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Abstract—The popularity of automated machine learning (Au-
toML) tools in different domains has increased over the past few
years. Machine learning (ML) practitioners use AutoML tools to
automate and optimize the process of feature engineering, model
training, and hyperparameter optimization and so on. Recent
work performed qualitative studies on practitioners’ experiences
of using AutoML tools and compared different AutoML tools
based on their performance and provided features, but none of
the existing work studied the practices of using AutoML tools in
real-world projects at a large scale. Therefore, we conducted
an empirical study to understand how ML practitioners use
AutoML tools in their projects. To this end, we examined the
top 10 most used AutoML tools and their respective usages in
a large number of open-source project repositories hosted on
GitHub. The results of our study show 1) which AutoML tools are
mostly used by ML practitioners and 2) the characteristics of the
repositories that use these AutoML tools. Also, we identified the
purpose of using AutoML tools (e.g. model parameter sampling,
search space management, model evaluation/error-analysis, Data/
feature transformation, and data labeling) and the stages of
the ML pipeline (e.g. feature engineering) where AutoML tools
are used. Finally, we report how often AutoML tools are used
together in the same source code files. We hope our results
can help ML practitioners learn about different AutoML tools
and their usages, so that they can pick the right tool for their
purposes. Besides, AutoML tool developers can benefit from our
findings to gain insight into the usages of their tools and improve
their tools to better fit the users’ usages and needs.

Index Terms—Empirical, Automated machine learning, Au-
toML tools, GitHub repository

I. INTRODUCTION

Due to the growth of available data, the usage of machine
learning (ML) has increased dramatically over the past few
years and a lot of business communities and researchers are
using ML to analyze their data and reach their goals [1]. ML
practitioners usually have to follow a set of repetitive tasks
including data collection and data preprocessing, feature engi-
neering, hyperparameter optimization, model training, evalu-
ating the performance of the resulting models, and deploying
and monitoring the models in the production environment. As
a result, a new field of automated machine learning (AutoML)
has emerged over the past few years to automate and reduce
the effort and time consumed by these repetitive tasks [2], such
as model training/ retraining and hyperparameter optimization
in the ML pipeline. For example, Tpot is an AutoML tool
that uses genetic algorithm to optimize the ML pipeline. In
addition, a lot of AutoML tools such as Autosklearn [3],
[4], Autokeras [5S], Snorkel [6], and Optuna [7] have been

introduced for automating model management, data labeling,
and optimizing hyperparameters.

The popularity of AutoML tools has attracted the attention
of researchers [8]—[[10]. For instance, Xin et al [8] conducted
a qualitative study to understand the use of AutoML tools in
practice by examining users’ experience when using AutoML
tools, the integration of AutoML features in ML workflows
and the challenges faced when using the features of the
AutoML tools in ML workflow. They suggested that AutoML
tools should support the interactive user interface design to
explore the intermediate execution (i.e., “human-in-loop”).
Also, through a qualitative study, Wang et al. [9] studied how
much automation is required by data scientists and reported
that designing a “human-in-the-loop” AutoML tool is better
than a tool that Completely automates the ML works [9].
Drozdal et al. [10] studied what impacts the trust in the ML
models built from using AutoML tools, through qualitative
studies. They found that the non-functional requirements such
as model performance metrics, visualization, and transparency
increase the confidence of data scientists in AutoML tools.

Although prior works performed qualitative studies to un-
derstand ML practitioners’ experiences of using AutoML
tools, it remains unclear how real-world projects use AutoML
tools in their ML pipelines. Our study attempts to complement
the existing studies through large-scale analysis of real-world
open-source projects that use AutoML tools, aiming to get
new empirical evidence and insights on the use of AutoML
tools. Specifically, we extracted the information of the projects
that use AutoML tools from GitHub and followed a mixture
of both qualitative and quantitative analyses. We organize our
study through the following research questions (RQs):

e RQI1: What are the most used AutoML tools? We
examined the usage of AutoML tools in GitHub projects and
we identified the top 10 most used AutoML tools: Optuna,
HyperOpt, Skopt, Featuretools, Tpot, Bayes_opt, Autokeras,
Auto-sklearn, AX, and Snorkel. Then, we analyzed the char-
acteristics of the projects that use these tools, including their
development history and popularity. ML practitioners can learn
from our findings about which AutoML tools are mostly used
and their characteristics when searching for the right tools for
their ML pipeline. Besides, our findings can help AutoML tool
developers gain insights into the projects that use their tools,
which could allow them to make better decisions to further
improve their tools.



e RQ2: How do ML practitioners use AutoML tools?
Through manual analysis, we examined the purposes of using
AutoML tools and the stages of the ML pipeline where they
are used. We observed that AutoML tools are used mainly
during the Hyperparameter optimization, Model training, and
Model evaluation stages of the ML pipeline. We also observed
10 main purposes of using AutoML tools, such as Hyperpa-
rameter optimization, Model management, Data management,
and Visualization. ML practitioners can save time and effort by
using AutoML tools to automate their ML pipeline tasks [2]]
for similar purposes in similar stages of ML pipeline.

e RQ3: Are different AutoML tools used together? We
analyzed the source code of the projects using AutoML
tools to examine whether AutoML tools are used together in
the same source code files. We found that, among the top
10 AutoML tools, only a few of them were used together,
including Hyperopt being used together with other tools, such
as Tpot, Skopt, Optuna. Our findings can help ML practitioners
with the needs for heterogeneous AutoML features choose
the combination of tools that are mostly used together by
other ML practitioners. In addition, developers of AutoML
tools can leverage our findings to provide APIs to make the
collaboration between their tool and other co-used tools easier.

