

Delft University of Technology

Guiding Automated Test Case Generation for Transaction-Reverting Statements in Smart
Contracts

Olsthoorn, Mitchell; van Deursen, Arie; Panichella, Annibale

DOI
10.1109/ICSME55016.2022.00023
Publication date
2022
Document Version
Final published version
Published in
2022 IEEE International Conference on Software Maintenance and Evolution (ICSME)

Citation (APA)
Olsthoorn, M., van Deursen, A., & Panichella, A. (2022). Guiding Automated Test Case Generation for
Transaction-Reverting Statements in Smart Contracts. In C. Ceballos (Ed.), 2022 IEEE International
Conference on Software Maintenance and Evolution (ICSME) (pp. 163-174). IEEE.
https://doi.org/10.1109/ICSME55016.2022.00023
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ICSME55016.2022.00023
https://doi.org/10.1109/ICSME55016.2022.00023

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Guiding Automated Test Case Generation
for Transaction-Reverting Statements

in Smart Contracts

1st Mitchell Olsthoorn
Delft University of Technology

Delft, The Netherlands

M.J.G.Olsthoorn@tudelft.nl

2nd Arie van Deursen
Delft University of Technology

Delft, The Netherlands

Arie.vanDeursen@tudelft.nl

3rd Annibale Panichella
Delft University of Technology

Delft, The Netherlands

A.Panichella@tudelft.nl

Abstract—Transaction-reverting statements are key constructs
within Solidity that are extensively used for authority and
validity checks. Current state-of-the-art search-based testing and
fuzzing approaches do not explicitly handle these statements and
therefore can not effectively detect security vulnerabilities. In
this paper, we argue that it is critical to directly handle and test
these statements to assess that they correctly protect the contracts
against invalid requests. To this aim, we propose a new approach
that improves the search guidance for these transaction-reverting
statements based on interprocedural control dependency analysis,
in addition to the traditional coverage criteria. We assess the
benefits of our approach by performing an empirical study
on 100 smart contracts w.r.t. transaction-reverting statement
coverage and vulnerability detection capability. Our results show
that the proposed approach can improve the performance of Dy-
naMOSA, the state-of-the-art algorithm for test case generation.
On average, we improve transaction-reverting statement coverage
by 14% (up to 35%), line coverage by 8% (up to 32%), and
vulnerability-detection capability by 17% (up to 50%).

Index Terms—test case generation, search-based software en-
gineering, smart contracts, interprocedural analysis

I. INTRODUCTION

Ever since its launch in 2015, Ethereum has been the largest

and most prominent smart contract platform [1]. One key

property of these smart contracts is that once a contract has

been deployed, it cannot be updated [2]. This property makes

sure that contracts that are in use on the platform cannot

be altered by the creators of the contract for their benefit.

However, this creates certain challenges, e.g., what happens if

a bug is discovered. This greatly increaces the importance of

quality assurance in the smart contract development lifecycle.

In the last few years, various search-based methods have

been developed to assist developers with this problem, like

fuzzing [3], [4], [5], [6], [7], [8] and test case generation [9].

Smart contracts on the Ethereum platform are written in So-
lidity, a high-level smart contract language. Solidity is a trans-

actional language, meaning transactions either succeed or fail.

Hence, it is impossible for the contract to be in a broken state.

To accomplish this, the language makes use of transaction-
reverting statements, which allow developers to check the

validity of requests. When the conditions of such statements

are not met, an exception is raised and all modifications made

by a given request to the current state are reverted [10].

For the purpose of checking the (external) inputs or the

validity of the state to receive such inputs, Solidity provides

the require routine – this transaction-reverting statement

makes the contract robust against improper usage. Typical

examples of require statements are: (i) checking that certain

requests can only be done by the owner of the contract —i.e.,
require(msg.sender==owner)— or (ii) that a transac-

tion amount is positive —i.e., require(amount>0).

A recent study by Liu et al. [11] shows that transaction-

reverting statements are extensively used within Solidity smart

contracts for authority and validity checks. They found that

removing or modifying these statements may compromise the

security of the smart contract. Additionally, the study showed

that existing Solidity testing tools cannot effectively detect

security vulnerabilities caused by these statements. Internally,

the require statements are just normal function calls that are

handled in a special way by the interpreter. Existing search-

based approaches [3], [9], however, treat these statements as

any other function call without taking this critical construct

of Solidity into account. In particular, there is no gradient

in the fitness landscape that the search algorithm could use

as guidance to satisfy the condition of these statements, the

search algorithm has to resort back to random testing.

In this paper, we argue that these transaction-reverting

statements should be treated as first class citizens during

testing, since any error in them likely corresponds to a security

vulnerability. To this aim, we propose a new approach to

improve the search guidance for transaction-reverting state-

ments, without changing the semantics of the contract under

test. First, we statically analyze the contract under test and

identify the transaction-reverting statements and modifiers.

Modifiers are interprocedural constructs that group transaction-

reverting statements that are executed by the Ethereum Virtual

Machine (EVM) as a dependency for certain methods. Then,

we perform interprocedural dependency analysis to link the

Control Flow Graph (CFG) of the method under test with the

associated modifiers. Lastly, we calculate an interprocedural-

level fitness value (i.e., to guide the search process) based

on the runtime data collected by a context-sensitive instru-

163

2022 IEEE International Conference on Software Maintenance and Evolution (ICSME)

2576-3148/22/$31.00 ©2022 IEEE
DOI 10.1109/ICSME55016.2022.00023

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

of
tw

ar
e

M
ai

nt
en

an
ce

 a
nd

 E
vo

lu
tio

n
(I

C
SM

E)
 |

97
8-

1-
66

54
-7

95
6-

1/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

SM
E5

50
16

.2
02

2.
00

02
3

Authorized licensed use limited to: TU Delft Library. Downloaded on December 20,2022 at 07:48:27 UTC from IEEE Xplore. Restrictions apply.

mentation of the transaction-reverting statements. The new

fitness function allows to measure how far a test case is from

satisfying the condition within these statements.

To evaluate the effectiveness of our approach, we imple-

mented it within SynTest-Solidity [12] — a test case gen-

eration framework for Solidity that implements DynaMOSA.

DynaMOSA is the state-of-the-art algorithm for unit test case

generation originally designed for Java programs [13], [14]

and recently applied to Solidity [9]. It is guided by state-

of-the-art unit-level fitness functions that consider structural

coverage [15]. We performed an empirical study on 100
real-world smart contracts gathered from etherscan.io. We

compare the results achieved by DynaMOSA with and without

the improved guidance with regard to vulnerability detection

capability and structural coverage.

Our results show that DynaMOSA covers significantly more

transaction-reverting statements with the improved guidance

in 37% of the smart contracts, with an average increase in

transaction-reverting statement coverage of 12%. This also

leads to an average increase in line coverage by 8%. Finally,

our approach helps DynaMOSA detect more vulnerabilities,

with 17% (on average) more captured vulnerabilities for those

contracts on which we observe an increase in transaction-

reverting statement coverage.

In summary, this work makes the following contributions:

1) A lightweight approach based on interprocedural analysis

to improve the search guidance for transaction-reverting

statements (Section III).

2) An implementation of our approach1 within a state-

of-the-art Solidity smart contract testing tool, named

SynTest-Solidity [12].

