
Task-Oriented API Usage Examples Prompting Powered By
Programming Task Knowledge Graph

Jiamou Sun
Australia National University

Canberra, Australia
u5871153@anu.edu.au

Zhenchang Xing
Australia National University

Canberra, Australia
Zhenchang.Xing@anu.edu.au

Xin Peng
Fudan University
Shanghai, China

pengxin@fudan.edu.cn

Xiwei Xu
Data61, CSIRO

Sydney, Australia
Xiwei.Xu@data61.csiro.au

Liming Zhu
CSIRO’s Data61 & School of CSE,

UNSW
Sydney, Australia

Liming.Zhu@data61.csiro.au

Abstract
Programming tutorials are often created to demonstrate program-
ming tasks with code examples. However, our study of Stack Over-
flow questions reveals the low utilization of high-quality program-
ming tutorials, which is caused task description mismatch and code
information overload. Document search can find relevant tutorial
documents, but they often cannot find specific programming ac-
tions and code solutions relevant to the developers’ task needs. The
recently proposed activity-centric search over knowledge graph
supports direct search of programming actions, but it has limita-
tions in action coverage, natural language based task search, and
coarse-grained code example recommendation. In this work, we
enhance action coverage in knowledge graph with actions extracted
from comments in code examples and more forms of activity sen-
tences. To overcome the task description mismatch problem, we
develop a code matching based task search method to find relevant
programming actions and code examples to the code under develop-
ment. We integrate our knowledge graph and task search method
in the IDE, and develop an observe-push based tool to prompt devel-
opers with task-oriented API usage examples. To alleviate the code
information overload problem, our tool highlights programming
action and API information in the prompted tutorial task excerpts
and code examples based on the underlying knowledge graph. Our
evaluation confirms the high quality of the constructed knowledge
graph, and show that our code matching based task search can
recommend effective code solutions to programming issues asked
on Stack Overflow. A small-scale user study demonstrates that our
tool is useful for assisting developers in finding and using relevant
programming tutorials in their programming tasks.

1 Introduction
To help API users, API developers often provide programming tuto-
rials that document important programming tasks that their APIs
support and demonstrate how to accomplish the tasks using code
examples. Figure 1(a) and Figure 1(c) shows the programming tuto-
rials in Android Developer Guides for two Android programming
tasks. The code examples in the tutorials illustrate the typical API
usage scenarios for the tasks. Such programming tutorials provide
high-quality task-oriented knowledge to learn typical API usage
scenarios. However, the utilization of the provided tutorial knowl-
edge in programming tasks is not satisfactory.

Sun et al. [10] investigated 20 top-viewed Android how-to ques-
tions on Stack Overflow. They found that for 16 out of these 20
questions, their accepted answers either excerpt or paraphrase the
content in the tutorials in Android Developer Guides. Unfortunately,
for 8 of these 16 questions, the question askers tried to find solu-
tions in the Android tutorials but failed. This difficulty was not just
the problem of several question askers, but may potentially affect
millions of developers (estimated by the large view count of these
16 questions). We conduct a new formative study (see Section 2) to
further understand the utilization of API usage examples in tutorials
in real-world programming tasks and the barriers to effective use
of API usage examples. Our study involves 20 top-viewed Android-
tagged questions (see Table 1), including 1 question from [10] and
19 other questions, in which developers fail to use certain Android
APIs to accomplish their tasks. Two investigated questions (Q9/Q14)
are shown in Figure 1(b) and Figure 1(d).

Our study confirms the low utilization of API usage examples
in Android Developer Guides by the question askers, even though
Android Developer Guides contain effective code solutions to 19 in-
vestigated questions, as excerpted or referenced in the best answers
of these questions. We identify two major barriers to effective use
of API usage examples. First, task mismatch. The tutorials have only
a set of programming tasks pre-defined by API developers, which
is impossible to cover the API users’ task needs in the wild. For
example, Android Developer Guides do not have an explicit task
for “create dialog without title” that Q9 asks on Stack Overflow.
As shown in Figure 1(b), Q9 has been viewed 217k times (as of 30
April, 2020). Second, code information overload. As illustrated in the
code examples in Figure 1(a) and Figure 1(c), the code examples
often contain much irrelevant information, in addition to the code
solutions to the specific issues that API users encounter, .

Our study also shows that document search (e.g., Google) can
usually return relevant tutorial pages for the queries composed
from the question titles, but, more often than not, it cannot identify
the most relevant programming actions and code lines in (usu-
ally long) tutorial pages. Sun et al. [10] develop a programming
task knowledge graph, which constitutes programming actions and
actions relationships extracted from program tutorials, for exam-
ple, the action “performing fragment transactions” in web page
heading, the action “preserve the previous state in the back stack”

ar
X

iv
:2

00
6.

07
05

8v
1

 [
cs

.S
E

]
 1

2
Ju

n
20

20

https://developer.android.com/guide

, Jiamou Sun, Zhenchang Xing, Xin Peng, Xiwei Xu, and Liming Zhu

(a) Showing a Dialog Fullscreen ... (b) How to create a Dialog without a title (c) Performing Fragment Transactions (d) Fragments backStack
Figure 1: Examples of Stack Overflow Questions (blue) and Tutorials in Android Developer Guides (green)

in textual description, and the parent-child relation between the
two actions in Figure 1(c). They develop knowledge graph based
task search by natural language queries. Although promising in
retrieving pertinent programming actions, our study shows that
the current approach in [10] has limitations in action coverage,
natural language based search method and coarse-grained code
example presentation, which make it ineffective in tackling the task
mismatch and code information overload barriers.

We further examine the code snippets posted in the questions,
the code solutions in the best answers, and the most relevant pro-
gramming actions and code lines in the tutorials referenced in the
best answers. We find that the knowledge graph approach can
overcome the task mismatch and code information overload bar-
riers, if we support the task search by matching the code under
development and the code examples in the tutorials, and extend
the knowledge graph with comment-level actions and code snip-
pets. Code matching can find relevant programming actions by the
key APIs involved in the developer’s code and the tutorial code
examples, no matter how different the tasks are described by the
developers and the tutorials, such as the Q3 and Q4 in Table 1 and
the tutorial page “Load Large Bitmaps Efficiently”. Comment-level
actions and code snippets have two benefits. First, they enrich the
knowledge graph with more fine-grained actions and code snippets
(see the examples in Figure 1(a) and Figure 1(c)). This increases the
likelihood to cover the API users’ tasks. Second, they can be used to
highlight steps involved in recommended code examples, and thus
mitigate code information overload (see an example in Figure 3).

Inspired by our formative study results, we enhance the knowl-
edge graph construction method in [10] from two perspectives.
First, we extract programming actions from comments in code ex-
amples in tutorials. Second, we link the duplicate actions from code
comments and textual description by a new duplication-action re-
lationship, such as “add the transaction to the back stack” in code
comment and “preserve the previous state in the back stack” in
the text preceding the code example in Figure 1(c). As a proof-of-
concept, we construct a programming task knowledge graph from
Android Developer Guides. This knowledge graph contains 23,918
programming actions and 4,050 code-example snippets. To advance
the utilization of API usage examples in tutorials, we integrate
the enhanced programming task knowledge graph in the IntelliJ
IDE. We develop an IDE plugin (called CueMeIn) that saliently an-
alyzes the code in a method under editing, and prompt relevant
programming actions and code examples in tutorials to the devel-
oper. Figure 3 shows a screenshot of our tool’s recommendation for
the code in the question in Figure 1(b). The developer can explore

the recommended actions and their parent/children/sibling actions
in the Task Hierarchy panel, and inspect the tutorial excerpts and
code examples of the programming actions (with key action and
API information highlighted) in the Task Details panel.

By a statistical sampling method [8], we confirm that the accu-
racy of various extracted action information is 79% or above. To
evaluate the effectiveness of our API usage examples prompting,
we investigate if our tool can recommend code examples for solving
the 20 Stack Overflow questions in our formative study, given the
code snippets posted in these questions. Our results show that for
15 out of the 20 questions, our tool recommends the code examples
that contain effective code solutions mentioned in the best answers
to the questions. To validate the usefulness of our tool, we conduct
a user study involving 12 Master students recruited in our school
and 6 bug-fixing tasks derived from Stack Overflow questions. The
user study results show that our tool helps developers find and
use relevant code examples in tutorials faster and more effectively,
compared with regular IDE support and document search.