Organization: The rest of the paper is organized as follows.
In Section II, the background about the AutoML tools and ML
pipeline is provided. In Section III, we provided a summary of
the important related works. In Section IV, the experimental
setup of the study is explained. The results of the research
questions are presented in Section V. A discussion of these
results is presented in Section VI. Section VII discusses threats
to the validity of our study. In Section VIII, we conclude the
paper and outline some avenues for future works.

II. BACKGROUND

AutoML tools are used to automate one or more stages (e.g.,
hyperparameter optimization) in the ML pipeline. This section
provides background information on a typical ML pipeline
and AutoML tools. In this article, the word “ML practitioner”
refers to anyone who uses AutoML or ML in their project or
work. An ML practitioner can be a developer, a researcher, a
data scientist, or an ML engineer.

A. Machine learning pipeline

Figure [I] shows the nine stages of a typical ML pipeline
for building and deploying ML software systems used at
Microsoft, described by Amershi et al. [11]. We consider it
as a reference ML pipeline in our study. Similar ML pipelines
are also adopted by other commercial companies, such as
Google [12], or IBM [13]. In the following, we describe the
different stages of the ML pipeline mentioned in [11].

The model requirements stage is where ML practitioners
select the type of ML model that fits their problem and
products. In data collection stage, ML practitioners identify
the data from different sources to collect, such as database
systems or file storage. The stage of data cleaning includes
cleaning the data to remove any anomalies that would likely

hinder the training of the ML model. The stage of data
labeling refers to assigning the proper labels to the data, such
as assigning labels to a set of images reflecting the name of
the objects present in the image.

In the stage of feature engineering, ML practitioners pre-
pare (e.g., transforming or normalizing the features/data) and
validate the features that should be used in the model training
phase. The model training phase refers to training the ML
models using the prepared features and the different imple-
mented ML algorithms. The result from this stage is a trained
ML model used to predict the label of new incoming data. In
the model evaluation stage, the predictive performance of the
trained ML models is evaluated on a validation dataset.

The model deployment stage is where the evaluated ML
model and the entire workflow are exported for deployment.
Finally, The model monitoring stage is where the model
behavior is observed in the production environment to ensure
that the model is doing what is expected to do.
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Fig. 1. The stages of the ML pipeline based on [I1].

B. Automated machine learning (AutoML)

The primary goal of automation in ML started from reduc-
ing human effort in the loop, specifically during the hyperpa-
rameter tuning and model selection stage [14]. However, the
success of hyperparameter tuning and model selection also
depends on other steps, such as data cleaning and preparation
or feature engineering [14]-[17]]. More recently, AutoML has
been broadly used in automating multiple steps of the machine
learning workflow, from data collection and preparation to the
deployment and monitoring of the ML model in production.

A variety of AutoML tools have been proposed to automate
the computational work of building an ML pipeline. Some of
these tools are built upon widely used ML frameworks. For
example, Auto-Sklearn [18]], [19], and TPOT [20], [21] are
built on scikit-learn [[22]. These AutoML tools focus largely on
supporting data preparation [[14f], [[16[], [23[], feature engineer-
ing [24], hyperparameter tuning [25]], model selection [14],
[16], [26], and end-to-end development support for machine
learning software systems [27].

III. RELATED WORKS
The related research papers are categorized into two groups
and discussed in this section.
A. Qualitative studies on the usage of AutoML tools

Prior work performs qualitative studies (e.g., through in-
terviews) to understand practitioners’ experiences of using



AutoML tools [8]-[1O], [15], [28]-[30]. For example, Xin
et al. [8] investigated the use of AutoML tools through
semi-structured interviews with AutoML users of different
categories and expertise. They argued that although AutoML
tools increase productivity for experts and make ML accessible
to beginners, designing completely automated ML tools is
impractical, and designers of AutoML tools should focus on
improving the collaboration between ML practitioners and
AutoML tools. Similarly, Wang et al. [9] argued that there is
no need for tools that are fully automated, instead, developing
AutoML tools that are explainable and that integrate people
in the ML workflow loop is more important. Crisan et al. [28]]
observed that using AutoML tools in real practices is not easy
and suggested that one way to facilitate the interaction between
humans and AutoML tools is data visualization. Similarly,
Drozdal et al. [10] found that visualization and inclusion
of transparency features build trust in users. Also, they rec-
ommended that AutoML tools should be easily customized
for enabling users to apply their preferences. Xanthopoulos
et al. [30] defined some criteria to evaluate the features of
AutoML tools. They concluded that the performance does not
guarantee the success of an AutoML tool because there are
other important factors that should be taken into consideration,
such as the ease of use and the interpretability of the results.

B. Comparison of AutoML tools

Ferreira et al. [31] studied eight AutoML tools and com-
pared them by conducting computational experiments based
on General Machine Learning (GML), deep learning, and
XGboost scenarios. The results show that current GML Au-
toML tools can produce close or even better predictive results
than human-created ML models. Truong et al. [2] reported
the different stages of the ML pipeline covered by some
specific AutoML tools. Then, they examined the performance
of the AutoML tools on different datasets. They found that
none of the studied AutoML tools perform better than others.
They suggest that AutoML tool developers should consider
leveraging ideas from other AutoML tools to improve their
tools.

The previous works studied 1) the usage of AutoML tools
by conducting qualitative studies such as interviews, 2) the
comparison between AutoML tools. However, no work studied
how ML practitioners use AutoML tools in real-world projects
at a large scale. In this work, we attempt to fill this gap by
investigating the usage of AutoML tools in real-world GitHub
projects. We aim to provide insights for ML practitioners and
AutoML tool providers to improve the usage and design of
AutoML tools.