3) A Solidity smart contract benchmark consisting of a

diverse set of 100 real-world smart contracts (Sec-

tion IV-B).

4) An empirical study demonstrating the benefit of the

proposed approach (Section V).

5) A full replication package including the code, results, and

the scripts to analyze the results [16].

While in this paper we focus on Solidity smart contracts,

this approach can be benefecial for any programming language

with explicit contracts or declarative input validation rules.

II. BACKGROUND AND RELATED WORK

This section provides an overview of basic concepts and

related work on smart contracts, fuzzing, and test case gener-

ation.

A. Smart Contracts and Ethereum

In the last decades, there has been an increased focus on

creating decentralized services to cut out intermediaries from

the interaction between people. One example of this trend is

smart contracts —digital agreements between multiple parties

on how certain tasks need to be executed— and in particular

Ethereum, the most popular smart contract platform [1]. The

1https://github.com/syntest-framework/syntest-solidity

main benefits that smart contracts can provide are trustless

interactions, automated task handling, and hosting of decen-

tralized applications (dApps). Smart contracts are built on top

of a blockchain, a tamperproof ordered ledger. When a smart

contract gets deployed, it creates a transaction containing code

(a collection of functions) and data (state) that resides at a

specific address on this ledger. Users can make requests to

this address, using the functions to modify the state of the

contract. Each state modification creates a new transaction on

the blockchain. This chain of blocks will grow over time with

the addition of new contracts and requests. Since the logic that

can be applied to the state is fixed and the state is publically

available, users in the network can verify if a transaction was

properly executed.

Ethereum runs on a decentralized network of nodes. These

nodes process the requests made to the contracts and create the

blocks needed to modify state and deploy new contracts. To

secure the platform against attacks, there should be consensus

between the nodes. To get consensus within the network,

Ethereum makes use of the mechanism called Proof of Work
(PoW). PoW relies on a computationally-expensive mathemat-

ical problem that is difficult to calculate, but easy to verify.

The random node that solves the problem first gets to decide

which transactions are accepted.

B. Transaction-Reverting Statements

Since smart contracts cannot be modified once deployed,

it is crucial that they are thoroughly tested to detect and

remove potential vulnerabilities. In addition, transaction-

reverting statements are used by developers to further assess

the validity of requests and verify that the contract remains

in a valid state. Hence, it is critical that these statements

are correctly added to assess the important properties of the

contract under analysis.

To better show how these reverting statements work, let us

consider the simplified example of a Solidity smart contract

1 pragma solidity ^0.5.0;
2 contract Account {
3 address public owner;
4 mapping (address => uint) private balances;
5
6 constructor() public {
7 owner = msg.sender;
8 }
9

10 modifier isOwner() {
11 require(msg.sender == owner, "You are not the owner"

);
12 _;
13 }
14
15 function withdraw(int amount) public isOwner {
16 require(amount > 0, "Amount too low");
17 if (amount <= balances[msg.sender]) {
18 balances[msg.sender] -= amount;
19 msg.sender.transfer(amount);
20 }
21 return balances[msg.sender];
22 }
23 ...
24 }

Listing 1: Example Solidity smart contract

164

Authorized licensed use limited to: TU Delft Library. Downloaded on December 20,2022 at 07:48:27 UTC from IEEE Xplore. Restrictions apply.

shown in Listing 1 that represents a bank account. On lines 6-

8, the owner of the account is set to the creator of the contract.

Lines 10-13 define a modifier, consisting of a transaction-

reverting statement that is executed by the Ethereum Virtual

Machine (EVM) as a dependency for the withdraw method.

Lastly, the method on lines 15-22 allows users to withdraw

money from the account. The withdraw method makes use

of the isOwner modifier to guarantee that only the owner of

the account can withdraw money. In addition, the method uses

a local reverting statement (line 16) to check if the amount to

withdraw is positive. When the require check on line 16

fails, state-of-the-art coverage heuristics (like used by existing

search-based approaches [3]) would assume that line 17 and

21 are also covered. In reality, however, only line 16 is covered

and the execution is halted.

C. Testing Solidity Smart Contracts

Various techniques have been used in literature to test So-
lidity smart contracts. An overview of the different techniques

is available in the recent survey by Ren et al. [17].

Static Analysis [18], [19], [20]: Static analysis tools analyze

a contract for vulnerabilities without running it. This can be

done at both a source code and a byte-code level. The benefit

of analyzing a contract statically is that the entire contract can

be scanned at once. However, static analysis tools often have

a high false-positive rate requiring manual verification [17].

Symbolic Execution [21], [22]: Symbolic execution tools

also statically analyze a contract. What differentiates symbolic

execution tools is that they keep track of all constraints

they encounter on every path through the code. This allows

these tools to perform constraint solving to determine which

range of input values will lead to certain branches. Symbolic

Execution, however, unavoidably suffers from problems like

path explosion [23].

Formal Verification [24]: Formal verification methods

transpose the source code of the contract to a mathematical

proof language. Within this proof language, this method math-

ematically checks the source code against a manually con-

structed model of the code’s behaviour. This method provides

the most security, however, it requires developers to construct

a complex model in a different language than the contract.

Fuzzing [3], [4], [5], [6], [7], [8]: Fuzzing automatically

generates test data. This data is fed to the contract under

test to see how the contract responds to it. This technique is

very effective at finding inputs that make the contract crash.

However, it cannot be used for verifying the behavior of

the contract. Besides, it only focuses on test data without

generating complete test cases (e.g., without assertions).

Test Case Generation [9]: Test case generation generates

test data, method sequences, and assertions. One study used

this technique. However, this study [9] uses existing algorithms

without adapting them to Solidity.

D. Search-based Testing and Fuzzing

Search-based software testing (SBST) is a well studied

research area that focuses on automating the generation of test

data and test cases. Automatic test case generation significantly

reduces the time needed for testing applications [23] and has

been successfully used in industry [25], [26]. Various studies

have been performed that use meta-heuristics to test programs

at different levels e.g., unit [27], integration [28], and system-

level [29]. These studies have shown that these techniques

are effective at achieving high coverage [30] and detecting

faults [31], [32], [33].

One of the most commonly used classes of meta-heuristics

is Evolutionary Algorithms (EAs) [30], [34], [35]. EAs are

inspired by the process of natural selection. They evolve

an initial population of randomly generated individuals (test

data or test cases). These individuals are then evaluated
based on a predefined fitness function. After the evaluation,

the individuals with the best fitness values are selected for

reproduction. Reproduction creates new offspring by applying

mutation (small delta changes to an individual) and crossover

(exchanging information between two individuals). Lastly, the

new population is created by selecting the best individuals

across the parents (current population) and the offspring

(newly created test data or test cases). These three steps

evaluation, reproduction, and selection happen in a loop until

a stopping condition has been met. After the search process

ends, an archive is created with the best individuals from the

population [13], [14].

EAs are often used in fuzzing for generating input data. For

example, Nguyen et al. [3] used an efficient genetic algorithm

for fuzzing Solidity smart contracts. The main difference

between fuzzing and test case generation is that the former

focuses on generating test inputs while the latter aims to

generate full test cases, including input data, method sequence,

and assertions.

