during the beam-search, we apply
the following output sequence termination criterion to adjust
the beam size dynamically at each step:

• if its aggregate score is lower than a score threshold 𝑡.
• if it has end-of-line token ("\n").
• if it has an annotation symbol.
• if it runs into closed loop.
• if it reaches the maximum inference step.
Fig. 6 illustrates one of our beam-search example with beam

size 𝑘 and score threshold 𝑡 being set as 5 and -3 respectively.
At step 0, the top 5 score candidates are selected and combined
as a batch for the step 1 inference. At step 1, we also take the
top 5 candidates with the highest aggregate score, in which
only three candidates have an aggregate score higher than the
threshold 𝑡. Thus, only three candidates are selected for the
next step inference, which means the batch size of step 1 input
is 3. The rest inference steps are conducted in the same manner
until our criterion terminate all beam search process. Thus,
instead of doing beam-search with fixed batch size inference
at each step, we dynamically adjust the batch size according
to the previous step result to reduce the inference cost.
Given the increment sequence typing nature of the coding

process, we also implement two caching mechanisms in the
inference stage. Firstly, we cache the input sequence with
its attention keys and values of the GPT-2 blocks. If a new
inference request is received, we only calculate the keys
and values for the additional transformer block if the input
sequence partially matches the items in the cache. This caching
speeds up inference by up to 40%. Secondly, we cache the
inference sequence results for the current line. When the beam-
search procedure cannot finish in the time constraint (200ms),
we return the results from the processed step. Meanwhile,
we keep the beam-search running in the background until
it reaches the termination criterion. The untapped results are
saved in cache and used if a new inference with a matching
prefix is received.

IX. Result

This section conducts a series of experiments of three cho-
sen code completion strategies with our acceptance model and
fusion sorting model and presents a comprehensive analysis
based on the experimental results. The data used for the
evaluation is generated from the test dataset introduced in
Section III and IV.



TABLE IV
Characteristics of different code completion strategies

Strategy Occurrence rate Hit position 90% quantile Prefix length 90% quantile Completeness Accuracy@1 Accuracy@5
Global Frequency 47.33% TOP2 12 65.80% 9.74% 11.18%
Local Frequency 12.48% TOP4 2 95.03% 31.82% 52.67%

GPT-2 8.20% TOP5 9 88.78% 58.96% 62.79%

A. Single strategy evaluation

Table IV shows the comparison of the characteristics of
different strategies from the following aspects.

• Occurrence rate: the proportion of non-empty completion
list.

• Hit position 90% quantile: when the completion list has
the right candidate, collect the positions of the longest
hit candidate. Sort the collected position in ascending
order and take the value of 90th quantile to avoid discrete
points.

• Prefix length 90% quantile: prefix length means how
many characters of a token you need to tap before the
correct result appears in the completion list. We also use
the value of the 90th quantile.

• Completeness: the proportion of the chosen candidate is
a full token.

• Accuracy@K: as described in Eq. (1).

1) Global Frequency: Global Frequency is able to provide
results at almost 50% of the locations while has the lowest
accuracy among these three strategies. The long requirement
of the prefix length helps the Global Frequency strategy hit the
correct result at a relatively top position as the extended prefix
limits the number of candidates with solid constraint. When
there is a hit item in the completion list, the correct completion
result is ranked in the top 2 positions in 90% of the cases.
In addition, since the Global Frequency strategy segments the
code with sub-token level granularity, its completeness is lower
than the other two strategies. Most of the correct results of the
Global Frequency strategy are the keywords, common types,
and the customary name of variables and methods.

2) Local Frequency: Local Frequency represents the local-
ization characteristic of the program coding. Table IV shows
that, although the occurrence rate of the Local Frequency
model is lower than that of the Global Frequency model,
an input with only two prefix characters can help the Local
Frequency strategy to find the correct completion result in 90%

of the cases. It also has the highest completeness, 95% of the
time, Local Frequency Strategy can complete an entire token.

3) GPT-2: The completion list of GPT-2 has the highest
Accuracy@1 and Accuracy@5, with Accuracy@5 reaching
62.79% compared to 52.67% and 11.18% for the Local and
Global Frequency strategies, respectively. The occurrence rate
is relatively low as we manually limit the trigger condition
of the GPT-2 strategy. The ranking method for GPT-2 itself
is to sort by the log-softmax score of each candidate, while
the shorter candidate generally has a higher log-softmax score.
Our fusion ranking model will amend this improper ranking
method. In addition, by blocking the low-confidence comple-
tion list with our acceptance model, the accuracy can be further
optimized.
B. Benefit-Cost Ratio (BCR)
BCR is the bespoke evaluation metric (defined in Section

VII) we proposed for the code completion task. It considers
both the benefit and the hidden cost when using the code
completion tool in a real scenario. The last row ("Accep-
tance+Fusion Ranking") of Table V presents the Accuracy@k
and BCR results of our code completion scheme with the
acceptance model and fusion ranking model. Our code com-
pletion scheme achieves a BCR value of 3.65, which is higher
than any single strategy. It means that the developer can
averagely save 3.65 keystrokes by browsing one candidate in
the completion list when using our code completion scheme.
It is noted that the BCR of the Global Frequency strategy

is very poor. Such performance is consistent with the actual
experience. The high trigger and low accuracy completions
from the Global Frequency are dazzling. The other interesting
finding is that the BCR value of our completion scheme (3.65)
is higher than the sum of the BCR value of the three integrated
strategies themselves (3.34), indicating that our completion
scheme can draw merits and offset defects from each integrated
strategy.
Fig. 7 shows the completion effect of a code snippet in a

test file. The abscissa of each subgraph represents the locations

Fig. 6. GPT-2 beam-search. The green branch is the one with highest aggregate probability; the white blocks are the ones match the termination criterion