IV. EXPERIMENTAL SETUP

This section describes the methodology followed to answer
the proposed research questions. Our study design consists
of a mixture of qualitative and quantitative (i.e., a sequential
mixed-methods [32]]) approaches. Figure [2] show an overview
of our study design explained in the following paragraphs.

(1) Identifying AutoML tools:
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Fig. 2. An overview of our study design. Cn: configurations of a given
AutoML tool (e.g., “import+tpot”), Pn: GitHub project that are using AutoML
(i.e., containing the source code file that imports atleast one of the AutoML
configuration), /V and V correspond to the Section indices.

In this initial step of our methodology, the AutoML tools
were identified from two sources: research papers and Google
search. The two sources allow us to cover a broader range
of AutoML tools proposed in the research publications and
industry. In the following, we describe the identification steps
from each data source.

o AutoML tools from the research papers:

To extract the list of AutoML tools mentioned in research
papers. We used the search keywords “automated” AND
“machine learning” to extract the scholarly literature related to
AutoML on the Google scholar [33]] and Engineering Village
(using Inspect and Compendex databases) [34] platforms. We
limited our search to the literature published between 2010
to 2021. Then, we examine the first 10 research papers from
each of the two sources to collect the list of AutoML tools,
as the search results of both sources are sorted based on the
papers’ relevance with the search keywords. Specifically, we
were interested in the open-source AutoML tools that host
their source codes on GitHub to allow us to study in detail
their usage. In total, we extracted 31 open-source AutoML
tools from the research papers.

o AutoML tools from Google search:

We used Google search to identify the names of open-
source AutoML tools mentioned across different websites. We
tried different keywords and finally settled for the keywords:
“(automl OR ““automated machine learning”’) AND tools AND
(GitHub OR list OR curated)” and extracted all the possible
AutoML tools from the first 100 resulting websites. We created
a list of open-source AutoML tools that have a GitHub
repository in the next step. One of the results was the awe-
someopensource [35] website that contains 426 AutoML open-
source projects. However, extracting all the possible AutoML
tools listed on the website requires significant manual effort.
Therefore, to get the most out of these tools listed, we limited
our criteria to the most popular AutoML tools listed on the
awesomeopensource [35] website by considering the AutoML
tools with more than 1,000 stars. In total, we collected the
names of 95 AutoML tools from Google search.

(2) Filtering AutoML tools:

After extracting the lists of names of AutoML tools from



research papers and Google search results, we merged the
two lists and removed the duplication. Then, using GitHub
API [36] we extracted the repository details of each of these
AutoML tools on November 24, 2021. For each AutoML tool’s
repository, we collected the following metadata: the number
of contributors, the number of releases, description, number
of forks, size of the repositories, creation date, last update,
fork status, programming languages, number of stars, number
of commits, and last commit date. We removed the tools with
only one contributor (8 tools removed) or zero stars (1 tool
removed). Also, using the last update date of the tools, we
removed the tools that have not been active since 2019 or
earlier (12 tools removed) because we are interested in the
tools that are still under development due to the growth of
the technology. Also, we manually checked all the remaining
tools to verify that they are real AutoML tools. At the end of
this step, we remained with 57 AutoML tools.

@ Collecting GitHub projects using AutoML tools:

To find the projects that use open-source AutoML tools,
we collected the configurations of each AutoML tool identi-
fied in the previous step by examining their documentation,
GitHub repository, and sample source code. For example,
‘import+optuna’ and ‘from+optuna’ are the con-
figurations that we found for Optuna. We only focused on
the tools for which the configurations are in the Python
programming language because Python is known as one of
the main programming languages for building ML models and
ML software projects [37], [38]]. Therefore, we removed the
tools for which the configurations are not written in Python
and the tools for which we could not find the configurations
in their documentations (3 tools removed).

Next, using the AutoML configurations as keywords, we
searched GitHub API for the source codes and the respec-
tive GitHub projects that import the configuration. For ex-
ample, we searched for the keywords ‘from+tpot’ and
‘import+tpot’ in GitHub API to find repositories and
the corresponding source codes that use the Tpot AutoML
tool. Then, we collected the paths to 97,815 source code files
that contain at least one configuration of an AutoML tool and
the name of the corresponding repositories (33,568 repository
names collected) on December 4th and 5th, 2021. In the third
step, we removed duplication from the resulting repositories
(10,985 duplicates removed) and the source code files (39,194
duplicates removed).

Some repositories that use AutoML tools are not real
projects, such as the course assignment repositories. We are
not interested in these projects because they may not reflect
the actual use of AutoML tools in real projects. Therefore, we
identified the keywords that may reflect non-real projects. To
do so, we randomly sampled 378 repositories from our dataset
with a 95% confidence level and 5% confidence interval. We
manually analyzed these repositorires and identified keywords
includeing ‘““assignment”, “book”, “chapter”, “tutorial”, and
“course” (case insensitive). We used these keywords and
removed the repositories with at least one of these keywords
appearing in their name (602 repositories removed). Also,

we removed the corresponding source code files path of
the not-real projects (2,568 source code file paths removed).
Furthermore, following the best practices established by pre-
vious studies [39]-[43]], we removed the repositories and the
corresponding source code file paths of the forked projects.
This step ensures that the studied projects are not copies of
another project but the mainline projects (190 source code file
paths removed). Finally, 21,981 projects and 55,863 source
code file paths are retained in our dataset. Then, using GitHub
API, we extracted each repository’s metadata, such as the
number of contributors, number of commits, description, forks,
repository size, creation date, update date, last commit date,
fork status, and number of stars. We collected the repositories’
details on December 5th and 6th. Finally, we downloaded the
source code files using the collected paths on December 8,
2021, for further analysis.