E. Unit-level Fitness function

The purpose of a fitness function is to measure and indicate

how far off the individual (test) is from satisfying a test

objective, e.g., branches. In SBST, the de facto fitness function

is made up of two heuristics: approach-level and branch
distance [36], [27], [3], [13]. The approach-level relies heavily

on the Control Flow Graph (CFG). A CFG represents the

flow of the logic within a function of a program — all

paths that might be traversed during the execution of the

program. CFGs are created from the Abstract Syntax Tree

(AST) provided by the parser of the language, in our case

the Solidity compiler. A node in the CFG is called a basic
block and corresponds to a sequence of statements that are

always executed altogether [37], i.e., with no branches inside

the block. The approach-level uses the CFG and the data

that is gathered from the instrumentation during runtime to

measure how far, in terms of graph distance, the execution flow

is removed from the targeted branch point. More precisely,

the instrumentation data is used to determine which branches

of the CFG have been covered by the test case. Afterwards,

the fitness function calculates the shortest difference along the

CFG between the targeted branch node and the closets covered

node. Once the execution path reaches the targeted branch

165

Authorized licensed use limited to: TU Delft Library. Downloaded on December 20,2022 at 07:48:27 UTC from IEEE Xplore. Restrictions apply.

node, the fitness function uses the branch distance to calculate

how far the input variable is from satisfying the condition of

the target true or false branch.

F. Testability Transformations

The flag problem is a common issue in SBST [38], [39]

that manifests when the conditions in the if-statements are not

explicit (e.g., an inline method call like if (isNull(y)))

or it reads boolean variables (e.g., if(y==true)). To

address this problem, researchers have proposed testability
transformations [39], which transform the program under test

into an equivalent one (i.e., by preserving the semantics)

where the conditions are replaced with predicates reading non-

boolean variables. Prior studies have shown that testability

transformations dramatically improve code coverage without

the need for adapting the underline search algorithms [40],

[41], [38].

Compared to these prior studies, we do not apply testabil-

ity transformation for two reasons. First, creating testability

transformations that fully preserve the semantics of program

is challenging, limiting its practical applicability [39]. Second,

state-reverting conditions are internal subroutines executed by

the EVM at run-time and not part of the branch conditions of

the source program under test and, therefore, they cannot be

transformed.

III. APPROACH

This section outlines our approach to improve the search

guidance (i.e., restoring the gradient) for transaction-reverting

statements using the contract shown in Listing 1 as a running

example.

A. Problem Definition

A primary challenge in SBST is defining an effective fitness

function that guides the search algorithm toward covering an

uncovered branch. As an example of test objectives, let us

consider the false branch of the if condition in line 17 for

the method withdraw in Listing 1 and its CFG depicted

in Fig. 2a. If we apply the state-of-the-art unit-level fitness

function, we obtain the fitness landscape depicted in Fig. 1.

This fitness landscape shows the fitness values for the false

branch with varying inputs for the amount parameter. The

inputs where the fitness function is zero lead to covering

the target branch. Ideally, the fitness function should have a

gradient to effectively guide the search algorithms. However,

in Fig. 1, we can observe that the landscape is flat for all

negative values of amount. This is due to the program

execution ending when the condition within the require
in line 16 of Listing 1 is not met, without providing any

information on how close the execution is to satisfying that

condition.

The problem of the flat landscape does not apply only

to our example but it generalizes to all contracts that have

transaction-reverting statements. As shown by Liu et al. [11],

these statements are extensively used in smart contracts for

authority and validity checks. Therefore, explicitly considering

-50 0 balances[msg.sender]
0.50

1.00

1.50

amount

Fi
tn

es
s

va
lu

e

Fig. 1: Fitness landscape for the false branch of the if in line

17 of the method withdraw in Listing 1

these constructs when computing the fitness function is critical

to restore the gradient and make the search more effective.

Otherwise, the search algorithm has to resort to random testing

when encountering such transaction-reverting statements. This

approach is not ideal as random testing (i.e., without guidance)

is slow and might not lead to a solution within the allocated

search budget. In practice, this means the search algorithm

either randomly guesses the input values needed to satisfy the

condition or gets stuck.

Additionally, in Listing 1, we can see that the withdraw
method defines a dependency on the isOwner modifier. In

this example contract, the require statement within the

isOwner modifier (line 11) has to be satisfied before the

main branch of the withdraw function can be executed.

As a consequence, the search algorithm has to overcome

two independent obstacles without guidance through random

testing before it can reach the branch in line 17.

B. Overview

The goal of our approach is to restore the gradient for Solid-
ity smart contracts containing transaction-reverting statements,

by providing a quantitative measurement on how far a test case

is from satisfying these statements. To this aim, we first stati-

cally analyze the Abstract Syntax Tree (AST) of the contract

under test and identify the transaction-reverting statements

and modifiers (Step 1). Then, we perform interprocedural

control dependency analysis to determine the control flow

across the different methods and sub-routines (Step 2). Lastly,

we define a new interprocedural fitness function based on the

runtime data collected by the context-sensitive instrumentation

of transaction-reverting statements (Step 3). The last two steps

will be further explained in the next subsections.

C. Interprocedural Dependency Analysis

The idea behind the interprocedural dependency analysis

is to determine how the transaction-reverting statements and

modifiers impact the execution of the method under test at

runtime. To explain how this analysis works, we will use the

example in Fig. 2. Figure 2a depicts the traditional CFG for

the withdraw method in Listing 1 while Figure 2b shows

the results of enriching it with our interprocedural dependency

analysis. In these two figures, the gray nodes represent the flow

entry and exit blocks of the CFG. The numbers within the

nodes indicate the line number of the statement that the block

166

Authorized licensed use limited to: TU Delft Library. Downloaded on December 20,2022 at 07:48:27 UTC from IEEE Xplore. Restrictions apply.

withdraw(…)

15

21

16

17

18

19

True

False

(a) Traditional
CFG

withdraw(…)

15

21

isOwner()

10

13

11

12

require(msg.sender == owner)

11

msg.sender == owner

revert11

16

17 True False

require(amount > 0)

16

amount > 0

revert 16 18

19

True

False

TrueFalse

(b) CFG with interprocedural dependency analysis

Fig. 2: Control Flow Graphs (CFGs) of the withdraw function in Listing 1

represents. Lastly, the solid edges indicate how the execution

flows through the nodes.

1) Linking Transaction-Reverting Statements: Transaction-

reverting statements are special sub-routines within the EVM

and, therefore, they do not have a corresponding CFG nor

branching nodes. We apply context-sensitive instrumentation

around the transaction-reverting statements to capture their

impact on the dependent methods. The instrumentation allows

to capture these interprocedural dependencies and build an

artificial control flow representation of the sub-routines. In the

example of Fig. 2b, we build the control flow of the statement

in line 16 (i.e., the box with the header require(amount
> 0), which is linked (dashed edges) to the CFG of the

withdraw method. The red nodes in the sub-routine rep-

resent the Solidity revert mechanism.

The context-sensitive instrumentation injects two additional

instrumentation statements, namely pre-trs and post-trs (where

trs stands for transaction-reverting statements). The pre-trs and

post-trs are injected before and after each of these statements,

respectively. The pre-trs indicates if the execution of the

contract reached the statement, meaning the search process

is at the revert point. If the post-trs is reached, it indicates

that the condition of the transaction-reverting statement has

been met. If the pre-trs has been reached and the post-trs has

not, the condition has not been met and the execution is halted

and reverted.

