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Abstract

Software reuse may result in software bloat when sig-
nificant portions of application dependencies are ef-
fectively unused. Several tools exist to remove unused
(byte)code from an application or its dependencies,
thus producing smaller artifacts and, potentially, re-
ducing the overall attack surface.

In this paper we evaluate the ability of three
debloating tools to distinguish which dependency
classes are necessary for an application to function
correctly from those that could be safely removed.
To do so, we conduct a case study on a real-world
commercial Java application.

Our study shows that the tools we used were able
to correctly identify a considerable amount of redun-
dant code, which could be removed without alter-
ing the results of the existing application tests. One
of the redundant classes turned out to be (formerly)
vulnerable, confirming that this technique has the po-
tential to be applied for hardening purposes. How-
ever, by manually reviewing the results of our experi-
ments, we observed that none of the tools can handle
a widely used default mechanism for dynamic class
loading.

1 Introduction

The past two decades saw a considerable increase
in software reuse, particularly of open-source com-

ponents, both in commercial and free software. Au-
tomated package management tools allow develop-
ers to find and integrate third-party components in
their projects with minimal effort. While automated
dependency management simplifies software reuse,
it may contribute to the phenomenon of software
bloat [1]. As Gkortzis et al. put it “code reuse cuts
both ways”, since “a system can become more secure
by relying on mature dependencies, or more insecure
by exposing a larger attack surface via exploitable de-
pendencies” [2].

In practice, only a fraction of the functionality (and
code) of a dependency may actually be needed, and
entire components could be redundant. Even if some
dependency code is not reachable when included in
a given application (and thus it can be considered
dead code in that context), it can still contribute to
extending the attack surface of that application, e.g.,
because it includes gadget classes leading to deserial-
ization vulnerabilities1.

A promising way to reduce the attack surface of
an application is to remove the unused parts of its
dependencies, and a number of recent publications
explore this direction proposing new techniques and
tools, typically demonstrated by applying them to
open-source projects (see Sec.4). Given the potential
impact of these tools in increasing the security of en-
terprise applications, we conducted a case study to
evaluate whether they could be adopted in practice

1https://owasp.org/www-community/vulnerabilities/Deserialization_of_untrusted_data
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at SAP.
In this paper, we study a real-world commercial

Java application that is part of an SAP product, and
we investigate the ability of three existing software
debloating tools to distinguish the dependency classes
that are used from those that could be removed with-
out compromising the correct behaviour of the appli-
cation. We propose a methodology to evaluate (i)
how the removal of the classes reported as redundant
impacts attack surface of the bundled application and
(ii) how this affects the correct execution of the ap-
plication.
Each tool was able to report a considerable num-

ber of classes as redundant. Once removed, the exist-
ing application tests continue to pass. We detected
a (formerly) vulnerable class among those removed,
which is an example of a small but tangible reduction
in the attack surface. A manual review of the classes
identified as redundant, however, revealed that none
of the tools we considered was able to identify a class
that is dynamically loaded at runtime, and that has
been confirmed by the developer as being required.
The remainder of the paper is structured as fol-

lows. Sec. 2 provides an overview and comparison of
(the selected) state-of-the-art debloating tools. Sec. 3
introduces the case-study methodology, and summa-
rizes its results. Sec. 4 summarizes related work, and
Sec. 5 concludes the paper briefly outlining possible
future work.

2 Debloating Tools

In our study, we consider mature, widely-used open
source tools, as well as open source tools for software
debloating readily available, sufficiently documented,
and easily applicable to Java applications that use
Apache Maven as build system2. Table 1 summarizes
and compares the main characteristics of the three
open-source tools.
Apache Maven Shade3 (Maven Shade for short)
is a mature and well-established plug-in for Maven
that creates self-contained Java archives (Uber-Jars),
to be used at application runtime. Uber-Jars include

2https://maven.apache.org/
3https://maven.apache.org/plugins/maven-shade-plugin/

all the application classes as well as all classes of the
(runtime and compile time) dependencies.

As of version 1.4, Maven Shade supports the min-
imization of Uber-Jars such that only classes actu-
ally required for the artifact are re-bundled (option
minimizeJar). The set of needed classes is computed
using jdependency4, which uses ASM5 to search the
bytecode for referenced classes.