In this work, we make following contributions:
• We conduct a formative study to understand the utilization
of API usage examples in tutorials, the barriers to effective
use and the limitation of existing search methods.

• We address the identified barriers by an enhanced program-
ming task knowledge graph, the code-matching based task
search, and the prompting of task-oriented API usage exam-
ples in the IDE based on the knowledge graph.

• We evaluate the quality of the constructed knowledge graph
and the effectiveness and usefulness of our tool.

2 Formative Study
We conduct a formative study of Stack Overflow questions to in-
vestigate the following three research questions:
• RQ1:Can developers effectively find and use API usage examples
in tutorials?

• RQ2: What are the barriers to the effective use of API usage
examples in tutorials?

• RQ3: Can document search or activity-centric search [10] over-
come these barriers?

2.1 Study Setup
We select 20 Stack Overflow questions for detailed analysis. One
author performs the analysis as described below, and the other au-
thor validates the analysis results. The disagreements are discussed
by all co-authors to reach the consensus.
2.1.1 Question Selection The Question column in Table 1 sum-

marizes the 20 selected questions. Due to the space limitation, we

https://developer.android.com/guide/topics/ui/dialogs#FullscreenDialog
https://stackoverflow.com/questions/2644134/android-how-to-create-a-dialog-without-a-title
https://developer.android.com/guide/components/fragments.html#Transactions
https://stackoverflow.com/questions/14354885/android-fragments-backstack
https://developer.android.com/guide

Task-Oriented API Usage Examples Prompting Powered By Programming Task Knowledge Graph ,

Table 1: Formative Study Results (RQ1 and RQ2) (Refer to Section 2.1.1 and Section 2.1.2 for the explanation of acronyms)

Stack Overflow Question Tutorial Page Linked in Best Answer

1.How to display Toast in Android? [Attempt=No] Toasts overview [KS=Mod, 6RCL, 17TCL, 2RCB, 4TCB]
2.Can’t create handler inside thread that has not called ... [Attempt=No] Communicate with the UI [KS=Same, 17RCL, 96TCL, 4RCB, 6TCB]
3.Strange out of memory issue while loading an image to a ... [Attempt=No] Loading Large Bitmaps [KS=Same, 18RCL, 32TCL, 3RCB, 4TCB]
4.Android:java.lang.OutOfMemoryError:Failed to allocate a ... [Attempt=No] Loading Large Bitmaps [KS=Alter, 18RCL, 32TCL, 3RCB, 4TCB]
5.How to read value from string.xml in android [Attempt=No] String resources [KS=Same, 5RCL, 76TCL, 5RCB, 12TCB]
6.How do I get the SharedPreferences from a PreferenceActi ... [Attempt=Yes] Data and file storage overview [KS=BG, 0RCL, 0TCL, 0RCB, 0TCB]
7.set height and width of Custom view programmatically [Attempt=No] Fully Customized Components [KS=BG, 0RCL, 0TCL, 0RCB, 0TCB]
8.Same Navigation Drawer in different Activities [Attempt=Yes] Add a navigation drawer [KS=Alter, 10RCL, 90TCL, 2RCB, 12TCB]
9.How to create a Dialog without a title? [Attempt=No] Dialogs [KS=Mod, 1RCL, 176TCL, 1RCB, 3TCB]
10.Write a file in external storage in Android [Attempt=No] Data and file storage overview [KS=BG, 0RCL, 0TCL, 0RCB, 0TCB]
11.showDialog deprecated. What’s the alternative? [Attempt=Yes] Fragments[KS=BG. 0RCL, 152TCL, 0RCB, 14TCB]
12.How to solve java.lang.OutOfMemoryError trouble in ... [Attempt=No] Manage your app’s memory [KS=Mod, 24RCL, 31TCL, 2RCB, 2TCB]
13.How it work - requestLocationUpdates() + LocationRequest ... [Attempt=Yes] Build location-aware apps [KS=BG, 0RCL, 0TCL, 0RCB, 0TCB]
14.Android: Fragments backStack [Attempt=No] Fragments [KS=Same, 5RCL, 152TCL, 1RCB, 14TCB]
15.how to set imageview src? [Attempt=No] Accessing resources in code [KS=Same, 2RCL, 2TCL, 1RCB, 1TCB]
16.CertPathValidatorException : Trust anchor for certificate ... [Attempt=No] Unknown certificate [KS=Same, 24RCL, 24TCL, 1RCB, 1TCB]
17.SharedPreferences.onSharedPreferenceChangeListener ... [Attempt=No] Settings [KS=BG, 0RCL, 16TCL, 0RCB, 12TCB]
18.Activity lifecycle - onCreate called on every re-orientation [Attempt=No] Handle configuration [KS=Alter, 7RCL, 9TCL, 1RCB, 1TCB]
19.Fool-proof way to handle Fragment on orientation change [Attempt=No] Fragments [KS=Mod, 14RCL, 152TCL, 1RCB, 14TCB]
20.How to call Activity from a menu item in Android? [Attempt=No] Menus [KS=Mod, 21RCL, 62TCL, 2RCB, 11TCB]

show only some keywords in question titles. Readers can click the
links to visit the questions on Stack Overflow. In this work, we limit
this study to android-tagged questions. As our study focuses on API
usage issues and solutions, we consider only the questions whose
question bodies contain non-XML code fragments and optionally
stack traces. Furthermore, to investigate the use of tutorial knowl-
edge in solving API usage issues, we examine the questions whose
best (i.e., accepted or most up-voted) answers contain URL link(s)
to some web page(s) in Android Developer Guides. We examine
the questions by the descending order of their view counts. We
read the question and answer contents and select the top-20 ranked
questions that discuss Android API usage issues and solutions.
2.1.2 The Analysis to Answer RQ1 and RQ2 The analysis results

are summarized in the columns Question and Tutorial Page Linked
in Best Answer in Table 1. For each question, we check if the ques-
tion asker describes some attempt to solve the issue with the knowl-
edge in Android Developer Guides (Attempt=Yes or No), for exam-
ple, by referencing some tutorial page content in the question, or
mentioning some search of tutorial website.

We visit each tutorial page linked in the best answer of the
question. For each linked page, we count the number of non-XML
code blocks (Total Code Block or TCB) (tagged by<devsite-code> in
Android Developer Guides) in the page and the total number of non-
comment code lines (Total Code Line or TCL) in code blocks. We
examine the Knowledge Support (KS) provided by the tutorial page,
specifically, if the tutorial page contains some code examples that
can solve the issue in the question (e.g., the examples in Figure 1),
or contains only some background knowledge relevant to the issue.
In the former case, we further examine if the solution in the best
answer is the same as (KS=Same), modified from (KS=Mod) or an
alternative to (KS=Alter) the code solution in the tutorial page. We
count the number of non-XML code blocks in the page that contain
the code solution (Related Code Block or RCB) and the number of
non-comment code lines related to the code solution (Related Code
Line or RCL). In the latter case, we mark KS=BG.

2.1.3 The Analysis to Answer RQ3 The analysis results are pre-
sented in the columns Google Search and Activity-Centric Search
in Table 2. For each question, we select some keywords in the
question title, such as those in bold font in Table 1. We formulate
queries using the selected keywords and their synonyms (e.g., “di-
alog without title” and “remove dialog title” for Q9) for Google
search and activity-centric search. For each question, we trial up to
three queries and record the best search result.

We use Google to search the pages in the Android Developer
Guides. If a tutorial page in the top 10 search results is linked in the
best answer, we consider Google can find relevant page (RelPage)
to the question. We further examine if the search result snippet
contains solution-specific content excerpt from the relevant tutorial
page. If so, we consider Google can find solution-specific hints
(SSHint). We also search the original programming task knowledge
graph by activity-centric search developed in [10]. Activity centric
search returns answer snippets consisting of relevant programming
actions and code examples to the query. We examine the top-10
answer snippets: if an answer snippet contains solution-specific
programming action and code example (SSAction), or just contains
some relevant programming action (RelAction). NoRel indicates no
relevant actions in the top-10 answer snippets.
2.2 RQ1: Utilization of API Usage Examples
Only 4 question askers (Q6/Q8/Q11/Q13) described some attempt
to find solutions to their programming issues in Android Developer
Guides. As their attempts failed to find solutions, they asked the
questions on Stack Overflow. However, there is only one question
(Q11) that really does not have the solution in Android Developer
Guides. Q11 asks for the alternative to an deprecated API. This type
of API knowledge is usually described in API reference, but not in
programming tutorials. For the rest 19 questions, their solutions
can all be found in Android Developer Guides.