However, the pre- and post-trs do not provide information

on how to satisfy the particular condition but only if the

condition has been met or not. To collect information on

how far a test case is from satisfying the conditions, we add

additional instrumentation statements (the context) to record

the type of operator and the values of the operands from

the memory stack at runtime. For example, for the statement

require(amount > 0), our instrumentation records the

operator > and the runtime value of the amount operand and

the constant value 0. This data can be integrated into the fitness

function as discussed in Section III-D to restore its gradient.

2) Linking Modifiers: In step 1 of the approach, we analyze

the Abstract Syntax Tree (AST) of the contract to compile

modifier X() {
 require();

 _;

 require();
}

modifier Y() {
 require();

 _;

 require();
}

A

B

C

D

function Z() public X Y {

 ... logic

}

A

C

B

D

Fig. 3: Modifier structure and execution order

a list of all modifiers that each method is dependent on.

As an example, the method withdraw in Fig. 2b depends

on a single modifier, called isOwner. Note that a modifier

cannot be directly invoked but can be tested only through the

methods that define it as a dependency. In general, a modifier

acts like a template (or around advice in terms of aspect-

oriented programming), wrapping its logic around the method

that depends on it. Modifiers use a special identifier (_;),

as can be seen on line 12 of Listing 1, to indicate where

the function’s logic should be executed. In the example, all

statements within the method withdraw are post-dominated

by the conditions of the isOwner modifier. Hence, the

statements in withdraw are not covered by simply invoking

the function if the conditions of isOwner are not met.

To capture the interprocedural dependencies we build the

control flow graph of the modifier and link it to the entry

or exit point within the method depending on where the

template identifier is located. If a method depends on multiple

modifiers, the CFG of each modifier is linked to the dependent

method Z in the order they appear in signature of Z in a

layered approach.

As an example, consider Fig. 3, which defines two modi-

fiers, named X and Y, together with their extracted parts (A, B)

and (C, D), respectively. Method Z uses both modifiers in the

order they are listed: X, Y. The overall dependency graph links

167

Authorized licensed use limited to: TU Delft Library. Downloaded on December 20,2022 at 07:48:27 UTC from IEEE Xplore. Restrictions apply.

part A, part C to the entry point of the body of the method Z
while its exit point is linked to part D, and lastly part B.

If the modifier contains transaction-reverting statements, we

apply the same procedure described in the previous subsection

to the CFG of the modifier. An example of such a case is

depicted in Fig. 2b where the isOwner modifier contains

a require statement with the condition msg.sender ==
owner. This condition checks that the request is only made

by the owner of the contract. Finally, if a modifier is declared

by multiple methods of a contract, the linking procedure (from

the modifier CFG to the method CFG) is applied separately

for each of these as the context differs among the different

methods.

D. Interprocedural Fitness Function

For each branch in the code, we do not simply apply

the unit-level fitness function discussed in Section II-E but

enrich it with context data collected by the interprocedural

dependency analysis.

We define the interprocedural approach level as an exten-

sion to its unit-level variant. Let t be a test case and bi be a

branch to cover. The interprocedural approach level IAL(bi, t)
is the number of interprocedural control dependencies between

the closest executed branch and bi. The interprocedural control

dependencies includes the classic unit-level control nodes (in

the CFG) and the interprocedural dependencies related to

modifiers and transaction reverting statements. For example

in Fig. 2b, the branch 17→21 of the withdraw method is

control dependent on nodes 15-16 (unit-level dependencies)

but also on nodes 10-13 of the isOwner modifier and the

conditions of the two require statements (nodes 11 and 16).

When the execution of a test t is halted because of a

transaction-reverting statement TRSi, we introduce the trs-
distance. This distance measures how far t is from satisfy-

ing the condition in TRSi by using Korel’s rules [15] for

conditions. For example, the trs-distance for the statement

require(x == 0) is computed as |x − 0| [15], which is

equal to zero only when the condition x == 0 is satisfied.

Therefore, the interprocedural fitness function (f) for a test

t w.r.t. an uncovered branch bi is computed as follows:

f =

⎧⎪⎪⎨
⎪⎪⎩

IAL(bi, t) +
d(TRSi, t)

d(TRSi, t) + 1
if halted at TRSi

IAL(bi, t) +
d(bi, t)

d(bi, t) + 1
+ 1) otherwise

(1)

where IAL denotes the interprocedural approach level,

d(TRSi, t) is the trs-distance for the transaction-reverting

statement TRSi and d(bi, t) is the traditional branch distance.

IV. EMPIRICAL STUDY

We carried out an empirical study to assess the effectiveness

of the proposed interprocedural fitness function compared

to its state-of-the-art unit-level variant. To this aim, we use

these functions to guide the state-of-the-art testing algorithm,

DynaMOSA. We evaluate the impact of the proposed fitness

function w.r.t. to the following testing criteria: (i) structural

(branch, transaction-reverting statement, and line) coverage

and (ii) vulnerability detection capability.

A. Research Questions

Our empirical evaluation aims to answer the following two

research questions:

RQ1 To what extent does the proposed approach improve the
structural coverage achieved by DynaMOSA?

RQ2 To what extent does the proposed approach improve the
vulnerability detection of DynaMOSA?

These two research questions aim to evaluate if the proposed

approach improves the effectiveness of the state-of-the-art test

case generation algorithm DynaMOSA. RQ2 reflects the main

goal, which is to determine if the proposed approach allows

the two algorithms to detect more vulnerabilities in the Solidity
smart contract under test. We additionally report the structural

coverage as test data and test cases cannot detect or capture

vulnerabilities in code regions that are uncovered.

B. Benchmark

To evaluate the proposed approach, we created a benchmark

consisting of 100 Solidity smart contracts. We collected all

contracts submitted between January and April of 2021 with

Solidity versions 5 and 6 from etherscan.io. We then selected

smart contracts with a cyclomatic complexity of cc >= 2, i.e.,
contracts with at least one conditional statement, i.e., branch,

loop.

A recent study by Ren et al. [17] empirically and the-

oretically criticizes the benchmarks used in prior studies,

even those that include the entirety of etherscan.io. Moreover,

previous studies did not explicitly report the source of the

contracts [9] or did not check the cyclomatic complexity [3]

as suggested in the literature [42], [43]. This study proposes a

benchmark that is more transparant by removing trivial smart

contracts (cc < 2) and specifying the date and time on which

the contracts were submitted to etherscan.io.

We ensured that the benchmark contains (i) contracts from

different application domains (e.g., wallets, auctions, tokens,

financial staking, DAO, voting, insurances); (ii) contracts

with and without transaction-reverting statements (70% use

modifiers, 18% use a single require statement, 62% use mul-

tiple require statements, 5% use no reverting statements) to

validate that the proposed approach does not negatively impact

contracts without these constructs; (iii) contracts with a diverse

size and complexity. Table I reports the statistics of the 100

Solidity smart contracts in our benchmark. In particular, the

table reports the minimum, maximum, median, and quartiles

(Qi) of the functions, branches, lines, and transaction-reverting

statements in the contracts. The benchmark is available within

the replication package.