The rest of the data analysis is described in the results
Section [V] We share the replication package of this study
in [44].

V. RESULTS
A. RQI1: What are the most used AutoML tools?

1) Motivation: Although AutoML tools help ML experts
and non-expert practitioners save effort and time by automat-
ing the repetitive tasks [2]], choosing the right AutoML tool
is still a challenging task [8]], [[10]], [15], [45]. The goal of
RQLI is to highlight the most used AutoML tools and provide
detailed information about the projects using these tools.
This information can help ML practitioners select appropriate
AutoML tools for their projects. Besides, the insights gained
from the projects using the tools can help AutoML tool’s
developers improve their tools in future releases.

2) Approach: To find the most used AutoML tools, we
collected the AutoML function calls in the GitHub projects.
Also, we analyzed the characteristics of the GitHub projects
that are using AutoML tools.

Collecting function calls of AutoML tools in GitHub
projects: To understand the popularity of the AutoML tools,
we analyzed the source code files of the GitHub projects
that use AutoML tools and collected the calls that invoke
the functions of each AutoML tool. Usually, a function is
designed to perform a specific kind of task, whereby the name
of that function often reflects that task. Therefore, calling
such a function within a code invokes the tasks specified
in the function. Invoking more functions of an AutoML tool
indicates the tool is more engaged in a project. Thus we use
the number of function calls to represent the popularity of
an AutoML tool. The following steps are taken in order to
extract the function calls from the source code files: Step 1) All
Python notebooks files are converted to python file using the
nbconvert [46] and nbformat [47|] Python libraries. Step 2) The
Python2 source code files are converted to Python3. Step 3)
The syntax errors are resolved by removing the lines of source
code files that start with /, @, %, $, install, pip, conda. Step 4)
The imported AutoML tools’ libraries and their corresponding



imported functions are extracted from each source code file
using the abstract syntax tree (AST) Python library [48]]. Step
5) The AST Python library is used to extract the function
calls related to the imported AutoML tools’ libraries and the
corresponding imported functions from the source code files.
Step 6) The functions that are:a) directly mentioned in the
code, b) called in the right side of an assignment, c¢) called in
the if, while, for loop, try, with, list, assert, return, tuple, unary
operation statements, d) super functions of a class in which
the parent is an AutoML tool are extracted. After collecting
the function calls from all source code files, we counted the
total number of calls of the functions of each AutoML tool.
Then, we sorted the AutoML tools based on the number of
total function calls among all projects in our dataset.

Analyzing the characteristics of GitHub projects us-
ing AutoML tools: To understand the characteristics of the
projects that use AutoML tools, we analyzed the details of
the projects that use AutoML tools, such as the number of
contributors, number of forks, size, age, star, and commits.

3) Results: Figure [3] shows the total number of function
calls for each AutoML tool. As seen in Figure [3] the top
10 AutoML tools with the most number of function calls
are specified in green color. The percentage of function calls
that are associated with the top 10 most used tools (i.e.,
18% of the 57 selected AutoML tools) is 68%; these top
tools include Optuna, HyperOpt, Skopt, Featuretools, Tpot,
Bayes_opt, Autokeras, Auto-sklearn, AX, and Snorkel. The
details of each of these top 10 most used AutoML tools are
provided in Table[] As seen in Table [[ the most used AutoML
tools are popular based on the number of forks and number of
stars. Also, they are 67.1 months old in average, which means
that they are not young AutoML tools and it took them years
to become popular.

The 18% (10 out of 57) most used AutoML tools (e.g.,
Optuna) account for 68% of all function calls.

Furthermore, the profile of the projects that are using
AutoML tools is shown in Figure E[ For clear visualization,
we removed the outliers within the last 5 percent of data in
each metric and showed the distribution of 95% percent of the
data in Figure [ As seen in Figure [ 75% of the repositories
that are using AutoML tools are less than five months old
and have fewer than 65 commits, two contributors, two forks,
35,753 lines of code, two stars. On the other hand, the projects
that use AutoML tools also include some projects that are very
mature (up to 10 years in age), popular (with up to 102,983
stars), with many contributors (with up to 433 contributors),
and large in size (with up to 17,453,577 lines of code).

The most used AutoML tools are popular tools accord-
ing to their number of stars and forks. Furthermore,
most of the projects that use AutoML tools are young
and not popular (based on the number of stars).
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Fig. 4. The summary characteristics of the projects that use AutoML tools in
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stars in each project.

B. RQ2 : How do ML practitioners use AutoML tools?

1) Motivation: ML practitioners may use AutoML tools for
different purposes across their ML pipeline. We analyzed the
stages of the ML pipeline in which AutoML tools are used and
the purposes of using AutoML tools to help AutoML tools’
developers gain more insights on the usage of their tool and
enable them to improve their tools in a more efficient way.

Understanding the stages of the ML pipeline in which the
AutoML tools are most popular can help developers of the
tools find the shortcomings of their tools and help improve
their tools efficiently. Besides, our results can provide insights
for ML practitioners to better leverage AutoML tools in
different stages of their ML pipeline and for different purposes.

2) Approach: To understand the purposes of using AutoML
tools and the stages of the ML pipeline where they are being
used, we used the extracted function calls in Section [V-AJ]
and labeled them. To reduce the required time and effort for
manual labeling, we only focused on the function calls of the
top 10 most used AutoML tools (identified in RQ1). Besides,
we focused on the function calls that are most commonly



TABLE I
SUMMARY STATISTICS OF THE TOP 10 AUTOML TOOLS.
Function: Number of function calls, S-code: Number of unique source files importing the tool. Project: Number of unique projects importing the tool, Size:
Size of the tool. Stars: Total number of stars. Age: Age of the tool (i.e., the difference between latest commit date and the creation date). Forks: Number of
forks associated to the tool. Releases: The total number of releases associated to the tool. Descriptions: The description of the tool.

