
Interactive Patch Filtering as Debugging Aid
Jingjing Liang

Key Lab of High Confidence Software
Technologies, Ministry of Education
Department of Computer Science and
Technology, EECS, Peking University

Beijing, China
jingjingliang@pku.edu.cn

Ruyi Ji
Key Lab of High Confidence Software
Technologies, Ministry of Education
Department of Computer Science and
Technology, EECS, Peking University

Beijing, China
jiruyi910387714@pku.edu.cn

Jiajun Jiang
Key Lab of High Confidence Software
Technologies, Ministry of Education
Department of Computer Science and
Technology, EECS, Peking University

Beijing, China
jiajun.jiang@pku.edu.cn

Yiling Lou
Key Lab of High Confidence Software
Technologies, Ministry of Education
Department of Computer Science and
Technology, EECS, Peking University

Beijing, China
louyiling@pku.edu.cn

Yingfei Xiong
Key Lab of High Confidence Software
Technologies, Ministry of Education
Department of Computer Science and
Technology, EECS, Peking University

Beijing, China
xiongyf@pku.edu.cn

Gang Huang
Key Lab of High Confidence Software
Technologies, Ministry of Education
Department of Computer Science and
Technology, EECS, Peking University

Beijing, China
hg@pku.edu.cn

ABSTRACT
It is widely recognized that program repair tools need to have a high
precision to be useful, i.e., the generated patches need to have a high
probability to be correct. However, it is fundamentally difficult to
ensure the correctness of the patches, and many tools compromise
other aspects of repair performance such as recall for an acceptable
precision.

In this paper we ask a question: can a repair tool with a low
precision be still useful? To explore this question, we propose an
interactive filtering approach to patch review, which filters out in-
correct patches by asking questions to the developers. Our intuition
is that incorrect patches can still help understand the bug. With
proper tool support, the benefit outweighs the cost even if there
are many incorrect patches.

We implemented the approach as an Eclipse plugin tool, InPaFer ,
and evaluated it with a simulated experiment and a user study with
30 developers. The results show that our approach improve the
repair performance of developers, with 62.5% more successfully re-
paired bugs and 25.3% less debugging time in average. In particular,
even if the generated patches are all incorrect, the performance
of the developers would not be significantly reduced, and could
be improved when some patches provide useful information for
repairing, such as the faulty location and a partial fix.

KEYWORDS
Interactive debugging, Patch filtering, User study, Program repair

1 INTRODUCTION
In the past decades, automatic program repair (APR) attracted a lot
of research efforts and significant progress has been made [1, 10,
12, 19, 23, 29, 39, 44, 45]. Many of the proposed APR approaches are
test-based program repair approaches, which take as input a buggy
program and a test suite with at least a failed test, and automatically
generate a set of patches that make all tests pass.

It is commonly recognized that an APR tool needs to have a high
precision to be useful, i.e., the generated patches should have a high

probability to be correct. For example, Tao et al. [36] have shown
that the repair performance of developers significantly improves
when they are given a high-quality patch, and becomes worse when
they are given a low-quality patch. If a repair approach produces
more incorrect patches than correct patches, the overall repair
performance would become even lower.

However, it is fundamentally difficult to achieve a high preci-
sion. Most programs are not developed with a formal and complete
specification, and we usually only have a test suite as a specifica-
tion. Since tests cannot guarantee the correctness of the program,
it is therefore fundamentally impossible to guarantee the correct-
ness of patches. Furthermore, in practice the test suites are usually
weak, such that many more incorrect patches can pass the tests
than correct patches [25], making achieving a high precision very
difficult. This problem is often known as “weak test suite” [30] or
“overfitting” [34].

As a result, many approaches take conservative strategies [31],
compromising performance in other aspects to reach an accept-
able precision. For example, many APR tools return only one most
probable patch for each bug [12, 32, 39, 42, 44]. Some approaches
repair only bugs satisfying strict conditions, e.g., frequently recur-
ring bugs [2, 24] or bugs with a reference implementation [14, 28].
These conservative strategies inevitably compromise the perfor-
mance in other aspects. In the above examples, returning more
patches or targeting more bugs could potentially help generate
correct patches for more bugs, i.e., increasing recall, but the conser-
vative strategies disallow this possibility. In fact, all state-of-the-art
repair approaches have a low recall, i.e., only a small portion of
bugs can be correctly fixed. For example, Hercules [33], one of the
newest repair approach proposed in 2019, repairs only 13% bugs on
the Defects4J benchmark.

Given the fundamental difficulty in achieving a high precision,
in this paper we explore from a different perspective: can a repair
tool with a low precision still be useful? Our exploration is based on
the following observation: The practical use of ARP tools consists
of two steps [8], patch generation, where the ARP tool proposes
candidate patches, and patch review, where the developer examines

ar
X

iv
:2

00
4.

08
74

6v
2

 [
cs

.S
E

]
 2

7
A

pr
 2

02
0

, , Jingjing Liang, Ruyi Ji, Jiajun Jiang, Yiling Lou, Yingfei Xiong, and Gang Huang

the patches to ensure their correctness and other quality attributes.
While the patch generation has been extensively studied, we still
lack understanding and tool support for patch review.We conjecture
that the review of incorrect patches also helps understand the bug,
and with proper tool support, the review of incorrect patches would
at least not reduce the repair performance of the developers. If
this conjecture holds, we have the liberty to build ARP tools with
lower precisions, e.g., by generating more patches per bugs, and
potentially increase other aspects of tool performance, e.g., recall.

We propose an interactive patch filtering approach to provide
tool support for patch review, verifying the conjecture construc-
tively. Given multiple patches for a bug, where most of the patches
are expected to be incorrect, an interactive patch filtering tool asks
the developer questions about attributes of the system that could
distinguish between different patches. The attributes could be about
the behavior of a test, e.g., whether a statement should be executed
during a test or not, or could be the confidence of the developer on
the system, e.g., whether a method should be patched or not. The
developer picks a question and provides an answer, and the tool
filters the patches based on the answer. The process continues until
the developer figures out a correct patch (by picking an automati-
cally generated one or by contriving a new one) or no more patches
can be filtered out. We design a two-stage algorithm to implement
this interactive system, introducing an offline preparing stage to
optimize the response time of the online interactive stage.

We have implemented our approach as an Eclipse plugin called
InPaFer , which stands for an Interactive Patch Filter. The plugin
includes a user interface to allow the developer to easily browse
the patches and the questions, as well as a diff view to visualize the
effect of a patch on a test execution. The plugin implements three
types of questions: (1) whether a statement should be executed in a
test execution, (2) whether the assignment to a variable is correct
in a test execution, (3) whether a method should be patched or not.

Based on the plugin, we conducted two experiments to verify
the conjecture. We collected the patches generated by 13 different
repair tools on the Defects4J benchmark [13] and assume that the
patches are generated by one tool. In this way, we get a combined
tool whose precision is lower than every single tool but the recall is
higher than every single tool. Based on this tool, the first experiment
is a simulated experiment that measures the average number of
questions to distinguish the patches, where a computer-simulated
user randomly chooses questions and provides answers. The result
suggests that a relatively small number of questions are needed to
finish the filtering process, 3.1 per bug on average, and the number
of needed questions is not related to the number of patches.

The second experiment is a user study involving 30 participants
divided into three groups. The three groups repair bugs without any
patch, with the generated patches, and with InPaFer , respectively.
The results show that, compared with the group with no patch, the
group with InPaFer correctly repair 63% more bugs and uses 25%
less time on average; compared with the group with the generated
patches, the group with InPaFer correctly repair 39% more bugs and
uses 28% less time on average. Furthermore, even if all generated
patches are incorrect, the group with InPaFer still performs slightly
better than the group with no patches, repairing 27% more bugs
and uses 13% less time. This confirms our conjecture: with proper

tool support, the patch review process helps understand the bug,
and eventually contribute to debugging.