In fact, for 6 of these 19 questions (Q2/Q3/Q5/Q14/Q15/Q16), the
best answers simply excerpt the code solutions in the referenced
tutorial pages (KS=Same). For 5 questions (Q1/Q9/Q12/Q19/Q20),

https://stackoverflow.com/questions/3500197
https://developer.android.com/guide/topics/ui/notifiers/toasts.html
https://stackoverflow.com/questions/3875184
https://developer.android.com/training/multiple-threads/communicate-ui.html
https://stackoverflow.com/questions/477572
https://developer.android.com/topic/performance/graphics/load-bitmap
https://stackoverflow.com/questions/32244851
https://developer.android.com/topic/performance/graphics/load-bitmap
https://stackoverflow.com/questions/2183962
https://developer.android.com/guide/topics/resources/string-resource.html
https://stackoverflow.com/questions/2614719
https://developer.android.com/training/data-storage#pref
https://stackoverflow.com/questions/5042197
http://developer.android.com/guide/topics/ui/custom-components.html#custom
https://stackoverflow.com/questions/19451715
https://developer.android.com/guide/navigation/navigation-ui#add_a_navigation_drawer
https://stackoverflow.com/questions/2644134
https://developer.android.com/guide/topics/ui/dialogs.html#CustomDialog
https://stackoverflow.com/questions/8330276
https://developer.android.com/training/data-storage#filesExternal
https://stackoverflow.com/questions/10285047
https://developer.android.com/guide/components/fragments
https://stackoverflow.com/questions/25719620
https://developer.android.com/topic/performance/memory.html
https://stackoverflow.com/questions/16898675
https://developer.android.com/training/location/index.html
https://stackoverflow.com/questions/14354885
https://developer.android.com/guide/components/fragments.html
https://stackoverflow.com/questions/6369103
https://developer.android.com/guide/topics/resources/providing-resources#ResourcesFromCode
https://stackoverflow.com/questions/29273387
https://developer.android.com/training/articles/security-ssl.html#UnknownCa
https://stackoverflow.com/questions/2542938
https://developer.android.com/guide/topics/ui/settings.html#Listening
https://stackoverflow.com/questions/7618703
https://developer.android.com/guide/topics/resources/runtime-changes.html
https://stackoverflow.com/questions/13305861
https://developer.android.com/guide/components/fragments.html
https://stackoverflow.com/questions/4169714
https://developer.android.com/guide/topics/ui/menus.html

, Jiamou Sun, Zhenchang Xing, Xin Peng, Xiwei Xu, and Liming Zhu

the best answers modify the code solutions in the referenced tuto-
rial pages (KS=Mod) to fit the question contexts. For 3 questions
(Q4/Q8/Q18), the best answers reference the tutorial pages that pro-
vide alternative solutions (KG=Alter) to the solutions in the answers.
For 5 questions (Q6/Q7/Q10/Q13/Q17), although the tutorial pages
referenced in the best answers provide only background knowledge
(KS=BG), our CueMeIn tool finds code examples in other tutorial
pages (see Table 2) that can solve Q6/Q10/Q13/Q17.

The 20 questions have minimum view count 76k, maximum 1
million and median 148k. That is, a large number of developers may
encounter the similar issues. Although Stack Overflow provides a
proxy to code examples in tutorials to fix these issues, the direct
utilization of the code examples in tutorials is low. In fact, some
answerers point out this low utilization issue. For example, one
user comments on Q3 that “This happens when you don’t read the
Android developer guides”.
2.3 RQ2: Barrier to Effective Use
We identify two major barriers to effective use of API usage exam-
ples: task mismatch and code information overload.
2.3.1 Task Mismatch For the 19 questions that have code so-

lutions in Android Developer Guides, there are only 6 questions
whose question titles are somewhat similar to the descriptions of
relevant programming actions in the tutorials, such as the title
“How to display Toast in Android” of Q1 and the action “Display
the Toast” in the tutorial page Toasts Overview.

API developers cannot define tutorial tasks for all possible API
usage scenarios. For example, Android Developer Guides do not
have a task for “create dialog without title” as Q9 needs. As shown
in Figure 1(a), the API usage for “create dialog without title” is part
of the code example for the task “show a dialog fullscreen ...” which
has no similarity to the Q9’s title. As another example, Q3 and Q4
have different task contexts: Q3 wants to load image into ListView,
while Q4 wants to compress the image. Despite of the different task
contexts, the core issue of the two questions are the same, i.e., how
to load large image efficiently. Although the relevant code solution
is discussed in the tutorial “Load Large Bitmaps Efficiently”, it is
not presented in the tasks similar to Q3 and Q4.
2.3.2 Code Information Overload Our analysis shows that there

are usually multiple code blocks (TCB) in the referenced tutorial
pages and these code blocks may contain tens or hundreds of non-
comment code lines (TCL). However, it is often the case that only
a small number of code lines in some code blocks is relevant to
solving a particular programming issue. For the tutorial pages that
have large numbers of code blocks and/or lines of code, such as
Q2/Q5/Q8/Q9/Q14/Q19/Q20, it is not easy to spot such most rel-
evant code. For example, the referenced tutorial page Dialogs for
Q9 has 3 code blocks with 176 lines of code. But only 1 line of code
in 1 code block is the code solution to the Q9 (see Figure 1(a)). In
fact, the value of Stack Overflow answers is to distill such most
relevant code solutions for the questions. For example, for 11 of the
20 questions we investigate, their best answers excerpt the impor-
tant information from the tutorial, summarize key programming
actions, and show the key code lines with concise description.
2.4 RQ3: How to Overcome the Barriers?
As shown in Table 2, Google search finds relevant tutorial pages
(RelPage) for 19 questions. For 8 of these 19 questions, the search

result snippet of the relevant page contains solution-specific content
excerpt (SSHint). For example, Google returns the Dialog page for
the query “dialog without title” for Q9. The search result snippet
includes the code comment “... you can remove the dialog title ...” in
the code example in the Dialog page. Such solution-specific content
could mitigate code information overload. However, developers
still need to manually search the solution-specific content in the
tutorial page in order to find the code solution in the page. For the
other 11 questions, developers have to read lengthy tutorial pages
to find relevant code solutions in them.

Activity-centric search over knowledge graph [10] finds pro-
gramming actions that contain code solutions for 6 questions (SSAc-
tion), and relevant programming action for one question (RelAc-
tion). The failure of activity-centric search for the rest 13 questions
is because the underly knowledge graph does not contain relevant
programming actions. We find that the action coverage can be im-
proved by adding comment-level actions in code examples to the
knowledge graph. Some actions in code comments, such as “add
the transaction to the back stack” in Figure 1(c) duplicate actions
explained in text, but many other actions, such as “remove dialog
title” in Figure 1(a) and “create new fragment and transaction” in
Figure 1(c) represents fine-grained API usage scenarios that have
not been explicitly defined as programming tasks in the tutorials.
Another improvement is to find code solutions by matching the
code under development and the code examples in programming
tutorials. This is because code matching relies on the key APIs
involved in the developer’s code and the tutorial code examples,
rather than natural language descriptions of programming tasks.

Another important limitation is the search results presentation.
In the current knowledge graph, a whole code example is linked to
an action or a set of sibling actions immediately preceding the code
example.When there is no such preceding action(s), it links the code
example to the parent action. Although this heuristic is effective in
linking code examples to relevant actions, it does not consider the
smaller code fragments in a code example, which often correspond
to more fine-grained API usage scenarios. As shown in Figure 1,
it is often the case that only some parts of the code examples of
relevant programming actions are relevant to the developer’s need.
However, it may not be easy to spot the most relevant parts of the
code examples, especially when the code examples are long.
The utilization of API usage examples in the tutorials is low due to
two major barriers: task mismatch and code information overload.
Although document search is effective in finding relevant docu-
ments, it cannot effectively find programming actions and code
examples. Although the knowledge graph supports direct search of
programming actions, the existing knowledge graph approach [10]
has limitations in action coverage, natural language based search
method, and coarse-grained code example recommendation.