‘ AutoML repository (short name) ‘ Function ‘ S-code  Project Size Stars Age Forks Release Descriptions

1 | optuna/optuna (Optuna) 34,916 5,482 3,140 13,577 5,553 45 602 41 A software framework for automatic hyperarameter optimization [49]
2 | hyperopt/hyperopt (Hyperopt) 20,903 5,271 4,432 6,059 5955 122 925 0 A library to optimize hyperparameter [50!

3 | scikit-optimize/scikit-optimize (Skopt) 20,313 2,807 1,830 9,423 2,238 68 424 23 ”Sequential model-based optimization™ [S1

4 | Featuretools/featuretools (Featuretools) 14,786 1,053 548 5,888 5,864 50 769 94 A library to automate feature engineering [52]

5 | EpistasisLab/tpot (Tpot) 13,725 2,893 1,796 79030 8349 72 1,437 27 A library to optimize machine learning pipeline [53]
6 | fmfn/BayesianOptimization (Bayes_opt) | 11,582 3,128 2,605 23,290 5,543 89 1,222 7 “Global optimization with gaussian processes” [54.
7 | keras-team/autokeras (Autokeras) 10,331 1,259 550 44,487 8,241 48 1,334 53 ”An AutoML system based on Keras” [55]

8 | automl/auto-sklearn (Auto-sklearn) 8,909 974 543 7,4993 5,870 76 1,092 29 An AutoML toolkit based on sklearn [56

9 | facebook/Ax (AX) 8,442 722 213 283,337 1,649 33 178 23 A adaptive platform for adaptive experiments [57
10 | snorkel-team/snorkel (Snorkel) 8,237 853 264 202,468 4922 68 797 14 A tool for generating training data [6]

used in different projects. Thus, from the set of all unique
function calls of the selected AutoML tools, we compute their
total frequency and Shannon entropy value, then choose the
functions that have more than 80% of 1) the Shannon entropy
value and 2) the total frequency for manual labeling. In the
following, we explain 1) the process of selecting functions
based on Shannon entropy and usage frequency and 2) the
process of manual labeling.

Selecting functions based on Shannon entropy and usage
frequency: We used the normalized Shannon’s entropy [58],
[59] to compute the distribution of the function calls across
the projects:

Hy(F) ==Y pi*log,(p) (1)
=1

In Equation (HI), F is a function that we want to measure
its Shannon’s entropy value, n is the total number of unique
projects, i is the unique number of projects, p; is the proba-
bility of the use of function F((p; > 0,and Y ;_'p; =1)ina
given project ¢. p; is calculated by dividing the total number of
occurrence of function F' in the project i by the total number
of occurrence of function F in all the projects. If all the unique
projects have the same probability of using function F (i.e.,
pi = %,W € 1,2, ..,n), the Shannon entropy of F is maximal
(i.e., H,(F) = 1). Thus, the function F with higher Shannon
entropy is more likely to be used more by ML practitioners
compared to the functions with less Shannon entropy.

The functions with H,,(F) > 0.8 and with their respective
counts of function calls above 80% percentage (sorted in
descending order) were chosen for manual labeling. A total
of 619 functions from the top 10 AutoML tools were selected
in this step.

Manual labeling: Here we try to understand why AutoML
tools are used by ML practitioners and what they are used
for. To this end, we manually labeled the selected functions in
the previous step and formed categories and sub-categories
of purposes of using AutoML tools. We also assigned a
separate label representing the stages of the ML pipeline for
which the respective functions are called, following the stages
presented in Figure [I] The first two authors were involved
in the initial labeling and construction of the taxonomy.
Both individuals are graduate students with strong knowledge

in machine learning and software engineering. The primary
reference during the labeling is the official documentation
of the functions from the tool websites and the publications
associated with the AutoML tools. For example, the func-
tions ‘autokeras.TextClassifier.evaluate’ [60]
and ‘autokeras.ImageRegressor.evaluate’ [61]
of AutoKeras are used to evaluate the best model and their
purposes were labeled as ‘Model evaluation’. The functions
related to data formatting, generating statistics of the input
data, or cleaning is assigned the stage of ‘Data cleaning’.

During the first iteration of labeling, the first author labeled
the functions of Optuna, Skopt, Featuretools, and Ax, and the
second author labeled the functions of the remaining six tools.
In the Second iteration, all the initial labels were combined,
and the first two authors underwent through each label together
and subsequently further discussed the labels that were not
agreed upon until a consensus was achieved. A random sample
of 238 functions was selected with a confidence level of 95%
and a confidence interval of 5% for further validation by the
other two authors (not involved in the initial labeling). They
agreed on 98% of the stages of the functions and 96% of the
purposes of the functions.

3) Results: Table [ll| details the stage of the ML pipeline
(i.e., the table columns) in which ML practitioners use Au-
toML tools. Each cell value in Table [lI| represents the per-
centage of the total number of calls of the functions from
the respective AutoML tool corresponding to the stages of the
ML pipeline. As shown in Table the AutoML tools are
mostly used for hyperparameter optimization (accounting for
40.9% of the function calls). One of the possible reasons is
that hyperparameter optimization involves multiple repetitive
tasks and requires a lot of effort and time [2]; similarly, there
might be numerous different sub-tasks involved compared to
other stages of the ML pipeline.

AutoML tools are mainly used (40.9%) during the Hy-
perparameter Optimization stage of the ML pipeline,
followed by Model training (11.5%), Model evaluation
(11.2%), and Feature Engineering (10.1%). AutoML
tools mostly focus on providing functions for training
ML models effectively, selecting a model, and evalu-
ating the performance of the resulting model.