C. Benchmark Tool & Baseline

To answer the research questions, we implemented our

approach within SynTest-Solidity [12]. We have used this tool

because it generates complete test cases with assertions, which

168

Authorized licensed use limited to: TU Delft Library. Downloaded on December 20,2022 at 07:48:27 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Statistics (min, max, median and quartiles) of the

100 smart contracts in our benchmark

Code Elements Min. Q1 Median Q3 Max

Functions 2 10 21.5 39 111
Branches 0 6 12 22 62
Reverting statements 0 12 27 40.5 102
Lines 6 53 109.5 154 431

are necessary for capturing vulnerabilities automatically. In-

stead, other Solidity testing tools were either solely built to

work as a fuzzer [3] or were not sufficiently extensible to

integrate the proposed approach [9]. We briefly describe the

state-of-the-art unit-level test case generation algorithm used

in SynTest-Solidity.

1) DynaMOSA: Dynamic Many-Objective Sorting Algo-

rithm (DynaMOSA) is the state-of-the-art evolutionary search

algorithm for test case generation [13]. It models test case

generation as a many-objective problem by targeting each

test target (e.g., branch, line) simultaneously using a many-

objective genetic algorithm. As any evolutionary algorithm,

DynaMOSA evolves a set of randomly generated test cases

(see Section II-D). The fitness of each test case (or individual)

is determined based on the approach level, and the branch

distance for the remaining uncovered targets. DynaMOSA
makes use of a dynamic selection of the targets, where test

targets are dynamically added based on the control dependency

hierarchy when the current target is covered. This dynamic

selection improves the efficiency of the search process for

smaller search budgets [13]. After evaluating and creating

new test cases (offspring), environmental selection is used

to select the fittest individuals in the population to survive

using the preference criterion, non-dominated sorting, and

crowding distance. The preference criterion first selects the

best test case (the one with the best fitness) for each just-

missed branch (front zero). Then, the non-dominated sorting
selects the remaining test cases based on the concept of Pareto

optimality, which is the standard criterion in SBST. Finally,

crowding distance is in place to promote the diversity among

the test cases that are equally good according to the Pareto

optimality.

D. Parameter Setting

Previous studies empirically showed [44] that although

parameter tuning has an impact on the effectiveness of a search

algorithm, the default values, which are commonly used in

literature, provide reasonable and acceptable results. For this

study, we have chosen to use the following default parameter

settings recommended in the literature [45], [27], [44], [13],

[46], [47].

Population size. We use a population size of 10 individ-

uals (test cases); We performed a preliminary experiment to

determine the size of the population. A population that is too

small will not allow for enough exploration and will quickly

converge. A population size that is too big will consume more

of the search budget per iteration of the search process. Since

Solidity smart contract tests are performed through an API

(in comparison to testing frameworks at unit-level), running

tests is drastically slower. In addition, before each test case

can be run, the contract has to be deployed to the smart

contract network. Therefore, we established that a population

of 10 individuals provides sweet spot in the trade off between

efficiency and coverage. Our choice of using a relatively

small population size is also in line with the recommended

population for expensive fitness functions [45], [48].

Mutation Operator. We use the uniform mutation, which

changes each test case by adding, deleting, or replacing

method calls. We use a mutation probability pm=1/n, where n
is the number of statements in the test case as recommended

in the literature [27], [44], [13]. For primitive statements (e.g.,
int), the values are mutated using the polynomial mutation [46]

that is applied with a probability of 80%. For the remaining

20%, the operator applies random sampling.

Crossover Operator. We use the single-point tree crossover

with a crossover probability of pc=0.8, which is within the

recommended range 0.50 ≤ pc ≤ 0.90 [47], [49].

Selection. We use the binary tournament selection to sample

individuals from the population for reproduction [50].

Search Budget. As a stopping criterion for the search

process, we use a search budget based on time instead of

the number of executed tests. This was done as a time-

based stopping criterion provides the fairest comparison of

the different approaches, given that the proposed heuristics

add a small computational overhead to the search process.

Additionally, practitioners will often only allocate a specific

amount of time for the algorithm to run as the time it takes to

run a certain number of iteration differs across contracts and

across tests for the same contract.

The search budget for the algorithm was set to 30 minutes as

this provides a balance between giving the algorithm enough

time to explore the search space (considering the slower

execution time of a single test case) and making the study

infeasible to execute. The algorithm will end prematurely if

all its test objectives have been covered. Note that time-based

search budgets are considered a less biased stopping criterion

than a budget based on the number of executed tests (or fitness

evaluation) as not all tests have the same running time [27],

[51], [33], [52].

E. Vulnerability Detection

To evaluate how the proposed approach influences the effec-

tiveness of DynaMOSA at detecting/capturing vulnerabilities,

we considered multiple vulnerable versions of the contracts

in our benchmark. We synthesize vulnerable versions that

differ from the secure ones by either (i) missing transaction-

reverting statements or (ii) transaction-reverting statements

with incorrect conditions. As an example, for the contract

in Listing 1, one vulnerable version could be obtained by

removing the require function in line 11. In that case,

anyone can withdraw the money from the bank account, not

only the owner. Another example of a vulnerable contract

version would be if we inverted the condition of the require

169

Authorized licensed use limited to: TU Delft Library. Downloaded on December 20,2022 at 07:48:27 UTC from IEEE Xplore. Restrictions apply.

function in line 16. This would allow an attacker to increase

the balance of an account by withdrawing a negative amount.

Studies have shown that the transaction-reverting statements

play a crucial role in the behavior of the contract when testing

for faults that cause vulnerabilities [53], [54], [11]. Therefore,

we analyze the ability to detect the vulnerability associated

with these missing or incorrect statements.

For each contract (with transaction-reverting statements) in

the benchmark, we generated 10 vulnerable versions. To assess

the vulnerability detection capability, we run the test cases that

were generated for the non-vulnerable version of the contract

on these vulnerable versions to determine if the test cases fail,

and thereby, capturing the vulnerability. Finally, We assess the

performance of the testing algorithm with and without our

approach measuring the number of vulnerabilities detected by

the generated test cases.

F. Experimental Protocol

For each contract in the benchmark, we run DynaMOSA
with and without the improved guidance. The resulting cov-

erage information for the different evaluation metrics (i.e.,
branch, reverting statements, line) is collected and stored along

with the generated test cases.

Since DynaMOSA is a randomized algorithm, we can expect

a fair amount of variation in the results of the empirical

study. To prevent potential biases in the results, we repeated

every experiment 20 times, with a different random seed,

and computed the average (median) results. In total, we

performed 4000 executions: two configurations of DynaMOSA
on 100 Solidity smart contracts with 20 repetitions each. With

each execution taking 30 minutes, the total execution time is

83.5 days of consecutive running time. We ran the experiment

on a system with two AMD EPYCTM 7452 using 120 cores

running at 2.35GHz.

To answer RQ1, we compare the structural coverage results

of the two configuration with each other. To evaluate the

vulnerability detection capability of the different approaches

(RQ2), we compare the same configurations as for RQ1 but

now using the procedure described in Section IV-E.