In summary, this paper makes the following contributions:
(1) An interactive patch filtering approach to supporting the

patch review step, and a two-stage algorithm to implement
the approach.

(2) An Eclipse plugin with a carefully designed interface for the
user to easily browse the questions and the patches.

(3) Two experiments, including a user study, to investigate the
usefulness of InPaFer in aiding developers in debugging.

The remainder of the paper is organized as follows. Section 2
introduces the framework of our approach. Section 3 illustrates
our implementation in detail. Section 4 evaluates the effectiveness
of our approach on Defects4J, while Section 5 and 6 validates the
threats and related work, respectively. Finally, Section 7 concludes
the paper.

2 APPROACH
In this section, we will first use a running example to introduce
the overview of our approach in Section 2.1. Then, the next two
sections (i.e., Section 2.2 and 2.3) will demonstrate the two stages
of our approach. Figure 2 presents the overview of our approach.

2.1 Overview
In this section, we will introduce our approach with a running
example. Figure 1 shows a code snippet from the buggy program
Math41 in Defects4J [13] benchmark, which invokes the buggy
method evaluate() when the condition length>1 is satisfied. Be-
sides, the following three patches are generated by existing APR
techniques and can make all the test cases pass. In particular, p1
and p2 are incorrect patches that change the condition in line 320
(in Figure 1) to a new one, while p3 is the correct patch that updates
a for statement in the buggy method evaluate().� �
313 public double eval(double values , ...) {

· · ·
320 if(length == 1){ // incorrect patches change here
321 var = 0.0;
322 }else if(length > 1){ ...
323 // buggy code resides in method evaluate ()
324 var=evaluate(values ,weights ,m,begin ,length);
325 }

· · ·
329 }
� �

Figure 1: A code snippet from Math41

× p1: if(length==1)→ if(length==5&&length!=0)

× p2: if(length==1)→ if((length&1)==1)

✓ p3: for(i=0;i<weights.length;)→ for(i=begin;i<begin+length;)

By analyzing the program and the patches, we can collect a set of
program attributes related to each patch. For example, when apply-
ing the first two patches (i.e., p1 and p2), the failed test case executes
the statement in line 321. On the contrary, when applying patch p3,
the statement in line 321 is not executed. Therefore, checking the
correctness of the attributes can help to filter incorrect patches. As
a consequence, our approach will select the attributes that have the

Interactive Patch Filtering as Debugging Aid , ,

ability to distinguish different candidate patches, and treat them as
questions to ask for developers’ confirmation. For example, for the
above three candidate patches, the first two questions listed below
correspond to the attributes related to program execution trace and
change location, respectively.

q1: Whether the statement in line 321 should be covered?
q2: Whether the method evaluate() should be patched?
q3: ...

Then, we can present all the questions to developers. The de-
veloper could pick a question and provide an answer. For example,
suppose the developer first select the first question, and regards
it as incorrect (i.e., the answer is No.). The patches related to this
attribute can be filtered (i.e., p1 and p2 in the example), because the
patches cause the incorrect program attributes. However, the other
patch (i.e., p3) will be remained since it does not make the program
have the attribute. In fact, each time a question (not the last one) is
answered, there must be some patches filtered: when an attribute is
refuted, the corresponding patches can be filtered. Otherwise, the
other patches can be filtered. For example, the answer to question
q2 is confirmed, the patches p1 and p2 can be filtered, because they
change the code in method eval() but not evaluate().

In summary, by answering questions, the number of candidate
patches will monotonously decrease. Based on this insight, we
proposed our approach called InPaFer , which leverages program at-
tributes as questions to ask developers and filters patches generated
by APR techniques according to the answers.

There is a challenge in implementing InPaFer: since collecting
some kinds of attributes may take a lot of time, such as program
execution trace, it will be impractical to provide a timely response
for online debugging. To overcome this challenge, we utilize the fact
that repair approaches are assumed to work offline, e.g., after a daily
build and before the working time of the next day. In fact, current
repair techniques often require hours to fix a bug, and cannot be
used online. Based on this fact, we design a two-stage approach. The
first stage (i.e., Preparing Stage) is an offline process that collects
program attributes, while the second stage (i.e., Interactive Stage)
is an online process that only needs to filter patches based on the
collected attributes, which can be achieved within a short response
time.

2.2 Preparing Stage
In this section, we will describe the first stage in our approach,
which is called preparing stage. As explained, this stage is an of-
fline process that performs data preparation for the next interactive
stage. In particular, when given a set of patches related to a bug,
our approach automatically collects program attributes for differ-
ent patches, which will be finally leveraged to construct a set of
questions for interaction.

Generally, many kinds of attributes can be used in our approach
as long as they can distinguish the candidate patches from some per-
spective. However, the attributes that can distinguish more patches
and are easy to understand for developers should be preferred, be-
cause they potentially can decrease the number of interactions and
reduce the burden of developers. As a result, the current implemen-
tation of our approach employs three kinds of attributes of pro-
grams, which include both static code property (Modified Method)

and dynamic runtime features (Execution Trace and Variable
Value). The followings describe the details of the attributes.

• Modified Method denotes the specific method in the pro-
gram, which the patches modify the code in. This kind of
attribute is described as “The method m should be patched”,
where m represents the name of some method. Therefore,
according to the given patches, our approach automatically
analyzes the change locations for each patch, i.e., which
methods are modified by the patch. Particularly, when a
patch changes multiple methods, our approach will record
all of them.
• Execution Trace means the executed statements while
running the failing test case over the patched program. For
simplicity, we only consider execution traces in methods that
are modified by the given patches. That is we first collect all
methods that are modified by at least one patch, and then
record the traces of the test execution in all those methods
over the patched program. In particular, the traces are col-
lected at the line level, i.e., which lines of code are executed.
Additionally, since the same method may also be executed
multiple times in one execution, we leverage a hierarchical
aligning algorithm to compare the difference of execution
traces. That is when given two traces, we first align them
at method level and obtain pair-wise methods, and next we
compare the traces in a pair of methods. In these two pro-
cesses, we greedily align the traces based on the execution
order. Finally, we identify the differences between traces at
line level as attributes, i.e., some lines of code are uniquely
executed over a part of patched programs. In general, this
attribute is described as “The statement at line n in method
m should be executed”, where n and m represent the line
number and method, respectively. Therefore, each attribute
corresponds to a unique line of code in the program.
• Variable Value indicates a variable is assigned some value
at specific locations during the execution. Particularly, we
consider all local variables and class fields with primitive
types at the entry and exit locations of the modified methods.
More concretely, for each method that is modified by at least
one patch, we collect all values assigned to variables at the
entry and exit of all invocations to the method. Therefore,
the attribute of “the value val assigned to var” denotes the
variable var is assigned the value of val in the execution at
least once over the patched program.

Therefore, in the current implementation of InPaFer , in total
we use three kinds of attributes. They are described as (1) the
method m should be patched, (2) the statement at line n in method
m should be executed, and (3) the value val assigned to var is
correct, respectively, where the m, n, val and var correspond to
some method, line number, variable value and variable name.

In order to store the attributes and corresponding patches, we
treat each attribute as a question and define the following data
structure.

Definition 2.1. (Interactive Question (IQ).) An interactive question
is a pair ⟨qattr ,patches⟩, where qattr is a question about whether
the attribute attr of the program is correct or not, and patches is a

, , Jingjing Liang, Ruyi Ji, Jiajun Jiang, Yiling Lou, Yingfei Xiong, and Gang Huang

Figure 2: The workflow overview of the proposed approach.

set of patches that make the answer to question qattr yes, i.e, after
applying the patch in patches , the program attribute attr holds.