TABLE II
THE PERCENTAGE USAGE OF AUTOML FUNCTIONS ACROSS THE ML
WORKFLOW.

Data col- Data Dala label-

Hyperparam
lection cleaning ing "

Ecaang Model Model

engincer-  optimiza pde '

5 . training  evaluation

ing tion

29 0 0 729 21 07 07 121 64
75 0 0 0 38 19

0 0 0 %06 31 31 0 0 31
0 0 0 0 26 77

Model de-  Model

AutoML 5
ployment  monitor

116 0 93 93 233 186 18.6 47 47
0 0 0 789 0 0 0 53 158
36 0 83 83 40.5 25 7.1 0 36
54 14 54 4.1 257 446 14 41 54
42 0 0 68.8 42 42 21 42 125
216 27 2.7 14 162 162 14 0 4.1
59 78 0.1 09 115 2 31 37 63

Figure [5] presents high-level (in the grey background) and
low-level (in white background) categories of the purposes
for which ML practitioners use AutoML tools. As shown
in Figure [5} the high-level categories of purposes are in the
order: Hyperparameter Optimization (30.6%), Model manage-
ment (26.5%), Data management (15%), Visualization (7.4%),
Logging (3.4%), Utility functions (3.2%), Feature Engineering
(3.1%), Storage management (2.1%), Pipeline management
(2%) and User Interface (0.5%). The following section de-
scribes some of the categories and sub-categories of purposes.

o Hyperparameter optimization (HPO): This category is
about using AutoML to determine the right combination of
hyperparameters that maximizes the model performance, usu-
ally through running multiple experiments in a single training
process. Automating HPO is indeed crucial, particularly for
Deep Neural Networks (DNN) [7], [62], which depend on
a wide range of hyperparameter choices about the function
tuning or regularization, parameter sampling, the network’s
architecture, and optimization. In Figure [5] we reported 16
different activities involved during the HPO process, from ex-
ecuting hyperparameter optimization and parameter sampling
to HPO documentation.

o Model management: This category is about using AutoML
to handle the different tasks related to training ML algorithms
with some input data and the resulting model that can generate
predictions using patterns in the input data. In Figure [5] we
highlighted the different sub-tasks where ML practitioners use
AutoML in the ML models management, using AutoML for
model evaluation and error-analysis, model training/testing,
model definition, model monitoring, and optimizing model
training performance.

e Data management: In this category, AutoML is used to
handle the tasks related to the data used for building ML
models. This process includes a set of steps involving data,
including data generation and processing steps, managing data
flow to ML models, working with multiple datasets, and
other tasks throughout the data pipeline. In particular, we
summarized 12 different sub-tasks related to data management
in Figure [5] including data transformation, data analysis, data
loading, data labeling, and data export.

o Utility functions: These are functions provided by specific
AutoML tools to perform some common functionally and
are often reusable in the ML pipeline. The Utility functions
are particularly important to reduce the pipeline complexity
and increase the readability of the source code. Examples of
the tasks in this category include session management (e.g.,

during model training), handling of input/output operations of
ML models, showing training or optimization progress, and
handling of thread execution.

o Feature engineering: This category is about using AutoML
tools to automate the extraction of features from the given
data, usually using domain knowledge of the data and the
model being built. The resulting features are used as input
to some algorithms to train the ML models. We reported
in Figure [5] two main sub-categories of Feature engineering,
including feature analysis and feature generation/extraction.

e Pipeline management: This category is about using Au-
toML to automate the end-to-end management of an ML
model or a set of multiple models, including the orchestration
of data that flows into or out of the model.

e Visualization: This category is about the graphical rep-
resentation of data and information, such as visualizing the
feature importance using a chart for interpretability or visual
representation of data distribution during data analysis.

e Logging: This category involves using AutoML tools to
track and store records related to the execution events, data
inputs, processes, data outputs, resulting in model performance
and other related tasks when developing and deploying ML
models. ML practitioners use the resulting information to
identify any suspicious activities in ML software projects’
privileged operations and assess the impact of state transfor-
mations on performance.

e Storage management: In this category, AutoML tools
are used for managing the data storage resources aiming
at improving and maximizing the efficiency of data storage
resources, often in terms of performance, availability, recov-
erability, and capacity.

e User interface: This category is about the element of
AutoML tools that allows the ML practitioners to easily
interact with the AutoML features, using the concepts such
as visual and interactive design and information architecture
(e.g., providing web-based interactive interface for displaying
live code).

We used the label Others for the function calls which do
not fall into any of the categories.

We derived 10 high-level categories of the purposes
of using AutoML tools, including Hyperparameter
optimization (30.6%), Model management (26.5%),
Data management (15%), Visualization (7.4%), and
Logging (3.4%). ML practitioners can save time and
effort by using AutoML tools to automate their ML
pipeline tasks [2]] for similar purposes.

In Figure [6] we provide the breakdown of the major cate-
gories of purposes (x-axis) of using AutoML provided in the
top 10 AutoML tools (y-axis). The circle size represents the
composition of using the respective AutoML tools for that
purpose, computed as the percentage of total function calls
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Fig. 5. The taxonomy of the purposes of using AutoML tools. The high level categories are highlighted in grey, while the sub-categories are in white boxes.

defining that purpose to the total number of function calls
from the individual AutoML tool.
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Fig. 6. The percentage composition of the high-level categories for purposes
of using AutoML across the top 10 most used tools.