We use the unpaired Wilcoxon rank-sum test [55] with a

threshold of 0.05 to determine if the results of the proposed ap-

proach are statistically significant. The Wilcoxon rank-sum is a

non-parametric statistical test that determines if two data distri-

butions are significantly different. This is the standard test for

evaluating randomized algorithms such as DynaMOSA [56]. In

addition, we use the Vargha-Delaney statistic [57] to measure

the effect size of the result, which indicates how large the

difference between the two configurations is.

V. RESULTS

This section discusses the results of our empirical study

with the aim of answering the research questions formulated

in Section IV-A.

TABLE II: Statistical results for DynaMOSA with and without

the improved guidance. We report the number of times the

proposed approach statistically improve (#Win) or decrease

(#Lose) the effectiveness of DynaMOSA. Negligible (N), Small

(S), Medium (M), and Large (L) denote the Â12 effect size.

Metric
#Win #Lose

#No diff.

N S M L N S M L

Branch - - 2 2 - - - - 96
Rev. statement - - 2 35 - - - - 63
Line - 2 4 29 - - - - 65

0

10

20

30

C
1

C
10

C
10

0
C

12
C

15
C

17
C

18
C

21
C

25
C

28
C

31
C

33
C

35
C

37
C

39 C
4

C
44

C
45 C

5
C

50
C

55
C

56
C

57
C

60
C

68
C

69
C

78
C

80
C

81
C

83
C

84
C

85
C

86 C
9

C
94

Contracts

D
iff

. i
n

co
ve

ra
ge

Fig. 4: Absolute difference in line coverage for DynaMOSA
with and without the improved guidance

A. Result for RQ1: Structural coverage

Table II shows the statistical results for the structural

coverage achieved by DynaMOSA with the proposed ap-

proach, compared to DynaMOSA without it, on the Solidity
smart contracts in the benchmark. #Win indicates the number

of contracts for which the search algorithms with the im-

proved guidance have a statistically significant improvement

(p-value ≤ 0.05) over the algorithms without this guidance.

#Lose indicates the number of contracts for which the pro-

posed approach did not provide a statistically improvement

(p-value > 0.05), and lastly, #No diff. indicates the number

of contracts for which there is no statistical difference in the

results between the search algorithms with and without the

improved guidance. In addition, the #Win and #Lose columns

also include the magnitude of the difference through the Â12

effect size, classified in Negligible (N), Small (S), Medium
(M), and Large (L).

From Table II, we can see that the proposed approach

only provides a statistically significant improvement for branch

coverage in very few cases (4). This result is as expected as

without the additional information that the guidance provides,

the search process falsely assumes that the branches con-

taining the transaction-reverting statements are fully covered.

Consequently, with the improved guidance, we can observe

a statistically significant improvement in 37 and 35 contracts

for transaction-reverting statement and line coverage, respec-

tively. This indicates that without this guidance DynaMOSA
cannot reach the code regions after these statements. For

the transaction-reverting statement coverage, DynaMOSA im-

170

Authorized licensed use limited to: TU Delft Library. Downloaded on December 20,2022 at 07:48:27 UTC from IEEE Xplore. Restrictions apply.

0

10

20

30
C

1
C

10
C

10
0

C
12

C
15

C
18

C
25

C
28 C

3
C

31
C

37
C

39 C
4

C
44

C
45 C

5
C

50
C

51
C

54
C

55
C

56
C

57
C

60
C

62
C

68
C

69
C

71
C

75
C

78
C

80
C

81
C

83
C

84
C

85
C

86 C
9

C
94

Contracts

D
iff

. i
n

co
ve

ra
ge

Fig. 5: Absolute difference in reverting statement coverage for

DynaMOSA with and without the improved guidance

0.0

0.2

0.4

0.6

0.8

Without
 heuritics

With
 heuristics

M
ut

at
io

n
S

co
re

80%

60%

at
io

n

40%

20%

0%

%
 D

et
ec

te
d

 v
u

ln
er

ab
ili

ti
es

Interp. Fitness
Function

Unit-level Fitness
Function

Unit-level Fitness
Function

Interp. Fitness
Function

Fig. 6: Vulnerability detection results for DynaMOSA

proves with a large magnitude for 35 contracts and medium

for 2 contracts. For line coverage, DynaMOSA improves with

a large magnitude for 29 contracts, medium for 4 contracts,

and small for 2 contracts.

Figs. 4 and 5 show the absolute difference in the aver-

age (mean) line and transaction-reverting statement coverage

achieved by DynaMOSA with the improved guidance, com-

pared to DynaMOSA without this guidance, for the signifi-

cant cases. The proposed approach on average improves the

line coverage by +8.66%, with a maximum improvement

of +27.97% for GreenMarkTrust (id = C31), and the

transaction-reverting statement coverage by +12.29%, with a

maximum improvement of +31.07% for MARVELCOIN (id =

C25).

B. Result for RQ2: Vulnerability Detection

Fig. 6 shows the percentage of vulnerabilities that were

detected by DynaMOSA when comparing the unit-level fitness

1 function burnFrom(address _from, uint256 _value) public
... {

2 // Check if the targeted balance is enough
3 require(balanceOf[_from] >= _value);
4
5 // Check allowance
6 //require(_value<=allowance[_from][msg.sender])); <-

SECURE
7 require(_value>allowance[_from][msg.sender]); // <-

VULNER.
8
9 // Subtract from the targeted balance

10 balanceOf[_from] -= _value;
11
12 // Subtract from the sender’s allowance
13 allowance[_from][msg.sender] -= _value;
14 totalSupply -= _value;
15
16 // Update totalSupply
17 emit Burn(_from, _value);
18 return true;
19 }

Listing 2: Vulnerable variant for the contract INS.sol

1 it(’test for INS’, async () => {
2 const INS0 = await INS.new(BigInt("139"), "fKQs..",
3 "lihM...", {from: accounts[2]});
4
5 const bool0 = await INS0.burn.call(BigInt("1361"),
6 {from: accounts[2]});
7
8 assert.equal(bool0, true)
9

10 await expect(
11 INS0.burnFrom.call(accounts[1], BigInt("1212")

,
12 {from: accounts[2]})
13).to.be.rejectedWith(Error);
14 });

Listing 3: Generated test case that detects the vulnerability

(Listing 2) for the contract INS.sol

function to the proposed interprocedural one. As we can

observe, there is no or small differences in the minimum and

first quartile in the box-plots. That means that for 25% of the

contract there is no difference in the vulnerability detection

capability. This is also in line with the results we observe

in RQ1, considering that covering the line and transaction-

reverting statement is a prerequisite to reach the vulnerability.

However, we observe larger differences in the second and third

quartiles, as well as in the maximum value.

In particular, we observe that the percentage of captured

vulnerabilities achieved by DynaMOSA increases by 2% in the

2nd quartile and 8% in the 3rd quartile, as depicted in Fig. 6.

For the contracts with a difference in the number of captured

vulnerabilities, our approach improves on average by 17%.

The largest improvement is obtained for HTDD_contract
with an increase in the number of vulnerabilities captured

of 38%. We also report a moderate positive Pearson’s r
correlation between the increases in the vulnerability detec-

tion capability and the increases in line coverage (r=0.48,

p-value=<0.01) and transaction-reverting statement coverage

(r=0.40, p-value=<0.01) achieved when using the improved

guidance with DynaMOSA. We applied the Pearson’s r cor-

relation coefficient since the difference in these metrics are

normally distributed.