ProGuard6 is a widely adopted obfuscator and
shrinker for Java and Kotlin (Android) applications.
It is typically applied to mobile applications to reduce
download times and protect intellectual property via
obfuscation.

Given Java archives and the specification of entry
points as input, ProGuard recursively identifies the
classes and class members that can be reached. Many
other configuration options enable and fine-tune ad-
ditional ProGuard features, (such as, field or method
removal, obfuscation, method inlining, class merg-
ing).

DepClean [1] identifies and removes bloated depen-
dencies that are part of the dependency tree of the
project under analysis, but whose code is not used
(neither directly nor indirectly) by the application.
Differently from Maven Shade and ProGuard, the fo-
cus of DepClean is not to produce a compact Java
archive for use at runtime, but rather to simplify the
dependency tree at development time. Moreover, it
is meant to work at the granularity of entire Java
archives. The tool can be configured to produce de-
tailed information about used code at the granular-
ity of Java classes (option createResultJson), which
makes it possible to evaluate its ability to identify the
classes required by the application.

DepClean extends the Apache Maven Dependency
Analyzer and uses ASM for bytecode analysis in or-
der to build a Dependency Usage Tree, which extends
the standard Maven dependency tree with edge la-
bels to indicate whether direct, transitive and inher-
ited project dependencies are used or bloated respec-
tively. DepClean also parses the constant pool table
of Java class files to cover dynamic, reflection-based

4https://github.com/tcurdt/jdependency
5https://asm.ow2.io/
6https://github.com/Guardsquare/proguard
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Table 1: Summary of tool characteristics

Characteristic DepClean Maven Shade ProGuard

Original
use-case

Remove dependency
declaration (Maven projects)

Create self-contained
Uber-Jar (Maven projects)

Shrink and obfuscate Java
archives (Maven-independent)

Approach

Bytecode analysis

(starting from prj. classes,
considers literals
to cover reflection)

Bytecode analysis
(starting from

prj. classes)
Bytecode reachability analysis
(starting from entry points)

Slicing
Granularity

Java archives
(class-level info available

as debug info) Java classes Java class members

Analysis
input Compiled project classes Compiled project classes

Compiled project classes and
classes (members) specified

as entry-points

Analysis
output

Modified POM file
(with removed/excluded

dependencies)

Uber-Jar with
needed classes

(unmodified bytecode)

Uber-Jar with needed classes
(bytecode potentially

shrinked and obfuscated)

invocations done through string literals and string
concatenations.

3 Case-study

Our case study investigates the ability of existing de-
bloating tools to minimize the dependencies of an
industrial Java application without breaking it. In
particular we consider the ability of the tools pre-
sented in Sec. 2 to identify the code required by
the application at class level. As ProGuard also
supports shrinking at finer granularity to remove
class members, we consider this tool in two flavours:
ProGuardm, shrinking used classes at member level,
and ProGuardc, leaving used classes untouched. Fi-
nally, we focus on the effect that the size reduction
has on the attack surface of the application.

3.1 Methodology

To compare the existing debloating tools, we use
the following methodology to apply them to Maven
projects.

Vanilla execution. We build and test the appli-
cation, without using any debloating tool, in order
to collect information required for the comparison.
The dependencies of Maven projects are specified in
a pom.xml file and have a scope that determines the
phase of the build process in which they are required.
As we focus on the reduction of code required in pro-
duction, we consider the scopes compile and runtime as
target of the debloating tools. Consistently with pre-
vious literature [3], we execute existing tests and we
use their results as a proxy for semantic preservation.
Concretely, the vanilla execution:

(1) Ensures that the application successfully builds
with all tests passing (mvn install succeeds);

(2) Collects all test cases, all application class
names, and all compile and runtime dependencies
with the class names therein;

(3) Detects the presence of vulnerable classes.

Tool execution. Our investigation targets the abil-
ity of the tools to identify all and only the dependency
code required by the application. As a result, we per-
form the debloating step outside of the tools, and rely



on them only for providing the set of required classes.
Accordingly, the tool execution comprises the follow-
ing steps:

(1) Run DepClean, Maven Shade, ProGuardm,
ProGuardc.