For instance, one interactive question for the example presented
in Section 2.1 can be ⟨qattr1, {p1,p2}⟩, where, qattr1 is “Whether
the statement at line 321 in method eval() should be covered?”. In
this way, for each attribute, we can construct an interactive question,
which will be used on the next interactive stage. In particular, we
will delete IQs whose patches includes all candidate patches ahead
of time to reduce the number of questions.

2.3 Interactive Stage
As it is introduced above, the interactive stage is an online process
with developers (shown in Figure 2) using the interactive questions
constructed in the preparing stage. The input of this stage is a list
of IQs and the complete project under debugging. Each time, our
approach collects the feedback from developers for some questions
and update the candidate questions and patches in accordance.
More concretely, in the interactive debugging process, there are in
total three kinds of actions that a developer can take.
• Answer Answering an IQ to filter out some plausible but
incorrect patches.
• Selection Selecting a patch from the candidates in IQs as the
correct patch.
• Generation Generating a correct patch by themselves to fix
the bug.

The Answer action is the main procedure in the interactive
querying process, which interactively refine the candidate patches
with removing incorrect ones according to the answers of some
question from developers. Algorithm 1 demonstrates the updating
process for each round of interaction after developers answering a
question. In this process, we maintain a list of IQs (i.e., Q) waiting
for answers and a set of candidate patches (i.e., P). In the beginning,
P contains all candidate patches. In each round, we update these
two parts according to the developer’s answer. Particularly, when
an attribute is correct (i.e., the answer is yes to the corresponding
question), the patches related to it will form the new candidate
patch set (lines 3-4), otherwise, they will be filtered from candidates
(line 6). Finally, the candidate questionsQwill be updated according

to remaining patches (lines 8-13). In particular, if all patches are
filtered in an IQ, it will be deleted and not require developers to
answer in the future (line 10).

Additionally, in the debugging process, developers may also
check the correctness of candidate patches when P is not too large.
Therefore, the other two actions denote that developers can select
the correct ones directly from candidate patches or generate patches
manually and finalize the debugging process.

Algorithm 1 Update Algorithm
Input: Q: question list, P: all candidate patches

q: an answered question, a: answer to q
Output: Q′: updated question list, P′: updated patch list
1: Q′ ← ∅, P′ ← ∅
2: if Q! = ∅ && P! = ∅ then
3: if a == yes then // q .attr is correct

4: P′ ← q.patches // patches satisfy q .attr

5: else
6: P′ ← P \ q.patches // patches do not satisfy q .attr

7: end if
8: for each q′ ∈ Q do // update candidate questions

9: q′.patches ← q′.patches ∩ P′
10: if q′.patches , ∅ then
11: Q′ ← Q′ ∪ {q′}
12: end if
13: end for
14: end if

3 ECLIPSE PLUGIN
To evaluate the effectiveness of our approach, we have developed a
prototype tool called InPaFer , which is a plugin program for Eclipse
with a graphical user interface (GUI). Figure 3 shows a snapshot
of the plugin during a debugging process. Specifically, it consists
of two embedded views, Query View and Diff View, for collecting
developers’ feedback and displaying information to developers.

Query View is the main component of our approach, which
presents the details of interactive questions and corresponding can-
didate patches. In order to separately display different kinds of

Interactive Patch Filtering as Debugging Aid , ,

information, it is further subdivided into three panels. As shown in
the figure, the first panel shows failing test cases and the number
of candidate patches thus far. The second panel shows the details
of questions that developers can selectively answer. As introduced
in Section 2.2, currently we employed three kinds of attributes that
corresponds to the three groups of questions in the view. For each
question, it not only displays the attribute details, but also shows
the number of related patches and the state the of question. When
a question is answered (Yes or No), the state of the question will
be updated from UNCLEAR to YES/NO. As a separate panel, we
display the candidate patches when a question is selected. Addi-
tionally, the plugin also provides a one-click rollback to reset all
the answers.

Diff View is an auxiliary view to visualize the differences of
execution traces before and after applying a patch to the buggy
program, where the green lines of code are commonly covered by
the failing test before and after repair, while the red lines of code
are particularly covered by one of them. Finally, the other lines of
code are changed by the patch or not covered by any of them. In
this way, the developers can clearly understand the impact of the
patch on the program execution, and possibly feel easy to answer
the questions.

Please note that all views or panels are logically interrelated to
each other, the selection of one part may trigger the update of the
display in other places. For example, when a patch is selected, the
Diff View will refresh the trace difference immediately. Moreover,
developers can locate the changed code in the editor by simply se-
lecting a patch. Most importantly, when a question is answered, the
candidate patches of all other questions will be updated according
to Algorithm 1 and refreshed on the view.

4 EVALUATION
To evaluate the effectiveness of InPaFer , we have conducted two
experiments. The first one is a simulation experiment, which in-
vestigates the effectiveness and efficiency of InPaFer when applied
to a large number of real-world bugs. Besides, in this experiment,
we also study the impacts of different kinds of interactive questions.
The other experiment is a user study to evaluate the usefulness
of InPaFer in a realistic program repair scenario. Specifically, we
investigate whether it can improve the efficiency and correctness
of developers when debugging.

4.1 Simulation Experiment
In this experiment, we designed the study to answer the following
research questions:

• RQ1: How effective is InPaFer in debugging real-world bugs?
• RQ2: How effective are different kinds of interactive ques-
tions of InPaFer?

RQ1 investigates the effectiveness and efficiency of InPaFer via
the number of remaining patches and queries. Ideally, all incorrect
patches can be correctly filtered out and only correct patches (can
be empty) are left after several rounds of queries. RQ2 compares the
effectiveness of questions built with different kinds of constraints.

4.1.1 Experiment Setup.

Dataset. In order to simulate the scenario, where there are mul-
tiple patches for a bug, we can apply patches produced by multiple
existing APR techniques. We consider all existing automatic pro-
gram tools, which work on Java language and are available thus far.
As a matter of fact, different APR techniques may produce similar
or even the same patches, to improve the efficiency and clarity for
interactive debugging, we will remove duplicate patches ahead of
time, which are the same in syntax. In total, we selected 13 program
repair tools and the details of each tool are presented in Table 2.
All of them were evaluated on the commonly used Defects4J [13]
benchmark and the results are available. We collected the patch
data from previous studies [1, 12, 19, 23, 26, 39, 44, 45]. In total, we
have collected 8654 patches for 85 bugs, and the details are listed in
Table 1. In the table, the first two columns present the project names
and line numbers of source code. Columns “Bug” and “AvgPatch”
show the number of bugs in each project and the average number
of patches for each bug. Finally, the column “C/NC” denotes the
number of bugs that have or do not have correct patches collected.

Table 1: Dataset in experiments.

Project kLoC Bug AvgPatch C/NC

JFreeChart 96 17 225 9/8
Closure Compiler 90 13 6 3/10
Apache Commons Lang 22 13 66 8/5
Apache CommonsMath 85 42 92 15/27

Total 321 85 101 35/50

Table 2: APR tools included by InPaFer.

Name Description

jKali The Java implementation of Kali [30], which only
performs functionality deletion.

jGenProg The Java implementation of GenProg [20, 38], which
repair bugs with genetic programming algorithm.

kPAR The Java implementation of PAR [15], which generate
patches based on predefined fix patterns.

Nopol [45] Relying on constraint solving to fix incorrect condi-
tions.

jMutRepair [26] A mutation based program repair tool.
Cardumen [27] Generating patches based on mined templates.