To provide a practical example, let us consider the vulner-

171

Authorized licensed use limited to: TU Delft Library. Downloaded on December 20,2022 at 07:48:27 UTC from IEEE Xplore. Restrictions apply.

ability reported in line 7 of Listing 2 for the contract INS.

This vulnerability is caused by changing the condition (from

<= to >) in the second require statement. The vulnerability

is captured by DynaMOSA when using the improved guidance

but remains undetected when our approach is not applied.

The test case that captures the vulnerability is reported in

Listing 3. This test case covers both require statements in the

function (line 3 and 7) and asserts the reverting operation of

the EVM in line 7, i.e., if the transaction-reverting statement

is not satisfied, all performed transactions are reverted. The

test correctly captures the transaction-reverting statement and

fails (via the expected to.be.rejectedWith(Error)
code) when such a condition is modified. Instead, DynaMOSA
without the improved guidance could not even reach the

require in line 7 as it did not manage to satistfy the

condition of the require statement in line 3.

VI. DISCUSSION

Our experiment empirically shows that applying state-of-

the-art test case generation approaches cannot effectively de-

tect vulnerabilities (or produce structural coverage) without

treating all constructs of the language to be tested as first class

citizins. The success of search-based software testing is, in

practice, dependent on many components, including the ability

of the search algorithm to get insight on all aspects of the

program execution through the fitness function. Our empirical

study shows the importance of modelling these language-level

constructs in the fitness function.

The benefits of this approach are not only applicable for test

case generation, but also to fuzzing approaches and have the

potential to improve the testing landscape for Solidity smart

contracts. Based on a preliminary study, our approach can

improve line coverage for sFuzz [3], a state-of-the-art fuzzer,

by on average +8.42%, with a maximum improvement of

+31.76%, and the transaction-reverting statement coverage by

+13.08%, with a maximum improvement of +33.09
Additionally, this approach does not only apply to Solidity

but can be generalized to any programming language with

explicit contracts or declarative input validation rules. For

example, Java makes use of annotations (e.g., @NotNull)

that help control contracts throughout method hierarchies. In

general, interprocedural analysis can benefit testing programs

that use design by contract constructs.

This paper focusses on Solidity as contracts can not be

updated once they are deployed, increasing the importance

of detecting vulnerabilities related to the transaction-reverting

statements as early as possible [11].

VII. THREATS TO VALIDITY

Construct Validity: The study makes use of well-

established metrics in software testing to compare the dif-

ferent approaches: structural coverage (i.e., branch, line) and

vulnerability detection capability (how well do the generated

tests detect vulnerabilities). A time budget is used as the

stopping condition for the search algorithm instead of the

number of evaluations. Given that the approaches compared

in the study use different genetic operators, with a different

execution overhead, search time is a fairer metric for budget

allocation [30].

External Validity: To make sure that the study’s results

can be generalized, the benchmark used to evaluate it has to

contain a diverse set of smart contracts of a wide range of

complexities. We created a benchmark with 100 real-world

smart contracts gathered from etherscan.io. This benchmark

contains contracts with different sizes and cyclomatic com-

plexities.

Conclusion Validity: Evolutionary algorithms make use of

randomness to search the problem space. To minimize the

risk that the results were caused by favourable randomness,

we have performed the experiment 20 times with different

random seeds. We have followed the best practices for running

experiments with randomized algorithms as laid out in well-

established guidelines [58] and analyzed the possible impact

of different random seeds on our results. We used two non-

parametric tests: the unpaired Wilcoxon rank-sum test and the

Vargha-Delaney Â12 effect size to assess the significance and

magnitude of our results.

VIII. CONCLUSIONS AND FUTURE WORK

Previous studies focused on coverage-oriented heuristics

to test and fuzz Solidity smart contract. However, they do

not directly handle transaction-reverting statements, a vital

mechanism within Solidity to protect the contract against

invalid requests. To overcome this limitation, we proposed a

novel fitness function based on interprocedural dependency

analysis and context-sensitive instrumentation to exercise and

test directly these statements.

We implemented the novel fitness function in the SynTest-
Solidity [12] testing framework. The framework implements

the state-of-the-art testing algorithm, called DynaMOSA [13],

guided by well-established unit-level fitness functions. Our

results show that our interprocedural fitness function improves

the number of the vulnerabilities detected as well as structural

coverage compared to the state-of-the-art unit-level alternative.

Our results suggest that our approach has a wide range of

applications being able to improve both test case generation

and fuzzing algorithms.

Given our promising results, there are multiple potential

directions for future work, including (i) a topology study

on common transaction-reverting statement vulnerabilities and

their prevalence, and (ii) constructing a build pipeline for smart

contracts to prevent vulnerable contracts to go live.

REFERENCES

[1] M. Wohrer and U. Zdun, “Smart contracts: security patterns in the
ethereum ecosystem and solidity,” in 2018 International Workshop on
Blockchain Oriented Software Engineering (IWBOSE). IEEE, 2018,
pp. 2–8.

[2] V. Dwivedi, V. Deval, A. Dixit, and A. Norta, “Formal-verification of
smart-contract languages: A survey,” in International Conference on
Advances in Computing and Data Sciences. Springer, 2019, pp. 738–
747.

172

Authorized licensed use limited to: TU Delft Library. Downloaded on December 20,2022 at 07:48:27 UTC from IEEE Xplore. Restrictions apply.

[3] T. D. Nguyen, L. H. Pham, J. Sun, Y. Lin, and Q. T. Minh, “sfuzz: An
efficient adaptive fuzzer for solidity smart contracts,” in Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering,
2020, pp. 778–788.

[4] C. F. Torres, A. K. Iannillo, A. Gervais, and R. State, “Confuzzius: A
data dependency-aware hybrid fuzzer for smart contracts,” arXiv preprint
arXiv:2005.12156, 2020.

[5] B. Jiang, Y. Liu, and W. Chan, “Contractfuzzer: Fuzzing smart contracts
for vulnerability detection,” in 2018 33rd IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2018,
pp. 259–269.

[6] V. Wüstholz and M. Christakis, “Harvey: A greybox fuzzer for smart
contracts,” in Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2020, pp. 1398–1409.

[7] J. He, M. Balunović, N. Ambroladze, P. Tsankov, and M. Vechev,
“Learning to fuzz from symbolic execution with application to smart
contracts,” in Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, 2019, pp. 531–548.

[8] C. Liu, H. Liu, Z. Cao, Z. Chen, B. Chen, and B. Roscoe, “Reguard:
finding reentrancy bugs in smart contracts,” in 2018 IEEE/ACM 40th
International Conference on Software Engineering: Companion (ICSE-
Companion). IEEE, 2018, pp. 65–68.

[9] S. Driessen, D. D. Nucci, G. Monsieur, and W.-J. van den Heuvel,
“Automated test-case generation for solidity smart contracts: the agsolt
approach and its evaluation,” 2021.