(2) Transform the tool output into a file containing
the list of used classes (if not already available).

(3) Collect the names of all classes of compile and run-

time dependencies reported by the tools as used
by the application.

(4) Copy those classes from the output of the tool
to target/classes.

(5) Adjust the pom.xml to remove all compile and run-

time dependencies.

(6) Run the existing tests on the debloated applica-
tion.

(7) Detect the presence of vulnerable classes in the
debloated application.

The list of used classes (cf. step (2)) from Maven
Shade, ProGuardm, and ProGuardc was created by
listing the content of the Jar artifact produced by the
tool. For DepClean, we enabled the configuration set-
ting createResultJson and rewrote the class names con-
tained in the result file into a plain list in order to
have the same output for each tool. Also note that
for ProGuardm and ProGuardc we had to create an
application-specific configuration file containing the
information of all application and test classes to be
used as entry points for the analysis (keep option) and
we disabled all optimization and obfuscation features.
As the shrinking option of ProGuard always re-

moves unused methods of a class unless a configura-
tion forces the tool to keep it untouched, in the case of
ProGuardm we run the tool as-is. For ProGuardc, to
get the list of used untouched classes, we iterate steps
(1) and (2) by adding the used classes as additional
entry points (to be kept as-is) in the configuration
file until no additional class is reported as used.
In step (4) we copy the classes reported as used

to the project’s target/classes folder so that they
will be available when running the existing test, i.e.,

they are treated as application classes, and in step (5)
we remove compile and runtime dependencies from the
pom.xml. We opted for this custom debloating as it
allows us to focus on the ability of the tools to identify
the used classes while allowing us to uniformly collect
the details required for measuring the reduction in
terms of size and attack surface.
The vulnerable open-source classes were

obtained analysing the fix commits for
open-source vulnerabilities available at
https://github.com/SAP/project-kb (the up-
to-date dataset from [4]).

3.2 Subject Application

For our case study, selected a Maven project that is
part of SAP’s Energy Data Management solution. It
uses JAXB and EclipseLink7 to (un)marshal XML
documents related to energy measurements. It is
actively developed and several releases have already
been made available to customers through the de-
ployment on the SAP Cloud Platform. The project
is characterized as follows:

• 10 direct dependencies (2 compile, 2 provided, 6
test)

• 20 resolved dependencies (4 compile, 3 provided,
13 test)

• 260 application classes, 2725 compile depen-
dency classes

• 62 test classes amounting to 446 test cases

3.3 Results

The methodology of Sec. 3.1 was applied to the
application above. We had a successful run
of the vanilla execution and of the tools execu-
tion on Ubuntu 18.04 using JDK 1.8.0 , Maven
3.8.1, Maven Shade 3.2.4, proguard-maven-plugin8

2.3.1 (configured to use ProGuard version 7.0.1),
and DepClean created from revision cbfc395 in
https://github.com/castor-software/depclean.

7https://www.eclipse.org/eclipselink/
8https://wvengen.github.io/proguard-maven-plugin/
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Table 2: Results of vanilla and tool executions

Execution Classes Size (KB) Test success Vulnerable classes

Vanilla 2725 15033 446 1
DepClean 11 57,26 446 -

Maven Shade 12 57,63 446 -
ProGuardm 1 4 446 -
ProGuardc 11 57,26 446 -

Table 2 shows the results of the executions. In the
vanilla execution we collected 2725 classes from the
4 compile dependencies of the application, amount-
ing to 14,68 MB of disk space (cf. Column ”Size”).
Both Depclean and ProGuardc reported the same set
of 11 classes as being used. Maven Shade reported
one additional class. ProGuardm was able to reduce
the dependencies to a single class by removing all
members not used by the application, which con-
tained all the references to the 10 classes reported by
ProGuardc, DepClean and Maven Shade. As a large
share of classes were reported as redundant, the size
on disk was significantly reduced in all cases. For all
the tools, the existing tests were still passing on the
debloated application we constructed as described in
Sec. 3.1.