3 Approach
To address the limitations of existing document search and activity-
centric search [10], we enhance the knowledge graph with more
actions and finer-grained code fragments (Section 3.1), support
task search by matching the code under development and the code
examples in tutorials (Section 3.2), and prompt the developer with
informative programming actions and code examples relevant to
the code under development (Section 3.3).

https://developer.android.com/guide/topics/ui/notifiers/toasts.html#Basics
https://developer.android.com/guide/topics/ui/dialogs.html

Task-Oriented API Usage Examples Prompting Powered By Programming Task Knowledge Graph ,

Table 2: Formative Study Results (RQ3) (Refer to Section 2.1.3 for the explanation of acronyms) and Recommendations by Our CueMeIn Tool
(Refer to Section 4.2 for the explanation of acronyms)

Ques- Google Activity CueMeIn
tions Search Search [10] Recommendation

Q1 SS-Hint SSAction Display the login prompt [Rank-1, Input=AllCode, TaskRel=No, CommentAns=No]
Q2 SSHint SSAction Calling an IPC method [Rank-1, Input=KeyAPI, TaskRel=No, CommentAns=No]
Q3 RelPage NoRel Decode a scaled Bitmaps [Rank-1, Input=KeyAPI, TaskRel=Related, CommentAns=Rank-2]
Q4 RelPage SSAction Decode a scaled Bitmaps [Rank-2, Input=AllCode, TaskRel=Related, CommentAns=HL]
Q5 RelPage NoRel Read BLE attributes [Rank-2, Input=AllCode, TaskRel=No, CommentAns=No]
Q6 SSHint SSAction Consume XML data [Rank-1, Input=KeyAPI, TaskRel=No, CommentAns=Rank-3]
Q7 NoRel NoRel -
Q8 RelPage NoRel -
Q9 SSHint NoRel Showing a Dialog Fullscreen [Rank-2, Input=AllCode, TaskRel=Subtask, CommentAns=HL]
Q10 RelPage NoRel Capturing pictures [Rank-2, Input=AllCode, TaskRel=No, CommentAns=No]
Q11 RelPage NoRel -
Q12 RelPage NoRel -
Q13 SSHint RelAction Make a location request [Rank-1, Input=KeyAPI, TaskRel=Subtask, CommentAns=No]
Q14 SSHint SSAction managing multiple fragments [Rank-1, Input=AllCode, TaskRel=No, CommentAns=HL]
Q15 SSHint SSAction Create drawables app [Rank-3, Input=AllCode, TaskRel=Related, CommentAns=No]
Q16 RelPage NoRel Unknown certificate [Rank-1, Input=AllCode, TaskRel=Same, CommentAns=Rank-2]
Q17 SSHint NoRel Implement a preference [Rank-1, Input=AllCode, TaskRel=No, CommentAns=Rank-2]
Q18 RelPage NoRel -
Q19 RelPage NoRel Example [Rank-2, Input=AllCode, TaskRel=Subtask, CommentAns=HL]
Q20 RelPage NoRel Using checkable menu [Rank-1, Input=AllCode, TaskRel=Subtask, CommentAns=No]

Figure 2: Knowledge Graph for the Tutorial Page in Figure 1(c)

3.1 Enhancing Knowledge Graph
Our approach extends the programming task knowledge graph and
the knowledge graph construction method in [10].
3.1.1 Knowledge Graph Schema and Construction Method As

illustrate in Figure 2, in the programming task knowledge graph
proposed in [10], entities are programming actions. An action can
be decomposed into sub-actions, which forms an action hierarchy.
In addition to the hierarchical (i.e., parent-child) relationships be-
tween an action and its sub-actions, there are two more types of
action relationships: descriptive sibling (a sibling action mentioned
immediately before another sibling action), and preceding-following
(sibling actions with clear step indicators). An action has a verb
phrase including an action verb and an object, and may have the
following attributes: 1) API involved in the action; 2) locationwhere
the action occurs; 3) condition to satisfy for performing the action;
4) goal that the action achieves; 5) code demonstrating the action.

The construction method include: action extraction, attribution
extraction and relation extraction. As annotated in Figure 1(c), ac-
tions are extracted from document headings and textual descrip-
tions. To overcome the rigidity of pre-defined verb and noun lists [12],
a sentence classifier is trained to classify a sentence as activity or

non-activity sentence. An activity sentence is parsed to obtain Part-
of-Speech (POS) tags using natural language processing tools (e.g.,
CoreNLP [6] or Spacy [3]). Action verb phrase are then extracted
from the sentence based on the POS tag patterns developed in [14],
APIs and code snippets are extracted by the tags used to anno-
tate APIs and code snippets in the tutorial documents, and other
action attributes are extracted keyword patterns. Hierarchical rela-
tionships are extracted from document structures, precede-follow
relationships are determined by the explicit step indicators (e.g.,
 tag), and descriptive sibling relationships are determined by
the actions’ mention order in the sentence.

3.1.2 Our Extensions We adopt the original knowledge graph
schema and add one more type of action relationship - duplicate
action. We adopt the original knowledge graph constructionmethod
andmake the following three extensions to improve action coverage
and increase fine-grained code snippets in the knowledge graph.

First, we consider comments in code examples as an additional
source of programming actions. Code comments are more action
intensive than tutorial text, because code comments usually explain
what some code is intended to do. In contrast, tutorial text often
has to explain much background knowledge beyond the actions
to do. One issue with the actions in code comments is that they
may repeat the actions already explained in tutorial text, but often
in different ways, such as the two pairs of duplication actions in
Figure 1(c). We train a BERT-based duplicate sentence classifier to
detect such duplicate action sentences. The classifier takes as input
one action sentence from the comment and one action sentence
from tutorial text under the same parent action, and predict whether
the two sentences are duplicate. If so, we add a duplicate relation
between the two actions, and link the code snippet of the comment
action to the duplicate action from tutorial text.

Second, we expand the form of activity sentences and the training
data for activity-sentence classifier. Sun et al. [10] considers only

https://stackoverflow.com/questions/3500197
https://developer.android.com/training/sign-in/biometric-auth#display-login-prompt
https://stackoverflow.com/questions/3875184
https://developer.android.com/guide/components/aidl#Calling
https://stackoverflow.com/questions/477572
https://developer.android.com/training/camera/photobasics#TaskScalePhoto
https://stackoverflow.com/questions/32244851
https://developer.android.com/training/camera/photobasics#TaskScalePhoto
https://stackoverflow.com/questions/2183962
https://developer.android.com/guide/topics/connectivity/bluetooth-le?hl=en#read
https://stackoverflow.com/questions/2614719
https://developer.android.com/training/basics/network-ops/xml#consume
https://stackoverflow.com/questions/5042197
https://stackoverflow.com/questions/19451715
https://stackoverflow.com/questions/2644134
https://developer.android.com/guide/topics/ui/dialogs.html#FullscreenDialog
https://stackoverflow.com/questions/8330276
https://developer.android.com/guide/topics/media/camera#capture-picture
https://stackoverflow.com/questions/10285047
https://stackoverflow.com/questions/25719620
https://stackoverflow.com/questions/16898675
https://developer.android.com/training/location/request-updates#updates
https://stackoverflow.com/questions/14354885
https://developer.android.com/guide/navigation/navigation-migrate#single_activity_managing_multiple_fragments
https://stackoverflow.com/questions/6369103
https://developer.android.com/guide/topics/graphics/drawables#drawables-from-images
https://stackoverflow.com/questions/29273387
https://developer.android.com/training/articles/security-ssl.html#UnknownCa
https://stackoverflow.com/questions/2542938
https://developer.android.com/training/basics/network-ops/managing#implement-preference-activity
https://stackoverflow.com/questions/7618703
https://stackoverflow.com/questions/13305861
https://developer.android.com/guide/components/fragments.html#Example
https://stackoverflow.com/questions/4169714
https://developer.android.com/guide/topics/ui/menus#checkable

, Jiamou Sun, Zhenchang Xing, Xin Peng, Xiwei Xu, and Liming Zhu

imperative sentences as activity sentences. However, we find that
many non-imperative sentences also describe programming actions,
often in the form of “you can/need/must ...”, for example “you can
remove the dialog title, but you must call the superclass to get
the Dialog”. However, not all sentences in this form are activity
sentences, for example “you can learn more about the other app
components”. We expand the training data for the activity-sentence
classifier, originally having 20,560 activity and 20,786 non-activity
sentences, with 2,250 activity and 3,594 non-activity sentences in
the new forms from tutorial text. We also expand the training
data with 230 activity and 230 non-activity sentences from code
comments, including both imperative sentences and new forms.