We can clearly see in Figure [6] that the functions for
Hyperparameter optimization, Model management, and Data
management are used the most for most of the top 10 AutoML
tools. Specifically, Hyperparameter optimization and Model
management dominate at least 40% of the AutoML tools. In
contrast, some of the purposes of using AutoML tools are
specific to certain tools. For example, we can observe that the

function calls for Feature engineering (45%) and Pipeline man-
agement (22.7%) tasks are dominantly used from Featuretools
and Tpot, respectively, while a minimal percentage (1.3%) of
function calls related to User Interface comes from Snorkel
and Optuna.

C. RQ3: Are different AutoML tools used together?

1) Motivation: From Table |lI] we observe that at least
two of the AutoML tools can be used to automate the
functionality in each stage of the ML pipeline. This question
aims to understand whether the different AutoML tools are
used together in the same source code file. For instance,
ML practitioners may use AutoSklearn for model training
and tune the hyperparameters using the functionality provided
by Optuna within the same code. Answering this question
could help ML practitioners choose the AutoML tools used
together for different purposes. Similarly, the information
can help the developer of the AutoML tools improve the
integration procedure of the AutoML tools used together, such
as providing an API to facilitate the usage of the other AutoML
tools while getting input or sending output.

2) Approach: We compared the composition of the source
code files (of the projects using AutoML tool) where different
AutoML tools are used together as follows. For every source
code files {T'sy,Tss,Tss,...T's,} importing and using the
functions from a given AutoML tool, we computed the per-
centage composition of the shared source files as:

TSiN

2)



TABLE III
THE PERCENTAGE NUMBER OF GITHUB PROJECTS AND SOURCE CODE
FILES USING DIFFERENT AUTOML TOOLS TOGETHER.

No. AutoML |1 2 3 4 5 =6
% No.of Projects 92.52 5.85 1.28 0.26 0.053 0.045
% No.of code files | 98.77 0.90 0.32 0.004 0 0

TABLE IV
EXAMPLES OF THE AUTOML FUNCTIONS USED TOGETHER .

Tools combination | Example function

hyperopt.fmin’, ’tpot.TPOTClassifier.fit’,
hyperopt, tpot ’tpot .TPOTClassifier.score’
’"hyperopt.fmin’, ’hyperopt.hp.choice’,

’'hyperopt.hp.uniform’, ’optuna.create_study’,
’optuna.create_study.optimize’

’bayes_opt .BayesianOptimization’,

’'bayes_opt .BayesianOptimization. maximize’,

! skopt .BayesSearchCV’, ’skopt.BayesSearchCV.fit’
’"hyperopt.Trials’, ’‘hyperopt.fmin’,
’optuna.create_study’, ’optuna.create_study.optimize’,
’tpot.TPOTClassifier.fit’, ’tpot.TPOTClassifier.score’

hyperopt, optuna ‘

bayes_opt, skopt

tpot, hyperopt, optuna

where T's;.; is the total number of source files using the
functions of two AutoML tools T; and T} in the same file, and
T's;n is the total number of files using at least one function
from the AutoML tool T;. We define the results of the equation
as the correlation between two AutoML tools.

In addition, we also calculated the distribution of the
projects that use the different number of AutoML tools to
understand how these AutoML tools are used together in the
same projects.

3) Results: Table |l1I] shows the distribution of the projects
and source codes that use a different number of AutoML tools.
We focus on the top 10 AutoML tools and the projects that use
these tools. We observe that the vast majority of the projects
use only one AutoML tool. There are only fewer than 8% of
the projects that use two or more different AutoML tools in
the same project.

Figure [/| shows the correlation matrix of the percentage
composition of shared source files using different top AutoML
tools together, computed using Equation (2)). We only reported
the correlation of the top 10 most used AutoML tools for clear
visualization.

snorkel
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Top 10 AutoML

featuretools

skopt

hyperopt|

optunal

optuna  hyperopt  skopt featuretools  tpot

bayes_opt autokeras autosklearn  ax snorkel

Top 10 AutoML

Fig. 7. The composition of project’s source code files using different AutoML

tools.
*From Figure [/| we observe that, across the top 10 AutoML

tools, only a few of the source files (< 2%) uses the functions
from more than one AutoML tool. This result implies that most
of these tools are used independently. Among the most used
AutoML tools, the few AutoML tools used together are Tpot

with Hyperopt (0.69%), Optuna with Hyperopt (0.29%), Skopt
with Hyperopt (0.25%) and Bayes-Opt with Skopt (0.20%). In
Table we provide examples of the functions used together
in the same source code file. For instance, both Hyperopt and
Optuna provide rich functions for optimizing hyperparameters
according to Figure [6f however, optuna also offers other
features that are useful during hyperparameter optimization,
such as Visualization and Logging. This implies that ML
practitioners using HyperOpt with Optuna together have more
options for HPO while also utilizing the visualization and
logging functions from Optuna. Similarly, Tpot provides few
functions for optimizing hyperparameters but offers more
functions such as pipeline management and model manage-
ment; the ML practitioners can simultaneously automate these
tasks when using Tpot with Hyperopt.

Less than 8% of projects use two or more different
AutoML tools. Different AutoML tools are rarely used
in the same source code files. Among the few AutoML
tools used together, Hyperopt is used with other tools,
such as Tpot, Skopt, and Optuna. ML practitioners
can consider using the combination of functions from
different AutoML tools together to help automate
multiple tasks across the ML pipeline. Similarly, the
AutoML developers can propose an efficient API to
integrate the AutoML tools that are used together.