Avatar [23] A repair tool based on the fix patterns of static analysis
violations.

HDrepair [19] A repair tool based on historical bug-fix information.

ACS [44] Learning statistical information from open source pro-
grams for fixing incorrect conditions.

3sfix [7]
Repair approaches based on similar code match.CapGen [39]

SimFix [12]

DeepRepair [40] An extension of jGenProg, which leverages code sim-
ilarity.

, , Jingjing Liang, Ruyi Ji, Jiajun Jiang, Yiling Lou, Yingfei Xiong, and Gang Huang

Figure 3: The screenshot of InPaFer.

Procedure. To automatically simulate the interaction process
with developers, each time InPaFer randomly selects one question
from all candidates and then automatically gets the answer via
analyzing the fixed programs. Moreover, to alleviate the impact of
randomness, we repeat the interaction process for each bug five
times and take the mean number of queries as the final result.

4.1.2 Results for Remaining Patches andQuery Number (RQ1). Ta-
ble 3 shows the results of this research question. In the table,
columns “None” and “All Correct” show the number of bugs,
which do not have any candidate patch left and only have correct
patches left, respectively. The following columns present the per-
centage ranges of patches left among all candidates. For example,
“≤ 40%” denotes that the percentage is from 20% to 40%. Each cell
shows the number of corresponding bugs. Particularly, we sepa-
rately display the number of bugs that contain (Con Bug) and do
not contain (NotCon Bug) correct patches. Finally, row “Query
Number” shows the average number of queries.

From the table, our approach can correctly filter out all incorrect
patches and only make the correct ones left for 49.4% (42/85) bugs
in total. Particularly, when there is no correct patch, it can filter
all incorrect patches for about 78% (29/50) bugs. Additionally, after
analyzing these bugs we find that the number of candidate patches
ranges from 2 to 1248, and on average more than 60 per bug, which
may potentially cost a lot of time of developers to manually review.
However, in this process, our approach on average only requires
about 3.2 queries for each bug after filtering all of them. As ex-
plained in our user study (Section 4.2), the interactive debugging
process will not cause a big burden to human developers and sig-
nificantly improve the efficiency of manual review. On the other
hand, when the correct patches are given, our approach can help
correctly remove all incorrect patches while still save the correct

ones for about 37.1% bugs (13/35), and the number of queries is
even smaller, i.e., three queries on average. The result indicates that
our approach is effective for patch filtering.

Finding 1. For about 49% bugs, InPaFer can filter out all
incorrect patches and save all correct patches within 3.1 ques-
tions on average.

However, from the table we can see that there are still some
incorrect patches that cannot be completely filtered out in the ex-
periment. For example, there are 3.5% (3) bugs having less than 20%
(or 20%-40%) candidate patches left. However, the queries needed
are still not too many, usually less than six per bug apart from the
one which needs 20 queries (in ≤ 20%). The main reason is the candi-
date patches are semantically too similar to each other, causing the
program executions the same. For example, Figure 4 shows two can-
didate patches, where the first one (left) is the correct patch while
the other is incorrect. However, both these two patches change the
if condition (line 679) and have the same execution path, making
our approach cannot better distinguish them. However, more at-
tributes can be added to further improve the effectiveness of our
approach. Additionally, even though some patches cannot be fil-
tered out by our approach, they are possibly easy for developers to
review (e.g., the incorrect patch in Figure 4 compares two constant
values). As we will explain in the user study (Section 4.2), even if
12/26 (>40%) candidate patches left in Task1, our approach can still
improve the efficiency of manual review process.

Finally, for about 23.5% (20/85) bugs, InPaFer cannot generate
any questions to filter candidate patches. We further reviewed
these bugs and found the reason is that most of the patches are
modified the same location and have similar program attributes,

Interactive Patch Filtering as Debugging Aid , ,� �
// correct patch // incorrect patch
679- if(dataset !=null){ 679- if(dataset !=null){
679+ if(dataset ==null){ 679+ if(AbsRenderer.ZERO==null){
680 return result; 680 return result;
681 } 681 }
� �
Figure 4: Example candidate patches left after filtering.

Table 3: Remaining patches in bugs.

Remain Patches None All Correct ≤ 20% ≤ 40% > 40% = 100% Total

Con Bug 0 13 2 1 13 6 35
NotCon Bug 29 0 1 2 4 14 50

Total Bug 29 13 3 3 17 20 85

Query Number 3.2 3.0 9.8 1.7 2.2 – 3.1

which cannot be better distinguished by the current implementation
of InPaFer . In fact, 16 out of the 20 bugs contain less than 5 candidate
patches. When the number of patches is small, it may be easy for
the developer to review.

4.1.3 Results for Different Questions (RQ2). To investigate the ef-
fectiveness of different attributes in our approach, we conduct a
controlled experiment, where each time we apply questions based
on only one kind of attribute. In addition, as explained above that
the current attributes do not have sufficient ability to distinguish all
candidate patches. In the comparison, we only focus on the patches
which can be filtered by InPaFer .

Figure 5 shows the experimental results when applying different
attributes. The x-axis denotes the number of queries while the y-
axis denotes the percentage of remaining patches. From the figure,
the performances of different kinds of attributes vary greatly, and
there is no such attribute that can filter all incorrect patches. The
reason is incorrect patches tend to be similar to each other on
a certain attribute while different on some other attributes. For
example, the attribute of Variable Value can at most distinguish
about 82% incorrect patches. After combining other two attributes,
it can filter up to 97% incorrect patches in ten queries.

In addition, the performance when using Variable Value is
even better than that using all attributes within three queries. This
is because of the randomness in the simulation process. However,
though Variable Value is effective, developers seldom use it in
practice based on the developersâĂŹ feedback, since it is usually
hard to answer. On the contrary, the questions related to the at-
tribute of Modified Method is the most frequently selected as it is
easy to answer and performs relatively well in all cases.

Nevertheless, the results show that the number of queries is
usually no larger than 6 to achieve the best performance for each
attribute. Besides, usually the first two queries contribute most.

Finding 2. The performance of Variable Value is better
than the performance of other two attributes, but it is worse
than that of combining all attributes.

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

0 1 2 3 4 5 6 7 8 9 10

Re
m

ai
ni

ng
 P

at
ch

Query Number

Method Trace Variable Total

Figure 5: Remaining patches and query numbers.

4.2 User Study
Since InPaFer was designed as an interactive debugging approach,
to investigate whether it helps developers in practice, we further
conducted a user-in-the-loop study, which focused on the following
research questions:
• RQ3: How do developers perform while debugging with
InPaFer?
• RQ4: What is the feedback of developers after using InPaFer?

To investigate the impacts of our approach to developers’ de-
bugging performance in practice, we configured three debugging
settings: ManuallyFix, FixWithPatches and FixWithInPaFer . Manu-
allyFix and FixWithPatches denote that the developers manually
repair bugs without and with patches, which are produced by the
13 APR tools used in our paper, respectively, while FixWithInPaFer
denotes that the developers repair bugs with the assistance of In-
PaFer . Additionally, after the experiment, we have interviewed all
developers and collected their feedbacks for further analysis.

4.2.1 Study Design. We will introduce our study design from three
aspects: Tasks, Participants and Procedure.

Tasks. We selected four bugs as debugging tasks that are not
straightforward to repair. Additionally, we also considered the di-
versity of programs, i.e. from different projects, which perform
different types of tasks. Table 4 shows the task details, including
the bug id and patch number for each bug, etc. All bugs are from the
Defects4J dataset shown in Table 1. Particularly, Task1 and Task2
contain the correct patches for the bugs while Task3 and Task 4 do
not. Besides, the participants would not be informed whether the
candidate patch set contains a correct patch.