Third, we replace the BiLSTM (Bi-directional Long Short Term
Memory) based activity sentence classifier with the BERT-based
classifier. BERT (Bidirectional Encoder Representations from Trans-
formers [2]) is the state-of-the-art sentence embedding model. Fur-
thermore, the self-attention mechanism of BERT could learn better
embeddings in the presence of co-references in the sentence, such
as “one fragment” and “previous state” in “replace one fragment
with another, and preserve the previous state to the back stack”, or
“layout” and “it” in “create a layout and add it to an AlertDialog”.
3.2 Code Matching based Task Search
Different from activity search by natural language queries in [10],
our approach recommends relevant programming actions by match-
ing the code under development and the code examples associated
with programming actions. The underlying rationale is that pro-
gramming tasks may be described in different ways, but the key
APIs involved in the tasks and the programming issues develop-
ers may encounter could be the same or similar. Therefore, code
matching based task search helps to overcome the task mismatch
barrier faced by activity search by natural language queries.

In this work, we consider the code in a method currently being
edited as the code under development, denoted asCD . We denote a
code snippet associated with a programming action in the knowl-
edge graph asCA. As bothCD andCA can be partial or incompilable
code, we use the API recognition method proposed in [9] to iden-
tify the APIs used in the code. First, we crawl the APIs from the
official API reference website, for example, Android API reference
for Android APIs, and build an API dictionary. Given a code snip-
pet, we first selects a set of candidate APIs in the API dictionary
whose name matches some name in the code snippet. We then
use the context-based disambiguation mechanism proposed in [9]
to determine the most likely APIs used in the code snippet. This
context-based disambiguation mechanism essentially determines
unique APIs by filtering irrelevant candidate APIs based on code
elements co-occurring in the same file of the code snippet.

Let APICD and APICA be the set of APIs used in the code under
development CD and the code snippet in knowledge graph CA re-
spectively. The APIs can be classes, methods, fields and/or constant
values. The similarity ofCD andCA is measured by sim(CD ,CA) =
(λ1∗Match(APICD ,APICA)+λ2∗Unmatch(APICD ,APICA))/|APICA |.
Match(APICD ,APICA) counts the number of APIs a ∈ APICA that
are used in APICD .Unmatch(APICD ,APICA) counts the number of
APIs a ∈ APICA that are not used in APICD .

There are three variations points in this similarity computation.
First, we can letAPICD (orAPICA) contain specific APIs used in the

Figure 3: The User Interface of Our CueMeIn Tool

code, or abstract API methods/fields/constants to their declaring
classes. Using declaring classes of specific APIs would allow for
more generality for code matching, but may result in less specific
matching results. Second, we can let APICA be a set or a multiset
(i.e., bag). That is, we can consider just whether an API is used
or not in the code or how many times an API is used. API usage
times could be an indicator of the importance of an API in the code.
Third, we can consider only matched APIs (λ2 = 0 in this case)
or both matched and unmatched APIs. When searching for API
usage examples, considering unmatched APIs inAPICA would allow
for serendipitous discovery of API usage scenarios that developer
may not be aware of. However, we would like to guarantee certain
degree of matching between the code under development and the
code examples, while allowing for this serendipitous discovery.
Therefore, we give matched APIs more weight than unmatched
APIs. In this work, we set λ1 = 2 and λ2 = 1.

3.3 In-IDE API Usage Example Prompting
Different from the query-response paradigm in [10], we adopt an
observe-push paradigm to prompt developers with API usage ex-
amples while they are programming the code. This observe-push
paradigm can be integrated into the development environment. As
a proof of concept, we implement it in a plugin (called CueMeIn) of
the IntelliJ IDE. Figure 3 shows a screenshot of our plugin’s user
interface. CueMeIn saliently observes and analyzes the code in a
method that the developers is editing. When the developer pauses
the editing longer than an interval (5 second in current tool), Cue-
MeIn matches the code in the method under development with the
code snippets in the knowledge graph as described in Section 3.2.
The developer can also select some code lines or elements, which
also trigger the code matching. CueMeIn recommends the top-N
(N=3 in the current tool) code snippets with the highest scores and
the corresponding programming actions.

The recommended programming actions are shown in the Task
Hierarchy panel. CueMeIn does not simply show the recommended
programming actions in a list. Instead, it shows the ancestor actions
of a recommended action, up to the top-level task. In addition, it
shows other children actions of this top-level task. To avoid infor-
mation overload, CueMeIn expands only the hierarchical path from
the top-level task to the recommended programming action, but it
keeps all other actions collapsed. The recommended actions are un-
derlined and annotated with the rank positions. The developer can
expand or collapse any action nodes to explore the task hierarchy.

https://developer.android.com/reference/packages

Task-Oriented API Usage Examples Prompting Powered By Programming Task Knowledge Graph ,

Table 3: Performance of Activity Sentence Classification

Method Precision Recall F1 Score

BiLSTM (Original Data) 0.93 0.97 0.95

BERT (Original Data) 0.97 0.99 0.98

BiLSTM (Enriched Data) 0.94 0.97 0.95

BERT (Enriched Data) 0.97 0.99 0.98

When a programming action is selected, its corresponding tu-
torial excerpt will be displayed in the Task Description panel. The
action hierarchy is shown at the top of the panel. If the tutorial ex-
cerpt contains the recommended code snippets, this recommended
code snippet is shown in gray background. This helps to distin-
guish the recommended code snippet from other code blocks in the
tutorial description. To help the developer read and spot important
information, such as programming actions, APIs, goals, locations
in the task description, CueMeIn highlights action phrases and at-
tributes in the description based on the knowledge graph. It shows
in bold font the APIs in the tutorial code snippets that are men-
tioned in the tutorial text (e.g., DialogFragment). This helps the
developer spot relevant explanation of API usage. The plugin high-
lights in yellow background the APIs in the tutorial code snippets
that are used in the code under development. This helps the de-
veloper understand the correspondence between the code under
development and the code snippets in the tutorial.

In Figure 3, the code in createDialog() is under development,
corresponding to the code snippet in the question “how to create a
dialog without a title” in Figure 1(b). CueMeIn recommends three
relevant code examples associated with three programming actions.
The code solution that the question asker seeks for is in the code
example of the rank-2 action “showing a dialog full screen or as
an embedded fragment”. Although this action itself is irrelevant to
the issue the question asker tries to solve, the code example of this
action contains API usage example which can solve the issue. The
code solution is associated with the action “remove the dialog title”
in the code comment. The action highlight can help the developer
spot this code solution buried in other irrelevant code lines.
4 Evaluation
We conduct a set of experiments to investigate the following three
research questions:
• RQ4: What is the accuracy of action/attribute/relation extraction
for constructing knowledge graph?

• RQ5: How effective can code matching based task search recom-
mend code solutions to the programming questions?

• RQ6: How useful is our CueMeIn tool for helping developers
accomplish programming tasks?

4.1 RQ4: Accuracy of Information Extraction
We confirm the accuracy of our information extraction methods.
4.1.1 Accuracy of Activity Sentence Classification As discussed

in Section 3.1, we enrich the original dataset for activity sentence
classifier with new forms of activity sentences and sentences from
code comments. We also replace the original BiLSTM-based clas-
sifier with the state-of-the-art BERT-based classifier. We perform
10-fold cross-validation to confirm the accuracy of activity sentence
classification. As shown in Table 3, a classifier’s performance on

the original dataset and the enriched dataset has no difference. On
both datasets, BERT-based classifier outperforms BiLSTM-based
classifier. The differences of prediction results between BERT and
BiLSTM is statistically significant by T-test [1] at p-value< 0.05.
4.1.2 Accuracy of Duplicate Action Detection As discussed in

Section 3.1, we introduce a new duplicate-action relationship in the
knowledge graph, and infer duplicate actions in code comments and
tutorial text by a BERT-based duplicate sentence classifier. We label
968 pairs of comment-text duplication actions, with 484 positive and
negative pairs respectively. We perform 10-fold cross-validation to
confirm the accuracy of duplicate action detection. The duplicate
sentence classifier achieves 0.79 precision, 0.93 recall and 0.85 F1.
4.1.3 Accuracy of Action/Attribute/Relation Extraction We adopt

the same statistical sampling method [8] used in [10] to evalu-
ate the accuracy of the extracted actions, attributes and relations.
Specifically, we sample and examine the minimum number MIN
of data instances in order to ensure that the estimated accuracy is
in 5% error margin at 95% confidence level. MIN is determined by
n0/(1 + (n0 − 1)/populationsize) where n0 = (Z 2 ∗ 0.25)/e2, and Z
is the confidence level’s z-score and e is the error margin.