VI. DISCUSSION AND IMPLICATION

This section further discusses the implications of our find-
ings for the research community, the ML practitioners, and
tool developers.

e Researchers: Our study provides a general view of the usage
of AutoML tools by ML practitioners across the ML pipeline
and highlights the most used AutoML tools. Our initial results
indicate that most of the popular AutoML tools are used in
relatively immature and less popular projects, with 75% of the
projects being developed by fewer than two contributors and
being younger than five months old. Also, the result shows
that the top 10 tools (18% of the tools) account for 68% of
the usages. Future work can explore the factors that impact
the adoption of the AutoML tools.

Also, regarding the usage of the AutoML tools in the studied
projects, our results indicate that most of the functions used
by the ML practitioners are model-oriented, specifically in
the Hyperparameter optimization (40.9%) and model training
(11.5%) stages of the ML pipeline. These results indicate that
the current AutoML tools focus more on providing effective
model training and the resulting models and pay little attention
to the data prepossessing process. Indeed data prepossessing
has been the least focus of AutoML tools, in line with the
previous works [2]], [14], [63], yet an ML model is as good
as the quality of the data [64]. Researchers can investigate the
challenges involved in automating the data-oriented tasks of
the ML pipeline for a better quality of the data.



o AutoML Tool Developers: The developers of the AutoML
tools, on the one hand, can use our results to improve their
tools to support the most used purposes and stages of the
ML pipeline while keeping in mind the target users of their
tools. They can also add more features to support the stages
not currently supported such as data labeling. On the other
hand, the developers of the least used AutoML tools can
improve their tools by implementing or reusing the similar
functionalities provided by the most popular AutoML tools.

We also observe that, although not frequent, some AutoML
tools are used together in the same source files. For example,
Hyperopt is one of the tools that is used with other tools, such
as Tpot, Skopt, and Optuna. The developers of these tools can
propose an efficient API for integrating these tools. Also, Au-
toML tools’ developers can propose better tooling/frameworks
integrated into their AutoML tools for improving the quality
of the data. Moreover, we observed that the functionalities
related to documentation and user interface (UI) are among
the least used, indicating that the current AutoML tools may
suffer from the level of adaption (and possible customization)
by the ML practitioners of diverse skills and expertise. Xin et
al. [8] in their study found that customization is one of the
lowest-rated quality attributes of AutoML tools, as reported
by practitioners. ML practitioners expressed the need for more
customization. They claim that this would improve their trust
and transparency in using the AutoML tools [§8]. Therefore,
AutoML tools’ developers should consider providing more
visualization functionalities and improving the UI, to increase
the usability of their tool.

e ML Practitioners: We encourage the ML practitioners to
use our findings to learn about the popular AutoML tools and
the different purposes for which they can be used, in order to
automate similar tasks in their ML pipeline; saving both time
and effort [2]. Also, they can choose the combination of the
tools that are mostly used together including Hyperopt with
other tools, such as Tpot, Skopt, or Optuna. For instance, when
the ML practitioner wants to optimize hyperparameters and
manage the entire ML pipeline, Hyperopt (for hyperparameter
optimization) with Tpot (for pipeline management) can be a
good choice according to Figures [6] and

VII. THREATS TO VALIDITY

We now discuss threats to the validity of our study.
Internal validity threats: We manually studied a sample of

AutoML function calls to understand ML practitioners’ pur-
poses for using AutoML tools. However, our labeling results
may not truly reflect the actual purposes of the developers.
Future work can perform developer surveys to confirm our
results. Besides, the process of manual labeling affects the
results of this study. To reduce the impact of biased labels,
two authors labeled the functions, and the other two authors
reviewed the labels separately to validate them. Another pos-
sible threat is related to our use of function calls to determine
the popularity of the AutoML tools. As different numbers of
calls may combine to achieve the same goal across different

AutoML tools, which may affect the results of this study.
However, a function is usually designed to perform a specific
task, as reflected by the name of that function. Therefore,
we believe that this threat is minimal. In the future, we will
analyze the relation cardinality between functions of different
AutoML tools to understand how the studied tools handle the
same situation with the same or different number of function
calls.

External validity threats: The number of selected AutoML
tools for manual labeling affects the generalizability of the
results. To minimize this effect, we selected the 10 most used
AutoML tools, which account for 68% of the usage in the
GitHub projects. We assumed that our findings derived from
these 10 AutoML tools can represent how ML practitioners
use AutoML tools and their main purposes for using them.

Construct validity threats: To extract the function calls of
AutoML tools in GitHub projects, we followed the official
documentation of AST library. However, it’s still possible that
we may have missed some function calls that are rarely used
and hard to recognize. We provide all our scripts and data in
our replication package [44], to allow replicating our results.

VIII. CONCLUSION AND FUTURE WORK

This paper presents an empirical study on the usage of
AutoML tools in open-source projects hosted on GitHub. As
the initial step, we examined the most used AutoML tools
and the details of the projects using the tools. We reported
the top 10 most used AutoML tools and showed that most
of the projects using the tools are young and less popular.
Then, we manually investigated the function calls of ML
tools to understand the purposes of using AutoML tools and
their used stages in the ML pipeline. We showed that some
of the purposes (such as User Interface, Logging, Feature
Engineering, and Pipeline management) are only specific to a
few AutoML tools (e.g., Optuna, Tpot and Featuretool) com-
pared to other purposes (e.g., Hyperparameter Optimization,
Model management, Data management) which span across
multiple AutoML tools. We also showed that most AutoML
tools focused on model training and model selection but had
few functions to automate the data-oriented stages of the
ML pipeline. Moreover, we examined whether the different
AutoML tools are used together in the same source code and
observed that only a lower percentage of the files use different
AutoML tools together in the same code. Our future work
will investigate the features that are provided by the AutoML
tools but not used by ML practitioners. In addition, we will
quantitatively study the factors that impact the successful
adoption of the AutoML tools in real-world ML projects.
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