Table 4: Tasks in user study.

Task ID Bug ID Patch Correct Patch Query Number Remain Patch

Task1 Chart9 26 3 3 12
Task2 Math41 48 1 6 1

Task3 Lang14 8 0 2.4 0
Task4 Lang22 24 0 2.4 0

Note: In this table, column “Patch" and column “Correct Patch" denote the
number of original patches and the number of correct patches in original patches,
respectively, and column “Remain Patch" denotes the number of remaining
patch after all questions are answered.

, , Jingjing Liang, Ruyi Ji, Jiajun Jiang, Yiling Lou, Yingfei Xiong, and Gang Huang

Participants. In total, we recruited 30 participants to conduct
our user study. They are all students who majored in computer
science from our department. Besides, they have at least three-year
programming experience and are familiar with debugging in Eclipse.
Additionally, the participants have no prior experience of repairing
those bugs in the study.

Procedure. In the study, participants were evenly divided into
three separate groups (i.e., A, B and C) with each group including 10
participants. Each participant would finish four tasks in the corre-
sponding group as shown in Table 5. For example, the participants
in Group A should manually repair the bugs in Task1 and Task3 and
manually repair bugs in Task2 and Task4 with the help of patches.
As a result, from the table, each participant would finish all four
tasks under two different debugging scenarios. Therefore, our study
consists of 120 (30 × 4) individual debugging processes and each
debugging process is called one debugging session.

Table 5: Groups in user study.

Group ManuallyFix FixWithPatches FixWithInPaFer

Group A Task1+3 Task2+4 –
Group B Task2+4 – Task1+3
Group C – Task1+3 Task2+4

In addition, to make the participants familiar with our tool, be-
fore the formal user study, participants in Group B and C were
required to debug an irrelevant bug using InPaFer until they got
familiar with InPaFer . Since there are too many debugging sessions,
we assigned each session 30 minutes. If the participants cannot
finish the debugging within the given time slot, we considered the
bug failed to be repaired. After the participants finished a session,
we would manually check whether the patch, figured out by the
developers, was right.

After finishing the debugging, we interviewed each participant
and collected their feedbacks. In specific, for each group, we carried
out the interview in terms of the question: what was the difference
between the two settings you have experienced? for the participants
who have debugged with InPaFer , we would ask more questions
about the function of InPaFer , such as, (i)Which kinds of attribute
related questions were most useful in InPaFer? (ii) Was Diff View
useful for debugging?

4.2.2 Results for Repaired Bugs and Repair Time (RQ3). To measure
the performance of developers, we consider both the number of
debugging sessions where the bugs were correctly repaired and the
time used during debugging.

Table 6 shows the number of sessions in which the bugs were suc-
cessfully repaired in three different debugging scenarios. From the
table, our approach (FixWithInPaFer) significantly outperformed
ManuallyFix and FixWithPatches with respectively 62.5% and 39.3%
improvements. Especially, when the correct patches existed in the
candidate patches, developers could always fix the bug in the study.
However, it was not the case for FixWithPatches even though the
same patches were given. The result demonstrated the effectiveness
of our approach.

Additionally, when considering the debugging time, our ap-
proach achieved better performance as well. Particularly, it could
significantly shorten the debugging time of developers in all tasks
compared with FixWithPatches and in three out of four tasks com-
pared with ManuallyFix. Overall, our approach could reduce the
debugging time by 25.3% and 28.0% against the other two, respec-
tively. Therefore, our approach can improve the efficiency of human
debugging.

Finding 3. Overall, FixWithInPaFer can reduce the debug-
ging time by 25.3% and 28.0% on average, and increase the
success rate by 62.5% and 39.3% on average, compared to
ManuallyFix and FixWithPatches, respectively.

Table 6: Number of successful debugging sessions in user
study.

Task ID ManuallyFix FixWithPatches FixWithInPaFer

Task1 1 9 10
Task2 8 6 10

Task3 5 8 10
Task4 10 5 9

Total 24 28 39

From Table 6 and Figure 6, we observed that the relative perfor-
mances of the developers in three debugging settings were different
in four tasks. Specifically, in Task1 and Task3, FixWithPatches had
more successful debugging sessions but less debugging time com-
pared with ManuallyFix, while it would reverse in Task2 and Task4.
Therefore, we further investigated the reasons for this difference.
Based on our data, we suspected that they were mainly due to the
number and quality of candidate patches. More concretely, we make
the following observations from the data:

(1) On the one hand, as shown in Table 4, Task1 contains 3 cor-
rect patches in 26 candidate patches, while Task2 contains
only 1 correct in 48 patches. Although both Task3 and Task4
do not contain correct patches, Task3 contains only 8 incor-
rect patches, while Task4 contains 24 incorrect patches. This
observation suggests that the number of incorrect patches is
negatively related to the repair performance.

(2) On the other hand, we found that almost all candidate patches
in Task1 exactly changed the faulty code, even if the patches
are incorrect, and the candidate patches in Task3 provided
partially correct code. The fault location and referable code
potentially could provide guidance for developers to better
understand the bugs. In contrast, the candidate patches in
Task2 changed the code in different locations, and the candi-
date patches in Task4 provided meaningless code. These may
mislead developers. In summary, different incorrect patches
may have different quality and high-quality incorrect patches
still guide the developers.

Interactive Patch Filtering as Debugging Aid , ,

ManuallyFix FixWithPatches FixWithInPaFer

Ti
m

e

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0
Chart9

(a) Task1 (Chart9)

ManuallyFix FixWithPatches FixWithInPaFer

Ti
m

e

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0
Math41

(b) Task2 (Math41)

ManuallyFix FixWithPatches FixWithInPaFer

Ti
m
e

0

5

10

15

20

25

30

35
Lang14

(c) Task3 (Lang14)

ManuallyFix FixWithPatches FixWithInPaFer

Ti
m
e

0

5

10

15

20

25

30

35
Lang22

(d) Task4 (Lang22)

Figure 6: Debugging time in user study.

Finding 4. High-quality incorrect patches with partial cor-
rect code at faulty location can still be helpful to developers.

In addition, in Task1 and Task3, FixWithInPaFer shows small
improvement than FixWithPatches, while it shows greater improve-
ment than FixWithPatches in Task2 and Task4. This suggests that
InPaFer reduces the negative effect of the low-quality incorrect
patches, and this reduction is more significant when the negative
effect is larger.

Finding 5. The number and quality of incorrect patches
affect the debugging performance of developers when they are
provided with patches, and InPaFer helps reduce the negative
effect from low-quality incorrect patches.

Besides, for Task1, Task2 and Task3, the performances of devel-
opers in FixWithInPaFer are significantly better than that in Manu-
allyFix, while the performance of developers in FixWithInPaFer is a
little worse than that in ManuallyFix. This suggests that when con-
taining correct or incorrect but high-quality patches, InPaFer could
significantly improve the performance of developers. On the other
hand, according to the result of Task4, when providing patches
with low quality, InPaFer will not affect developers’ performance
too much and still can improve the manual patch review.

4.2.3 Results for Feedback (RQ4). To better understand the debug-
ging process and the attitude of developers to our approach in
practice, we conducted an interview with all participants after the
experiments. The details are listed below.

Group C: compare FixWithInPaFer and FixWithPatches
All participants of Group C gave a positive feedback on InPaFer

when repairing Task2. Based on the interview, we summarized the
help from the following two aspects. (i) Patch Filtering. Most partic-
ipants said that InPaFer could help them to filter most of incorrect
patches by answering a few questions, like “It can narrow the range
of correct patches after a few simple questions.". Therefore, they only
needed to check several candidate patches. (ii) Bug Understanding.
Since the developers were not familiar with the bugs they were
debugging, it was hard to identify whether a given patch is correct
or not. However, for Task2, the interactive questions were not hard
to answer, and they provided a clue to help the developers to un-
derstand the bugs step by step. Finally, they could understand the
bugs better and select the correct patches easier.