We extract 23,918 programming actions, including 2,959 from
document headings, 19,425 from tutorial text and 1,534 from code
comments. Compared with the 11,519 leaf actions extracted from
tutorial text [10], our knowledge graph contains 40% more leaf ac-
tions due to the consideration of code comments and new forms of
activity sentences. Consider the total 135,928 sentences in tutorial
text and 5,838 sentences in code comments, code comments are
more action intensive than tutorial text. We examine 376 actions
extracted from tutorial text and 307 actions extracted from code
comments. The accuracy of actions from tutorial text is 88.5%, with
the accuracy 96.0% and 93.1% for the identified action verbs and
objects. Compared with [10], the accuracy degrades about 3%. This
is because we consider non-imperative activity sentences which
involve new action phrase patterns. For actions from code com-
ments, the accuracy is 95.8%, with the accuracy 96.7% and 98.7%
for the identified action verbs and objects. The higher accuracy for
actions from code comments than those from tutorial text is due to
the imperative sentence structure often used in code comments.

For each type of action attribute, we examine 384 instances.
For actions from tutorial text, the extraction accuracy for the API,
location, condition, goal and code attributes are 87.5%, 82.6%, 96.0%,
93.2%, and 81.5%, respectively. For actions from code comments, we
examine the API, location, condition and goal attributes, as linking
a code fragment with actions from the preceding comment has no
errors according to the common code commenting practice. The
accuracy for API, location, condition and goal are 81.2%, 88.6%,
97.3%, and 95.0% respectively. These accuracy results are consistent
with the accuracy results reported in [10].

For each type of relations, we examine 384 instances. We achieve
the accuracy 95.8%, 86.4%, 91.7% for hierarchical, sibling and precede-
follow relations respectively, which are consistent with the re-
sults in [10]. We also examine 149 instances of newly introduced
duplicate-action relations. The accuracy is 78.5%. The erroneous
duplicate action relations are due to the false positive predictions
by the duplicate comment-text action sentence classifier.

, Jiamou Sun, Zhenchang Xing, Xin Peng, Xiwei Xu, and Liming Zhu

Table 4: Performance of Similarity Function

Settings
All-Code as Input Key-API as Input

Acc Pre Rec F1 Acc Pre Rec F1

A-B-U 0.55 0.400 0.250 0.308 0.75 0.550 0.381 0.450

A-S-U 0.55 0.383 0.250 0.303 0.75 0.533 0.381 0.445

A-B-M 0.55 0.350 0.244 0.288 0.70 0.450 0.363 0.402

A-S-M 0.55 0.383 0.245 0.299 0.75 0.500 0.367 0.424

C-B-U 0.55 0.383 0.250 0.303 0.75 0.517 0.337 0.436

C-S-U 0.55 0.400 0.252 0.310 0.75 0.533 0.380 0.444

C-B-M 0.55 0.367 0.244 0.293 0.75 0.483 0.367 0.417

C-S-M 0.55 0.400 0.250 0.308 0.75 0.533 0.377 0.442

Our open information extraction methods are accurate and can
construct high-quality knowledge graph.

4.2 RQ5: Effectiveness of Task Search
In this RQ, we analyze if the recommended code examples by our
approach contain code solutions for solving the programming ques-
tions on Stack Overflow, such as the examples in Figure 1.
4.2.1 Experiment Setup We consider all 20 questions investi-

gated in our formative study (see Section 2). We use the code snip-
pet that the question asker posts in the question body as the code
under development. As our current tool analyzes only the code
in a method, we test each method provided in the question body
one at a time. We assume two types of code input. First, we use all
code in the method for matching code examples. Second, we use
some issue API(s) in the code that are mentioned in the question
and/or best answer (e.g., requestLocationUpdates() in Q6) or appear
in the provided stack trace (e.g., BitmapFactory.decodeFile() in Q3)
for matching code examples. This key-API option simulates that
the developer selects some key code elements for recommendation.
All-code option can be regarded as a special case of key-API option,
in which all APIs in the code is selected.

We examine the top-3 code examples ranked by the code match-
ing similarity function in Section 3.2. If a code example contains
the code solution in the best answer of the question, we consider
this code example as an effective recommendation for solving the
question. We compute the top-3 accuracy (Acc) and precision (Pre).
Furthermore, we use the API(s) mentioned in the best answer to
find all code examples in our knowledge graph using these APIs.
We examine these code examples to identify all code examples that
contain code solution for the question. This allows us to compute
the recall (Rec) of top-3 recommended code examples. We also
compute F1 which is a harmonic mean of precision and recall.
4.2.2 Code Matching Similarity Computation As mentioned in

Section 3.2, our code matching similarity function has three varia-
tion points: specific APIs versus declaring Classes; Bag versus Set of
APIs; and considering Umatched APIs or considering only Matched
APIs. Therefore, we have 8 settings: A-B-U, A-S-U, A-B-M, A-S-M,
C-B-U, C-S-U, C-B-M, C-S-M.

Table 4 presents the average top-3 accuracy, precision, recall
and F1 over the 20 questions under these 8 settings. For all-code as
input, the top-3 accuracy is 0.55 for all similarity function settings.
That is, for 11 out of the 20 questions, our approach can recommend

at least one code example containing effective code solution in the
top-3 recommended code examples. For key-API as input, the top-3
accuracy is 0.75 for all similarity function settings (i.e., at least one
effective recommendation in the top-3 recommended code examples
for 15 out of the 20 questions) Different code matching settings
affect the rankings of specific code examples, which result in certain
variations in precision, recall and F1. Considering the high top-3
accuracy, these ranking variations would not significantly affect
the developer’s use of the recommended code examples. Overall,
considering unmatched APIs is beneficial than considering only
matched APIs. Matching by bag of APIs (i.e., considering API usage
times) is not beneficial than matching by set of APIs. When the
other two settings are the same, matching by declaring classes is in
general on-par with or better than matching by specific APIs.
4.2.3 Detailed Analysis of Recommended Code Examples The

column CueMeIn Recommendation in Table 2 summarizes the rec-
ommendation results by our approach for the 20 questions under
the code matching setting A-B-U. For each question, it lists the pro-
gramming action in the first effective recommendation. Rank-x is
the rank of this recommendation. Input=AllCode or KeyAPI means
that this programming action is recommended when all code or
some APIs in the question are used for code matching. The symbol
“-” indicates no effective recommendation.

Our approach recommends programming actions with effective
code solutions for all six questions (Q1/Q2/Q4/Q6/Q14/Q15) that
activity-centric search by natural language queries finds solution-
specific actions (SSAction). In addition, our approach recommends
effective code solutions for nine more questions (Q3/Q5/Q9/10/Q13/
Q16/Q17/Q19/Q20). Among the 15 questions that our approach
recommends effective code solutions, our approach is effective for
11 questions when simply taking the code snippets in the questions
for codematching (i.e., Input=AllCode). For the other four questions,
our approach is effective when using specific APIs mentioned in
the questions for code matching (i.e., Input=KeyAPI). For 9 out of
the 15 questions, the top-1 recommendation contains effective code
solution. For 5 questions, the top-2 recommendation is effective,
and for 1 question, the top-3 recommendation is effective.

Our approach fails to recommend effective code solutions for
5 questions (Q7/Q8/Q11/Q12/Q18). As explained in Section 2.2,
Q11 asks for an alternative API for an deprecated API, which is
not usually in programming tutorials. For Q7, Android Developer
Guides describe only a solution by configuring the XML manifest
file. However, our tool currently considers only non-XML code
solutions. For Q8, the code snippet in the question is too short for
effective code matching. For Q12, the question asker uses Bitmap-
Factory.decodeStream(), while the code solution in the tutorial uses
BitmapFactory.decodeFile(). Although the two APIs support simi-
lar functionality, our tool currently does not analyze such similar
APIs for code matching. For Q18, the question asker provides the
onCreate() method, but not the key API onSaveInstanceState(). As
onCreate() is very common in the tutorials, our approach cannot
find effective code solution related to the use of onSaveInstanceS-
tate().