Table 3 details, for each compile dependency, how
many classes the tools report as used by the appli-
cation. With the constraint of leaving the original
classes unmodified, all tools identify as used the same
set of 11 classes from commons-io. Instead, ProGuardm

shrinks unused members from a used class of commons-

io thus removing the 10 classes imported therein.
Maven Shade is the only tool reporting a package-

info.class from org.eclipse.persistence.moxy (moxy for short)
as used. It contains a single runtime annotation ap-
plicable to other classes of the same package. How-
ever, no other class is reported as used, thus, it would
not be applied to any class after debloating.

By manual inspection, we observed that the appli-
cation makes use of a service implementation offered
by the direct dependency moxy, declared according to
the Java SPI (Service Provider Interface) mechanism.
Java SPI allows service consumers to only reference

the service interface, while the actual implementation
is made available at runtime. None of the tools was
able to identify the class specified in the Java SPI con-
figuration file, thus no service implementation would
be available.

Finally, we observed that one (formerly) vulner-
able class was part of the application dependen-
cies, and has been removed by all debloating tools
(cf. column ”Vulnerable Classes” of Table 2). The
class is org.apache.commons.io.FilenameUtils.java, contained
in commons-io, and subject to CVE-2021-294259.

3.4 Discussion

Despite having a considerable number of test cases,
the case-study shows the limitations of tests as an
oracle for semantics preservation. The application
developer confirmed that the unavailability of the ser-
vice implementation class, reported as redundant by
all tools, would break the application at runtime.
ProGuard allows manual configuration of entry

points to be kept, so we run the tool specifying the
SPI service implementation class as additional entry
point. As a result, 209 classes of the direct depen-
dency moxy are reported as used, as well as 34 and
1340 of its transitive dependencies asm and core (full
Maven artifactId available in Table 3). Thus, consid-
ering also the results of our manual inspection, the
application dependencies could be reduced by half,
still removing the (formerly) vulnerable class and re-
ducing its attack surface.
Our case study shows the potential of debloating

dependencies on an industrial application of limited

9Fixed by https://github.com/apache/commons-io/commit/2736b6f.
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Table 3: Reduction in the number of classes for each compile dependency

Dependency (Maven artifactId) Scope Classes DepClean Maven Shade ProGuardc ProGuardm

commons-io direct 182 11 11 11 1
org.eclipse.persistence.moxy direct 264 - 1 - -
org.eclipse.persistence.core transitive 2075 - - - -
org.eclipse.persistence.asm transitive 204 - - - -

Total 2725 11 12 11 1

size and complexity (e.g., just four dependencies re-
quired at runtime) and already points out a critical
need for improvement.

4 Related Work

The effect of software reuse on security is investigated
by Gkortzis et al. in [2], who show empirical evidence
of the relation between the size of a code base and its
likelihood to contain some vulnerabilities. Recently,
Soto-Valero et al. conducted a large-scale study to
assess the prevalence of bloated dependencies in the
Maven ecosystem [1]. In the same paper, they pre-
sented DepClean, one of the tools we used in our
case study. In [3], Bruce at al. propose JShrink, a
framework to debloat Java application using static
and dynamic analysis techniques. Though their im-
plementation is only available as replication package,
the results they reported show the potential of the
approach.

A related problem is how to measure the actual
security improvements obtained by debloating: one
approach is to count the number of known vulnera-
bilities (CVEs) removed [5]. Other works, for exam-
ple [3], use metrics based on the number of gadget
chains that can be successfully removed.

This paper investigates well-known and readily
available debloating tools to evaluate their ability to
discriminate used from redundant code at class level.
This is done at the case of an industrial application.
Moreover, it quantifies the attack surface reduction
in terms of removed vulnerable classes.

5 Conclusion

Considering the successful debloat of commons-io, in-
cluding the removal of a (formerly) vulnerable class,
the case-study confirms the potential of debloating
tools to reduce an application’s attack surface. It also
shows that state-of-the-art tools could not handle a
widely-used, standard Java mechanism for dynamic
class loading as used in the application at hand.

Future work should consider additional debloating
tools and techniques to evaluate how they deal with
dynamic features. Besides, to use debloating tools
in industrial settings, they must handle software of
increasing size and complexity, and integrate easily in
CI/CD pipelines, with limited manual configuration.
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