Besides, for Task4, the participants thought that InPaFer only
help them to filter out all incorrect patches, but it cannot help them
to repair the bugs, because the incorrect patches are meaningless
code, which cannot provide other help.

Group B: compare FixWithInPaFer and ManuallyFix
The participants in Group B indicated that InPaFer could provide

the correct or partially correct patches, which provided guideline
for debugging. Specifically, for Task1, they could find the correct
patch after answering only a few questions. Besides, although Task3
does not contain the correct patch, the partially correct patches
also help them a lot.

The participants also referred to a limitation that InPaFer does
not support single answer cancellation. Specifically, the developers
may misunderstand Task1 and select a wrong answer for some
questions. This would lead to the correct patches wrongly filtered.
When the developers realized that they selected a wrong answer,
they need to reset all questions and restart the interaction again,
which would waste the debugging time. This is a limitation of our
current tool implementation but not our approach. A better tool
implementation could make the answer to a question reversible,
and potentially further boost the performance of InPaFer .

Group A: compare FixWithPatches and ManuallyFix
On the one hand, small part of participants thought that can-

didate patches could provide the Fault Location for Task4, which
could provide guidance when debugging. On the other hand, almost
all participants complained that it was difficult to find the correct
patch as there are too many patches to reviewwhen repairing Task2.
Reviewing many incorrect patches would disturb their debugging.

Finding 6. Answering the questions of InPaFer helps filter
out incorrect patches as well as understanding the bug.

For all participants who fixed bugs with InPaFer, we car-
ried out the interview in terms of the following questions:
(1) Which kind of attributes related questions were most useful in

InPaFer? Though we have already compared the impacts of differ-
ent kinds of attributes related questions in the study, the result is
still unclear to us from the developers’ perspective. In the inter-
view, almost all participants regarded that the questions related
to Execution Trace helped them most. Particularly, a developer
explained that “developers know where the programs should execute,
but they don’t know what’s wrong. InPaFer knows all executed loca-
tion, but it does not know whether the execution flow is correct or not.
It is very helpful to combine these two kinds of information." Besides,

, , Jingjing Liang, Ruyi Ji, Jiajun Jiang, Yiling Lou, Yingfei Xiong, and Gang Huang

a small number of participants also agreed that Modified Method
was also somehow helpful. They said that when the method was
easy to understand, the question related to Modified Method could
be helpful, otherwise, it would be hard to answer this question as
a much deeper understand of the bug was needed. However, they
suggested that it would be more useful to developers who was fa-
miliar with the project. Finally, the questions related to Variable
Value were the least to be selected as useful, because methods are
often invoked multiple times during an execution, and the current
question type does not allow us to locate a specific invocation.
(2) Was Diff View useful for debugging? About a third of partici-

pants thought that it was useful to understand the bug and correct
the misunderstanding. For example, one participant said that, “The
Diff View shows which branch that the execution get into makes the
test case pass. It corrects the previous misunderstanding."

Finding 7. In our user study, the questions related
to Execution Trace helped the developers most, while
Variable Value could be improved by distinguishing dif-
ferent invocations.

5 THREATS TO VALIDITY
The internal threat to validity lies in the recruited participants. On
the one hand, all of them are not familiar with the projects, which
may cost them more time to understand the program. However, our
findings are from the comparison of debugging time in three groups,
while the absolute total debugging time will not affect. On the other
hand, to mitigate the bias from grouping, we randomly grouped
participants according to their programming experience, and made
each group of participants have close debugging capability in terms
of developing years, i.e., one average about 6 years of developing
experience each group. Besides, the participants from two groups
finished four tasks for in debugging setting, which can alleviate the
threats from participants.

The external threat to validity lies in the four tasks used in user
study, which may cause the findings may be not generalizable to
all other cases. To mitigate this threat, we selected the tasks from
different projects, covering different types. Additionally, we evenly
distribute participants over different projects, which can mitigate
the impact of projects to debugging process.

6 RELATEDWORK
6.1 Interactive Repair
Some recent studies tried to involve developers in the program
repair process. Cashin et al. [6] proposed PATCHPART, which clus-
ters a set of generated patches by program invariants. Patches in
a cluster are likely to be all correct or all incorrect, such that the
developers ideally need only examine one patch per cluster. Com-
pared with their approach, our approach actively asks questions
rather than clusters the patches. We also present an empirical study
showing that this process could increase the repair performance of
developers.

Böhme et al. [3] introduced LEARN2FIX, which queries the de-
velopers to build a test oracle before patch generation to overcome

overfitting. Compared with them, our study focuses on the patch
review process after patch generation, and give evidences that our
approach boosts the overall repair performance of developers.

6.2 Interactive Debugging
A lot of interactive debugging techniques [4, 11, 16–18, 21, 22]
leverage user feedback to localize fault. Algorithm debugging [4]
initially was proposed to resolve the functional programming de-
bugging problem. Algorithm debugging first builds a debugging
tree to reflect the method invocation for a failed test. Then, it re-
peatedly asks the developer to answer whether the input-output is
correct for a method invocation in the debugging tree, and prunes
the tree based on the answer until the fault is localized. Li et al. [21]
improved algorithm debugging by leveraging spectrum based fault
localization (SBFL) and dynamic dependences to decide the order
of method invocations to be questioned. Similarly, Gong et al. [11]
proposed an interactive fault localization technique to improve
SBFL by asking developers to label the statements as faulty or clean,
and updating the suspicious statement list.

Ko and Myers proposed Whyline [16–18], which first records
the program execution trace and allows developers to select some
questions about program output. Whyline can give possible expla-
nations according to the dynamic slicing until the developer finds
the root cause of the fault. Lin et al. proposed Microbat [22] to
improve Whyline by allowing developers to select the trace execu-
tion pattern, such as Correct Step, Wrong Variable Value, and using
developer’s feedback to recommend some suspicious trace.

Different from these techniques, our approach aims to help patch
review by interactively patch filtering, instead of improving the
fault localization. Besides, our approach provided the differences
among patched programs, while others do not.

6.3 Patch Correctness Identification
Since the weak test suites, a lot of researches focus on automatically
identifying the correctness of patches. Some approaches adopt a
deterministic way. Xin and Reiss [41] assume that there is an oracle,
which can give the corresponding output for a newly generated
input. If the output produced by the patched program violates the
output produced by the oracle, the patch is incorrect. Yang et al. [46]
identify the correctness of patches by generating new test cases,
which can obviously validate the oracle, such as crash and memory
leak problems. Similarly, Gao et al. [9] use crash-freedom as the
oracle to discard patches, which crash on the new tests.

Other approaches adopt a heuristic way to identify correctness
of patches. Tan et al. [35] use anti-patterns to discard the patches
which accord with the pre-defined patterns. Xiong et al. [43] deter-
mine the patches correctness by the behavior similarity of test case
executions. Besides, Yu et al. [47] indicate that test case generation
can filter a part of incorrect patches, but cannot turn incorrect
patches into correct ones.

Different from these approaches, our approach identifies the
patch correctness by the developers. We adapted an interaction
with the developers by asking questions related to the attributes
of different patched programs. The developers can understand the
bug and figure out the correct patches through the interaction.