To understand the capability of our approach, we compare the
programming actions recommended by our approach and the tuto-
rial links referenced in the best answers. The results are shown in

Task-Oriented API Usage Examples Prompting Powered By Programming Task Knowledge Graph ,

TaskRel. For one of the 15 questions (Q16) that our approach makes
effective recommendations, the recommended programming action
is the same as (TaskRel=Same) the tutorial link recommended in
the best answer. For four of these 15 questions (Q9/Q13/Q19/Q20),
the recommended programming actions are more fine-grained
(TaskRel=Subtask) than the tutorial link recommended in the best
answer. That is, developers would suffer from less information over-
load with our recommended programming actions. For three of the
15 questions (Q3/Q4/Q15), our approach recommends programming
actions related to (TaskRel=Related) those recommended in the best
answers, for example “Decode a scaled Bitmaps” recommended by
our approach versus “Loading Large Bitmaps” in the best answers
for Q3/Q4. Note that both actions contain effective code solution
to Q3/Q4. For the rest seven questions (Q1/Q2/Q5/Q6/Q14/Q17),
our approach recommends programming actions that have no rela-
tion (TaskRel=No) with the tutorial link recommended in the best
answers. However, our recommended programming actions also
contain effective code solutions.

Finally, we analyze the role of comment-level actions in the
recommendations. The results are shown in CommentAns. For four
questions (Q3/Q6/Q16/Q17) (CommentAns=Rank-2 or Rank-3), our
approach recommends comment-level actions (three at rank-2 and
one at rank-3) whose associated code snippets contain effect code
solutions. Furthermore, for four other questions (Q4/Q9/Q14/Q19)
(CommentAns=HL), although relevant comment-level actions are
not recommended in the top 3, they are contained in the tutorial
excerpt of the recommended programming actions, such as the
examples in Figure 1(a) and Figure 1(c). Our tool highlights relevant
comment-level actions (e.g., “remove dialog title” in Figure 3) when
the developer is inspecting the recommended programming action.
Such highlights help to reduce code information overload.
Our code matching based task search can effectively recommend
code solutions to the top-viewed programming questions on Stack
Overflow, comparable to the code solutions provided in the best an-
swers. Our task search method provides more specific solutions than
Google search, and are much more effective than activity-centric
search by natural language queries. Enriching the knowledge graph
with comment-level actions and code snippets helps to improve
action coverage and reduce code information overload.

4.3 RQ3: Usefulness of CueMeIn Tool
We conduct a small-scale user study to investigate the usefulness
of our CueMeIn tool, compared with search-based methods.
4.3.1 User Study Design Table 5 lists the six Android app bug

fixing tasks in our study. Task 1/2/3/5/6 are designed from the
Q5/Q1/Q9/Q3/Q6 in Table 1 respectively. We select these five ques-
tions because they cover different properties of our tool’s recom-
mendations: the effective input type, the rank positions of the pro-
gram actions containing effective code solutions, and the role of
comment-level actions. Furthermore, these five questions have high
view counts and different task difficulties. Q3 and Q5 are also rep-
resentative of other programming issues with similar underlying
causes and solutions (i.e., Q3/Q4/Q12, Q5/Q15). Task 4 is designed
from the question “IndexOutOfBoundsException When read and
write from Standard I/O” not included in our formative study. The
IndexOutOfBoundException in this question is caused by the er-
roneous parameter usage of InputStream.write(). As our current

Table 5: Six Android Bug-Fixing Tasks in User Study
1.How to get String resource in Android? Set text of easy
TextView to pre-defined String resource

2.How to display Toast in Android? Set duration to easy
LENGTH_LONG, gravity to center
and text to “I love this plugin!”

3.How to hide the title space for the Dialog medium
4.How to solve IndexOutOfBoundEeception InputStr- medium
eam for Android? Assume you want to read the file
and store texts into buffer

5.How to load a very large image to Andorid? hard
There is “Allocation failed for scaled bitmap”
error when loading image directly

6.How to load information from Preference Activity? hard
Assume you have a preference loading by
PreferenceActivity, and you want to load
the preference from another activity

tool does not provide any specific support to API parameter misuse,
Task 4 allows us to see the capability boundary of our tool. We
use the code snippets in the questions as buggy methods to fix and
compose task requirements from the question descriptions.

We recruit 12 master students from our school who are familiar
with Java development but have only beginner level of knowledge
for Android development. They simulate the developers who often
encounter the issues like those in our formative study. We confirm
that none of the participants know the solutions to the buggy code
in our experimental tasks. Based one the pre-experiment survey
of the participants’ programming experience, we randomly assign
them into two comparable groups. The experimental group uses the
recommendations by our CueMeIn tool to complete the tasks, while
the control group uses search engines (e.g., Google) the participants
prefer to find solutions. We require the control group not to view
the original Stack Overflow questions from which our tasks are
designed, but they can view any other web pages as they want.

Before the experiment, we give the experimental group a 15-
minutes tutorial about our tool’s UI and usage. By an easy pilot
task, we ensure that the participants know how to interact with and
interpret the CueMeIn’s recommendations. As the control group
uses their familiar search engine, no training is needed. The par-
ticipants are given 15 minutes for each task. They can modify the
code as they wish to accomplish the task. If the participants believe
they complete the task, they can submit the code solutions before
15 minutes. We record the task completion time. A task is consid-
ered as a success if the submitted solution matches the solution
provided in the best answers of the Stack Overflow questions. If
the participants cannot complete the task within 15 minutes, the
current task is considered as a failure and they move to the next
task. At the end of each task, the participants are asked to rate the
task difficulties. The experiment group also rate the usefulness of
our tool’s recommendations. The ratings use 5-point likert scale,
with 1 being the lowest and 5 being the highest. The participants
use screen recorders to record the task completion process to assist
the observation of their programming behaviors.
4.3.2 Results and Findings Table 6 shows the average task com-

pletion time (AveTime) in seconds and the number of successful
tasks (#Success) per participant. Overall, the participants in the
experimental group complete the tasks faster than those in the
control group (504.3 ± 46.4 seconds versus 693.5 ± 108.3 seconds).

https://stackoverflow.com/questions/9171714/indexoutofboundsexception-when-read-and-write-from-standard-i-o
https://stackoverflow.com/questions/9171714/indexoutofboundsexception-when-read-and-write-from-standard-i-o

, Jiamou Sun, Zhenchang Xing, Xin Peng, Xiwei Xu, and Liming Zhu

Table 6: Performance Comparison

Index
Experimental Group Control Group

AveTime (s) # Success AveTime (s) # Success
P1 571.3 5 585.7 3
P2 474.2 5 809.3 2
P3 440.0 6 578.3 4
P4 492.3 4 833.8 1
P5 511.3 4 671.5 3
P6 536.7 6 682.3 5

Ave± 504.3±46.4 693.5±108.3stddev

On average, the experimental group uses 14%-60% less time than
the control group on each task. All participants in the experimental
group complete at least four tasks. Two of them complete all six
tasks. In contrast, only two participants in the control group com-
plete four or five tasks, and two participants complete only one or
two tasks. Task-1 is an easy task that all participants successfully
complete, but the experimental group on average uses 60% less time.
For Task-2 and Task-3, the two groups have comparable success
rates (six in the experimental group versus 4 or 5 in the control
group), but the experimental group completes the tasks 33% and
44% faster. Only one participant in the experimental group fails on
Task-5 and one fails on Task-6. In contrast, four in the control group
fails on Task-5 and none of the six participants complete the Task-6
in 15 minutes. Furthermore, the experimental group uses 22% and
38% less time on Task-5 and Task-6 respectively, compared with the
control group. Neither group performs well on Task-4 (four failures
in the experimental group versus five failures in the control group),
and they have the least (14%) completion time difference.

As the experimental tasks involve programming issues that de-
velopers frequently encounter, there are many resources on the
Web (technical blogs, similar questions on Stack Overflow, or Q&As
on other forums) that contain the effective solutions. However, ob-
serving the task completion videos reveals two difficulties faced by
the control group in finding and using these resources effectively.
First, the participants have to formulate good natural language
queries describing the task needs and program bugs. Second, given
a relevant page returned by the search engine, the participants have
to read the page, digest its content, and finds the most relevant code
buried in much irrelevant information with little hints which may
be relevant or irrelevant. In contrast, the experiment group par-
ticipant receive recommendations directly from the code they are
working on, without the need to formulate queries. Furthermore,
our tool enriches the tutorial excerpt with visual cues based on the
programming action information in the knowledge graph, which
helps to judge the relevance of the recommended programming
actions and code examples and spot the code solutions if any.