TABLE V
Experimental result of the evaluation metrics

Strategy Accuracy@1 Accuracy@5 Benefit-Cost Ratio
Global Frequency 9.74% 11.18% 0.09
Local Frequency 31.82% 52.67% 1.11

GPT-2 58.96% 62.79% 2.14
Acceptance+Fusion Ranking 62.61% 82.55% 3.65

Fig. 7. The real cost to write a code snippet

of successive code characters in the code snippet. The height
of the histogram represents the coding cost of the current
position, and the cost value ranges from 0 to 6. The number
0 means no need to perform any action at this position as
this character is completed by the previous position. Value 1
may mean that this character is manually tapped, or the top
1 candidate in the completion list is hit. Value 2 to 5 are
similar to value 1, and they are just different in the order
of the hit candidate position in the completion list. Value 6
means that there is no correct option in the completion list. The
developer has to browse five invalid candidates and manually
type this character. It can be seen that our completion scheme
with the acceptance model and the fusion sorting model can
significantly reduce the cost when writing this code snippet.

C. Ablation study
Since our proposed code completion scheme involves two

subtasks, we conduct a set of comparative experiments to
evaluate the effect of each task. The results are presented in
Table VI. Following strategies are used in this study:

• Normalized Ranking: a baseline ranking method intro-
duced in Section VI-B

• Fusion Ranking: only use fusion ranking model
• Acceptance+Normalized Ranking: use acceptance model
and Normalized Ranking method

• Acceptance+Fusion Ranking: use acceptance model and
fusion ranking model

From 𝐹𝑢𝑠𝑖𝑛𝑔𝑅𝑎𝑛𝑘𝑖𝑛𝑔 to 𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒 + 𝐹𝑢𝑠𝑖𝑜𝑛𝑅𝑎𝑛𝑘𝑖𝑛𝑔,
there is a dramatic improvement in Accuracy@K and BCR
metrics, which explains the function of the acceptance model.
To verify the effect of the fusion ranking module, we com-
pare 𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒 +𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑅𝑎𝑛𝑘𝑖𝑛𝑔 with 𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒 +
𝐹𝑢𝑠𝑖𝑜𝑛𝑅𝑎𝑛𝑘𝑖𝑛𝑔. By replacing the Normalized Ranking with
Fusion Ranking, BCR increases from 2.14 to 3.65, which
shows that the fusion ranking model also plays an essential
role in our code completion scheme.

TABLE VI
Comparison results of different combinations

Strategy Accuracy@1 Accuracy@5 Benefit-Cost Ratio Invalid list
Normalized Ranking 34.81% 44.91% 1.20 55.09%
Fusion Ranking 35.86% 50.35% 1.57 49.65%

Acceptance+Normalized Ranking 57.31% 71.80% 2.14 28.20%
Acceptance+Fusion Ranking 62.61% (27.80%↑) 82.55% (37.64%↑) 3.65 17.44%

We also count the probability of the invalid completion
lists with the value shown in the 𝐼𝑛𝑣𝑎𝑙𝑖𝑑 𝑙𝑖𝑠𝑡 column. If the
acceptance model is not integrated, the likelihood of invalid
triggers is nearly 50%. Such frequently display of the false
result increases the expense of declined user experience. After
using the acceptance model, the invalid trigger rate reduces
significantly. Combining with the fusion ranking model, the
probability of 𝐼𝑛𝑣𝑎𝑙𝑖𝑑 𝑙𝑖𝑠𝑡 is further reduced to 17.44%.
Compared with the baseline strategy "Normalized Ranking",

Accuracy@1 and Accuracy@5 of "Acceptance+Fusion Rank-
ing" are increased by 27.80% and 37.64%, respectively.

X. Conclusion

We have introduced and deployed a code completion scheme
capable of integrating the results from multiple completion
strategies. Within this scheme, we introduced two models:
the acceptance model and the fusion ranking model. The
acceptance model uses features extracted from the code context
and the results from different code completion strategies to
predict whether a correct result is in the completion list. It can
dynamically control whether to accept the completion results
and display them to the developer. The fusion ranking model
can automatically identify the priority of the completion results
and reorder the candidates provided by different completion
strategies. This scheme is flexible in dealing with various
code completion strategies, regardless of the type or the length
of their completion results. In addition, we have proposed a
comprehensive code completion evaluation metric BCR, which
considers both the benefit of the keystrokes saving and the cost
of completion list browsing.
We have integrated our code completion scheme with two

frequency style models and a GPT-2 style language model
to conduct a set of comprehensive experiments. The results
prove that our code completion scheme can achieve solid
improvements. With the acceptance and fusion ranking mod-
els, the proportion of invalid completion list reduces from
55.09% to 17.44%. Meanwhile, the TOP1 and TOP5 accuracy
increase by 27.80% and 37.64%, respectively. The BCR value
is 3.65, which indicates the developer can averagely save 3.65
keystrokes by browsing one candidate in the completion list
when using our code completion scheme.
To the best of our knowledge, we are the first to optimize

the multi-path recall strategies in the code completion task,
showing a significant improvement over the single completion
strategy. Our exploration may not be comprehensive enough,
but we hope to expand new ideas for research in this area.
For example, integrating more code completion strategies
with different characteristics in the ensemble task may bring
more apparent benefits. Trying multi-task joint training or
reinforcement learning when optimizing the ensemble model is
also an exciting research task. In terms of evaluation methods,
we are also expecting to discover more potential influencing
factors and combinations. A suitable evaluation method can,
in turn, promote the development of algorithms.
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