Interactive Patch Filtering as Debugging Aid , ,

6.4 Effect of Patches
Tao et al. [37] have investigated the effect of automatic patch gen-
eration in realistic debugging scenarios. They observed that high-
quality patches significantly improve debugging correctness while
low-quality patches influence participantsâĂŹ debugging correct-
ness. Our user study also has a similar observation that a small
number of high quality candidate patches could improve the per-
formance of manual debugging.

Cambronero et al. [5] conducted a similar experiment except
that the developers were provided with five candidate patches. The
results show that when given candidate patches, the efficiency and
correctness of developers did not be improved. Different from their
observation, our study found that providing a large number of low
quality patches would affect the performance of developers.

7 CONCLUSION
In this paper, we proposed an interactive patch filtering approach,
which contains a two-stage algorithm, to provide tool support for
patch review. We also implemented our approach as an Eclipse plu-
gin called InPaFer . The evaluation results show that our tool would
significantly boost the repair performance of developers when the
patch set contains high-quality patches, and would not significantly
reduce the repair performance even when the patches are all of
low-quality. These findings give many implications to future re-
pair tool building, for example, (1) the repair tool of low precision
can still useful, as the interactive process helps filter out incorrect
patches without significantly affecting the repair performance; (2)
a generated patch does not have to be fully correct to be useful,
as incorrect patches could also provide good hints such as repair
location and partial repair to the developer.

REFERENCES
[1] [n.d.]. https://github.com/SerVal-DTF/FL-VS-APR/tree/master/kPAR.
[2] Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra. 2019. Getafix:

Learning to Fix Bugs Automatically. Proc. ACM Program. Lang. 3 (10 2019), 27.
https://doi.org/10.1145/3360585

[3] Marcel Böhme, Charaka Geethal, and Van-Thuan Pham. 2019. Human-In-The-
Loop Automatic Program Repair. CoRR abs/1912.07758 (2019).

[4] Rafael Caballero, Adrián Riesco, and Josep Silva. 2017. A Survey of Algorithmic
Debugging. ACM Comput. Surv. (2017), 60:1–60:35. https://doi.org/10.1145/
3106740

[5] José Pablo Cambronero, Jiasi Shen, Jürgen Cito, Elena Glassman, and Martin
Rinard. 2019. Characterizing Developer Use of Automatically Generated Patches.
In 2019 IEEE Symposium on Visual Languages and Human-Centric Computing,
VL/HCC 2019, Memphis, Tennessee, USA, October 14-18, 2019, Justin Smith, Christo-
pher Bogart, Judith Good, and Scott D. Fleming (Eds.). IEEE Computer Society,
181–185.

[6] Padraic Cashin, Carianne Martinez, Westley Weimer, and Stephanie Forrest. 2019.
Understanding Automatically-Generated Patches Through Symbolic Invariant
Differences. In 34th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2019, San Diego, CA, USA, November 11-15, 2019. IEEE, 411–414.

[7] Zimin Chen and Martin Monperrus. [n.d.]. The Remarkable Role of Similarity in
Redundancy-based Program Repair. ([n. d.]).

[8] Zachary P. Fry, Bryan Landau, andWestleyWeimer. 2012. A human study of patch
maintainability. In International Symposium on Software Testing and Analysis,
ISSTA 2012, Minneapolis, MN, USA, July 15-20, 2012, Mats Per Erik Heimdahl and
Zhendong Su (Eds.). ACM, 177–187.

[9] Xiang Gao, Sergey Mechtaev, and Abhik Roychoudhury. 2019. Crash-avoiding
program repair. In Proceedings of the 28th ACM SIGSOFT International Symposium
on Software Testing and Analysis, ISSTA 2019, Beijing, China, July 15-19, 2019,
Dongmei Zhang and Anders Møller (Eds.). ACM, 8–18.

[10] Luca Gazzola, Daniela Micucci, and Leonardo Mariani. 2017. Automatic Software
Repair: A Survey. TSE PP, 99 (2017), 1–1. https://doi.org/10.1109/TSE.2017.
2755013

[11] Liang Gong, David Lo, Lingxiao Jiang, and Hongyu Zhang. 2012. Interactive
fault localization leveraging simple user feedback. In 28th IEEE International
Conference on Software Maintenance, ICSM 2012, Trento, Italy, September 23-28,
2012. IEEE Computer Society, 67–76.

[12] Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen. 2018.
Shaping Program Repair Space with Existing Patches and Similar Code. In ISSTA.

[13] René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4J: A database of
existing faults to enable controlled testing studies for Java programs. In ISSTA.
437–440.

[14] Y. Ke, K. T. Stolee, C. L. Goues, and Y. Brun. 2015. Repairing Programs with
Semantic Code Search (T). In ASE. 295–306. https://doi.org/10.1109/ASE.2015.60

[15] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Automatic
patch generation learned from human-written patches. In ICSE. 802–811.

[16] A. J. Ko and Brad A. Myers. 2004. Designing the whyline: a debugging interface
for asking questions about program behavior. In Proceedings of the 2004 Conference
on Human Factors in Computing Systems, CHI 2004, Vienna, Austria, April 24 - 29,
2004, Elizabeth Dykstra-Erickson and Manfred Tscheligi (Eds.). ACM, 151–158.

[17] A. J. Ko and Brad A. Myers. 2008. Debugging reinvented: asking and answering
why and why not questions about program behavior. In 30th International Con-
ference on Software Engineering (ICSE 2008), Leipzig, Germany, May 10-18, 2008,
Wilhelm Schäfer, Matthew B. Dwyer, and Volker Gruhn (Eds.). ACM, 301–310.

[18] A. J. Ko and Brad A. Myers. 2009. Finding causes of program output with the Java
Whyline. In Proceedings of the 27th International Conference on Human Factors in
Computing Systems, CHI 2009, Boston, MA, USA, April 4-9, 2009, Dan R. Olsen Jr.,
Richard B. Arthur, Ken Hinckley, Meredith Ringel Morris, Scott E. Hudson, and
Saul Greenberg (Eds.). ACM, 1569–1578.

[19] Xuan-Bach D Le, David Lo, and Claire Le Goues. 2016. History Driven Program
Repair. In SANER. 213–224. https://doi.org/10.1109/SANER.2016.76

[20] C. Le Goues, ThanhVu Nguyen, S. Forrest, and W. Weimer. 2012. GenProg: A
Generic Method for Automatic Software Repair. TSE 38, 1 (Jan 2012), 54–72.

[21] Xiangyu Li, Shaowei Zhu, Marcelo d’Amorim, and Alessandro Orso. 2018. Enlight-
ened debugging. In Proceedings of the 40th International Conference on Software
Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, Michel Chau-
dron, Ivica Crnkovic, Marsha Chechik, and Mark Harman (Eds.). ACM, 82–92.

[22] Yun Lin, Jun Sun, Yinxing Xue, Yang Liu, and Jin Song Dong. 2017. Feedback-
based debugging. In Proceedings of the 39th International Conference on Software
Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017, Sebastián Uchitel,
Alessandro Orso, and Martin P. Robillard (Eds.). IEEE / ACM, 393–403.

[23] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé. 2019.
AVATAR: Fixing Semantic Bugs with Fix Patterns of Static Analysis Violations.
In Proceedings of the 26th IEEE International Conference on Software Analysis,
Evolution, and Reengineering. IEEE, 456–467.