Out of the 36 ratings (6 tasks by 6 participants) of the usefulness
of our tool’s recommendations, 19 are rated as useful. 12 non-useful
ratings are given for our tool’s recommendations on Task-4 and
Task-6. This is because our tool’s recommendations do not cover
all necessary knowledge for the two tasks. The root cause of the
bug in Task-4 is a parameter misuse. Our tool actually recommends
a code example with the correct parameter usage. However, due
to the lack of knowledge about the API definition, the participants
do not notice the difference in parameter usage between the buggy
code and the recommended code example. For Task-6, our tool also

(a) Task Difficulty (b) Tool Usefulness
Figure 4: 5 Likert Scale of Difficulty and Usefulness Marks

recommends a relevant code example. But Task-6 demands much
knowledge about Android preference which is not present in the
recommended programing task and code example.

Overall, we do not observe significant difference between the
ratings of task difficulties by the two groups. Our interviews with
the participants suggest that this is because the participants rate
the task difficulties mainly based on the knowledge they need to
learn for the tasks. Even though our tool may provide relevant and
useful code examples, the process of learning necessary knowledge
for the beginner-level developers remain largely the same.

The participants, prompted with the task-oriented API usage exam-
ples, complete the programming tasks faster and more successfully
than those using search engine to search solutions. The usefulness
of our tool could be enhanced by incorporating other types of API
knowledge in the knowledge graph and recommendation.

5 Related Works
Recently, Li et al. [4] and Liu et al. [5] develop open information
extraction methods to construct API knowledge graph from API ref-
erence documentation. In these knowledge graphs, entities are APIs,
edges are declaration relations between APIs, and entity attributes
are API visibility and caveat sentences. Our knowledge graph is
is constructed from programming tutorials, in which entities are
programming actions, edges are three types of action relationships,
and entity attributes are action-related information and code. The
two types of knowledge graphs can be integrated through the APIs
involved in programming actions. This integrated knowledge graph
could offer better knowledge support in programming tasks than
each independently, for example for the Q11 and Task-4/6 that our
knowledge graph offers limited support.

Our work extends the programming task knowledge graph [10]
with more actions and finer-grained code snippets. Existing works
on knowledge graph [4, 5, 10] support only natural language search
of API and task knowledge. In contrast, our work is the first to
integrate the knowledge graph in the IDEs, and support the recom-
mendation of programming actions by matching the code under
development and the code examples in the knowledge graph. Our
tool adopts observe-push paradigm to prompt developers with API
usage examples. This paradigm is also used in other tools like
Prompter [7]. Different from our tool, Prompter retrieves pertinent
posts from Stack Overflow. Furthermore, Prompter just presents
relevant posts with a relevance score, but our underlying knowl-
edge graph allows us to annotate the recommended tutorial excerpt
and code examples with rich action and API visual cues.

Some methods have been proposed to infer specifications from
text, such as domain glossary [13], call-order constraints [11, 15],
parameter constraints [16]. Different from these methods, our work

Task-Oriented API Usage Examples Prompting Powered By Programming Task Knowledge Graph ,

constructs a knowledge graph of programming actions from pro-
gramming tutorials to support task-oriented code search. TaskNav [12]
also extracts task phrases from API tutorials to support tutorial
paragraph retrieval by task phrase queries. As our formative study
shows, searching programming actions by natural language queries
suffer from task mismatch and code information overload problems,
which our tool aims to solve.

6 Conclusion and Future Work
Through a study of 20 top-viewed programming questions on Stack
Overflow, this paper reveals two barriers (task mismatch and code
information overload) to effective use of API usage examples in
programming tutorials in programming tasks. We show that exist-
ing document search and activity-centric search methods cannot
effectively address these two barriers. We present a knowledge
graph based approach to add the barriers. Our knowledge graph
extends existing work with more actions, especially fine-grained
actions and code snippets from code comments. We adopt a com-
pletely different task search method based on code matching, and
develop an IDE plugin to prompt developers with task-oriented API
usage examples enriched with action information in the knowledge
graph. Our evaluation confirm the effectiveness and usefulness of
our approach for finding code solutions in tutorials to programming
questions developers often encounter. To generalize our results and
findings, wewill apply our approach tomore programming tutorials
and release our knowledge graph and tool for public evaluation.
References
[1] H. A. David and Jason L. Gunnink. 1997. The Paired t Test Under Artificial Pairing.

The American Statistician 51, 1 (1997), 9–12.
[2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding.
CoRR abs/1810.04805 (2018). http://arxiv.org/abs/1810.04805

[3] Matthew Honnibal and Mark Johnson. 2015. An Improved Non-monotonic
Transition System for Dependency Parsing. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing. 1373–1378.

[4] Hongwei Li, Sirui Li, Jiamou Sun, Zhenchang Xing, Xin Peng, Mingwei Liu, and
Xuejiao Zhao. 2018. Improving API Caveats Accessibility by Mining API Caveats
Knowledge Graph. In 2018 IEEE International Conference on Software Maintenance
and Evolution, ICSME 2018. 183–193.

[5] Mingwei Liu, Xin Peng, Andrian Marcus, Zhenchang Xing, Wenkai Xie, Shuang-
shuang Xing, and Yang Liu. 2019. Generating query-specific class API summaries.
In Proceedings of the ACM Joint Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT
FSE 2019. 120–130.

[6] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J.
Bethard, and David McClosky. 2014. The Stanford CoreNLP Natural Language
Processing Toolkit. In Association for Computational Linguistics (ACL) System
Demonstrations. 55–60.

[7] Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and
Michele Lanza. 2014. Mining StackOverflow to turn the IDE into a self-confident
programming prompter. In 11th Working Conference on Mining Software Reposito-
ries, MSR 2014. 102–111.

[8] Ravindra Singh and Naurang Singh Mangat. 1996. Elements of survey sampling.
Vol. 15. Dordrecht; Boston: Kluwer Academic Publishers.

[9] Siddharth Subramanian, Laura Inozemtseva, and Reid Holmes. 2014. Live API
documentation. In 36th International Conference on Software Engineering, ICSE
’14. 643–652.

[10] Jiamou Sun, Zhenchang Xing, Rui Chu, Heilai Bai, Jinshui Wang, and Xin Peng.
2019. Know-How in Programming Tasks: FromTextual Tutorials to Task-Oriented
Knowledge Graph. In 2019 IEEE International Conference on Software Maintenance
and Evolution, ICSME 2019. 257–268.

[11] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. 2007. /*icomment: bugs
or bad comments?*/. In Proceedings of the 21st ACM Symposium on Operating
Systems Principles 2007, SOSP 2007. 145–158.

[12] Christoph Treude, Mathieu Sicard, Marc Klocke, and Martin P. Robillard. 2015.
TaskNav: Task-Based Navigation of Software Documentation. In 37th IEEE/ACM
International Conference on Software Engineering, ICSE 2015, Volume 2. 649–652.

[13] Chong Wang, Xin Peng, Mingwei Liu, Zhenchang Xing, Xuefang Bai, Bing Xie,
and Tuo Wang. 2019. A learning-based approach for automatic construction of
domain glossary from source code and documentation. In Proceedings of the ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2019. 97–108.

[14] Xuejiao Zhao, Zhenchang Xing, Muhammad Ashad Kabir, Naoya Sawada, Jing Li,
and Shang-Wei Lin. 2017. HDSKG: Harvesting domain specific knowledge graph
from content of webpages. In IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering, SANER 2017. 56–67.

[15] Hao Zhong, Lu Zhang, Tao Xie, and Hong Mei. 2009. Inferring Resource Specifi-
cations from Natural Language API Documentation. In ASE 2009, 24th IEEE/ACM
International Conference on Automated Software Engineering. 307–318.

[16] Yu Zhou, Ruihang Gu, Taolue Chen, Zhiqiu Huang, Sebastiano Panichella, and
Harald C. Gall. 2017. Analyzing APIs documentation and code to detect directive
defects. In Proceedings of the 39th International Conference on Software Engineering,
ICSE 2017. 27–37.

http://arxiv.org/abs/1810.04805

	Abstract
	1 Introduction
	2 Formative Study
	2.1 Study Setup
	2.2 RQ1: Utilization of API Usage Examples
	2.3 RQ2: Barrier to Effective Use
	2.4 RQ3: How to Overcome the Barriers?

	3 Approach
	3.1 Enhancing Knowledge Graph
	3.2 Code Matching based Task Search
	3.3 In-IDE API Usage Example Prompting

	4 Evaluation
	4.1 RQ4: Accuracy of Information Extraction
	4.2 RQ5: Effectiveness of Task Search
	4.3 RQ3: Usefulness of CueMeIn Tool

	5 Related Works
	6 Conclusion and Future Work
	References