[24] Fan Long, Peter Amidon, and Martin Rinard. 2017. Automatic Inference of Code
Transforms for Patch Generation. In ESEC/FSE. 727–739. https://doi.org/10.1145/
3106237.3106253

[25] Fan Long and Martin Rinard. 2016. An Analysis of the Search Spaces for Generate
and Validate Patch Generation Systems. In ICSE. 702–713. https://doi.org/10.
1145/2884781.2884872

[26] Matias Martinez and Martin Monperrus. 2016. ASTOR: A Program Repair Library
for Java. In Proceedings of ISSTA. https://doi.org/10.1145/2931037.2948705

[27] Matias Martinez and Martin Monperrus. 2018. Ultra-Large Repair Search Space
with Automatically Mined Templates: The Cardumen Mode of Astor. In Search-
Based Software Engineering - 10th International Symposium, SSBSE 2018, Montpel-
lier, France, September 8-9, 2018, Proceedings (Lecture Notes in Computer Science),
Thelma Elita Colanzi and Phil McMinn (Eds.), Vol. 11036. Springer, 65–86.

[28] Sergey Mechtaev, Manh-Dung Nguyen, Yannic Noller, Lars Grunske, and Ab-
hik Roychoudhury. 2018. Semantic program repair using a reference imple-
mentation. In Proceedings of the 40th International Conference on Software Engi-
neering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, Michel Chau-
dron, Ivica Crnkovic, Marsha Chechik, and Mark Harman (Eds.). ACM, 129–139.
https://doi.org/10.1145/3180155.3180247

[29] Martin Monperrus. 2017. Automatic Software Repair: a Bibliography. Technical
Report. 1–24 pages. https://doi.org/10.1145/3105906

[30] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. 2015. An Analysis of
Patch Plausibility and Correctness for Generate-and-validate Patch Generation
Systems (ISSTA). 24–36.

[31] Abhik Roychoudhury and Yingfei Xiong. 2019. Automated program repair: a step
towards software automation. Sci. China Inf. Sci. 62, 10 (2019), 200103:1–200103:3.
https://doi.org/10.1007/s11432-019-9947-6

[32] Ripon K. Saha, Yingjun Lyu, Hiroaki Yoshida, and Mukul R. Prasad. 2017. ELIXIR:
Effective Object Oriented Program Repair. In ASE. IEEE Press. http://dl.acm.org/
citation.cfm?id=3155562.3155643

[33] Seemanta Saha, Ripon K. Saha, and Mukul R. Prasad. 2019. Harnessing evolution
for multi-hunk program repair. In Proceedings of the 41st International Confer-
ence on Software Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019,
Joanne M. Atlee, Tevfik Bultan, and Jon Whittle (Eds.). IEEE / ACM, 13–24.

[34] Edward K Smith, Earl T Barr, Claire Le Goues, and Yuriy Brun. 2015. Is the
cure worse than the disease? overfitting in automated program repair. In FSE.

https://github.com/SerVal-DTF/FL-VS-APR/tree/master/kPAR
https://doi.org/10.1145/3360585
https://doi.org/10.1145/3106740
https://doi.org/10.1145/3106740
https://doi.org/10.1109/TSE.2017.2755013
https://doi.org/10.1109/TSE.2017.2755013
https://doi.org/10.1109/ASE.2015.60
https://doi.org/10.1109/SANER.2016.76
https://doi.org/10.1145/3106237.3106253
https://doi.org/10.1145/3106237.3106253
https://doi.org/10.1145/2884781.2884872
https://doi.org/10.1145/2884781.2884872
https://doi.org/10.1145/2931037.2948705
https://doi.org/10.1145/3180155.3180247
https://doi.org/10.1145/3105906
https://doi.org/10.1007/s11432-019-9947-6
http://dl.acm.org/citation.cfm?id=3155562.3155643
http://dl.acm.org/citation.cfm?id=3155562.3155643

, , Jingjing Liang, Ruyi Ji, Jiajun Jiang, Yiling Lou, Yingfei Xiong, and Gang Huang

532–543.
[35] Shin Hwei Tan, Hiroaki Yoshida, Mukul R Prasad, and Abhik Roychoudhury.

2016. Anti-patterns in Search-Based Program Repair. In FSE. https://doi.org/10.
1145/2950290.2950295

[36] Yida Tao, Jindae Kim, Sunghun Kim, and Chang Xu. 2014. Automatically Gener-
ated Patches As Debugging Aids: A Human Study. In FSE. 64–74.

[37] Yida Tao, Jindae Kim, Sunghun Kim, and Chang Xu. 2014. Automatically gener-
ated patches as debugging aids: a human study. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering, (FSE-
22), Hong Kong, China, November 16 - 22, 2014, Shing-Chi Cheung, Alessandro
Orso, and Margaret-Anne D. Storey (Eds.). ACM, 64–74.

[38] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009.
Automatically finding patches using genetic programming. In ICSE. 364–374.
https://doi.org/10.1109/ICSE.2009.5070536

[39] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. 2018.
Context-Aware Patch Generation for Better Automated Program Repair. In ICSE.

[40] M. White, M. Tufano, M. Martinez, M. Monperrus, and D. Poshyvanyk. 2017.
Sorting and Transforming Program Repair Ingredients via Deep Learning Code
Similarities. ArXiv e-prints (July 2017). arXiv:cs.SE/1707.04742

[41] Qi Xin and Steven Reiss. 2017. Identifying Test-Suite-Overfitted Patches through
Test Case Generation. In ISSTA. 226–236. https://doi.org/10.1145/3092703.3092718

[42] Qi Xin and Steven P. Reiss. 2017. Leveraging Syntax-related Code for Automated
Program Repair (ASE). http://dl.acm.org/citation.cfm?id=3155562.3155644

[43] Yingfei Xiong, Xinyuan Liu, Muhan Zeng andz Lu Zhang, and Gang Huang. 2018.
Identifying patch correctness in test-based program repair. In Proceedings of the
40th International Conference on Software Engineering, ICSE 2018, Gothenburg,
Sweden, May 27 - June 03, 2018, Michel Chaudron, Ivica Crnkovic, Marsha Chechik,
and Mark Harman (Eds.). ACM, 789–799.

[44] Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang Huang,
and Lu Zhang. 2017. Precise Condition Synthesis for Program Repair. In ICSE.
https://doi.org/10.1109/ICSE.2017.45

[45] Jifeng Xuan, Matias Martinez, Favio Demarco, Maxime Clément, Sebastian Lame-
las, Thomas Durieux, Daniel Le Berre, and Martin Monperrus. 2017. Nopol:
Automatic Repair of Conditional Statement Bugs in Java Programs. TSE (2017).

[46] Jinqiu Yang, Alexey Zhikhartsev, Yuefei Liu, and Lin Tan. 2017. Better Test Cases
for Better Automated Program Repair. In FSE. 831–841. https://doi.org/10.1145/
3106237.3106274

[47] Zhongxing Yu, Matias Martinez, Benjamin Danglot, Thomas Durieux, and Martin
Monperrus. 2017. Test Case Generation for Program Repair: A Study of Feasibility
and Effectiveness. CoRR abs/1703.00198 (2017).

https://doi.org/10.1145/2950290.2950295
https://doi.org/10.1145/2950290.2950295
https://doi.org/10.1109/ICSE.2009.5070536
http://arxiv.org/abs/cs.SE/1707.04742
https://doi.org/10.1145/3092703.3092718
http://dl.acm.org/citation.cfm?id=3155562.3155644
https://doi.org/10.1109/ICSE.2017.45
https://doi.org/10.1145/3106237.3106274
https://doi.org/10.1145/3106237.3106274

	Abstract
	1 Introduction
	2 Approach
	2.1 Overview
	2.2 Preparing Stage
	2.3 Interactive Stage

	3 Eclipse Plugin
	4 Evaluation
	4.1 Simulation Experiment
	4.2 User Study

	5 Threats to Validity
	6 Related Work
	6.1 Interactive Repair
	6.2 Interactive Debugging
	6.3 Patch Correctness Identification
	6.4 Effect of Patches

	7 Conclusion
	References