[10] “Expressions and control structures.” [Online]. Available:
https://docs.soliditylang.org/en/v0.8.7/control-structures.html#error-
handling-assert-require-revert-and-exceptions

[11] L. Liu, L. Wei, W. Zhang, M. Wen, Y. Liu, and S.-C. Cheung, “Char-
acterizing transaction-reverting statements in ethereum smart contracts,”
arXiv preprint arXiv:2108.10799, 2021.

[12] M. Olsthoorn, D. Stallenberg, A. van Deursen, and A. Panichella,
“Syntest-solidity: Automated test case generation and fuzzing for
smart contracts,” in The 44th International Conference on Software
Engineering-Demonstration Track. IEEE/ACM, 2022.

[13] A. Panichella, F. M. Kifetew, and P. Tonella, “Automated test case
generation as a many-objective optimisation problem with dynamic
selection of the targets,” IEEE Transactions on Software Engineering,
vol. 44, no. 2, pp. 122–158, Feb 2018.

[14] ——, “Reformulating branch coverage as a many-objective optimization
problem,” in Proceedings of the International Conference on Software
Testing, Verification and Validation, (ICST’15), Graz, Austria, 2015, pp.
1–10.

[15] B. Korel, “Automated software test data generation,” IEEE Transactions
on Software Engineering, vol. 16, no. 8, pp. 870–879, 1990.

[16] M. Olsthoorn, A. van Deursen, and A. Panichella, “Replication
package of "guiding automated test case generation for transaction-
reverting statements in smart contracts".” [Online]. Available:
https://doi.org/10.5281/zenodo.6787666

[17] M. Ren, Z. Yin, F. Ma, Z. Xu, Y. Jiang, C. Sun, H. Li, and Y. Cai,
“Empirical evaluation of smart contract testing: What is the best choice?”
in The ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA), 2021.

[18] J. Ye, M. Ma, Y. Lin, Y. Sui, and Y. Xue, “Clairvoyance: Cross-
contract static analysis for detecting practical reentrancy vulnerabilities
in smart contracts,” in 2020 IEEE/ACM 42nd International Conference
on Software Engineering: Companion Proceedings (ICSE-Companion).
IEEE, 2020, pp. 274–275.

[19] W. Wang, J. Song, G. Xu, Y. Li, H. Wang, and C. Su, “Contractward:
Automated vulnerability detection models for ethereum smart contracts,”
IEEE Transactions on Network Science and Engineering, 2020.

[20] I. Grishchenko, M. Maffei, and C. Schneidewind, “Ethertrust: Sound
static analysis of ethereum bytecode,” Technische Universität Wien, Tech.
Rep, 2018.

[21] J. Chen, X. Xia, D. Lo, J. Grundy, X. Luo, and T. Chen, “Defectchecker:
Automated smart contract defect detection by analyzing evm bytecode,”
IEEE Transactions on Software Engineering, 2021.

[22] C. F. Torres, M. Steichen et al., “The art of the scam: Demystifying
honeypots in ethereum smart contracts,” in 28th {USENIX} security
symposium ({USENIX} security 19), 2019, pp. 1591–1607.

[23] M. Soltani, A. Panichella, and A. Van Deursen, “Search-based crash
reproduction and its impact on debugging,” IEEE Transactions on
Software Engineering, vol. 46, no. 12, pp. 1294–1317, 2018.

[24] J. Zhu, K. Hu, M. Filali, J.-P. Bodeveix, and J.-P. Talpin, “Formal
verification of solidity contracts in event-b,” 2020.

[25] S. Ali, M. Z. Iqbal, A. Arcuri, and L. C. Briand, “Generating test
data from ocl constraints with search techniques,” IEEE Transactions
on Software Engineering, vol. 39, no. 10, pp. 1376–1402, 2013.

[26] N. Alshahwan, X. Gao, M. Harman, Y. Jia, K. Mao, A. Mols, T. Tei,
and I. Zorin, “Deploying search based software engineering with sapienz
at facebook,” in International Symposium on Search Based Software
Engineering. Springer, 2018, pp. 3–45.

[27] G. Fraser and A. Arcuri, “Evosuite: automatic test suite generation for
object-oriented software,” in Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of soft-
ware engineering, 2011, pp. 416–419.

[28] P. Derakhshanfar, X. Devroey, A. Panichella, A. Zaidman, and A. van
Deursen, “Towards integration-level test case generation using call site
information,” CoRR, vol. abs/2001.04221, 2020. [Online]. Available:
https://arxiv.org/abs/2001.04221

[29] A. Arcuri, “Restful api automated test case generation with evomaster,”
ACM Transactions on Software Engineering and Methodology (TOSEM),
vol. 28, no. 1, pp. 1–37, 2019.

[30] J. Campos, Y. Ge, N. Albunian, G. Fraser, M. Eler, and A. Arcuri,
“An empirical evaluation of evolutionary algorithms for unit test suite
generation,” Information and Software Technology, vol. 104, pp. 207–
235, 2018.

[31] G. Fraser and A. Arcuri, “1600 faults in 100 projects: automatically
finding faults while achieving high coverage with evosuite,” Empirical
software engineering, vol. 20, no. 3, pp. 611–639, 2015.

[32] S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn, and A. Arcuri,
“Do automatically generated unit tests find real faults? an empirical
study of effectiveness and challenges (t),” in 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2015, pp. 201–211.

[33] A. Arcuri and J. P. Galeotti, “Handling sql databases in automated
system test generation,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 29, no. 4, pp. 1–31, 2020.

[34] P. Tonella, “Evolutionary testing of classes,” ACM SIGSOFT Software
Engineering Notes, vol. 29, no. 4, pp. 119–128, 2004.

[35] A. Panichella, F. M. Kifetew, and P. Tonella, “A large scale empirical
comparison of state-of-the-art search-based test case generators,” Infor-
mation and Software Technology, vol. 104, pp. 236–256, 2018.

[36] P. McMinn, “Search-based software test data generation: a survey,”
Software testing, Verification and reliability, vol. 14, no. 2, pp. 105–
156, 2004.

[37] P. Ammann and J. Offutt, Introduction to software testing. Cambridge
University Press, 2016.

[38] D. W. Binkley, M. Harman, and K. Lakhotia, “Flagremover: a testability
transformation for transforming loop-assigned flags,” ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 20, no. 3, pp.
1–33, 2011.

[39] Y. Lin, J. Sun, G. Fraser, Z. Xiu, T. Liu, and J. S. Dong, “Recovering fit-
ness gradients for interprocedural boolean flags in search-based testing,”
in Proceedings of the 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2020, pp. 440–451.

[40] A. Baresel, D. Binkley, M. Harman, and B. Korel, “Evolutionary testing
in the presence of loop-assigned flags: A testability transformation
approach,” ACM SIGSOFT software engineering notes, vol. 29, no. 4,
pp. 108–118, 2004.

[41] M. Harman, A. Baresel, D. Binkley, R. Hierons, L. Hu, B. Korel,
P. McMinn, and M. Roper, “Testability transformation–program transfor-
mation to improve testability,” in Formal methods and testing. Springer,
2008, pp. 320–344.

[42] X. Devroey, S. Panichella, and A. Gambi, “Java unit testing tool
competition: Eighth round,” in Proceedings of the IEEE/ACM 42nd
International Conference on Software Engineering Workshops, 2020, pp.
545–548.

[43] S. Panichella, A. Gambi, F. Zampetti, and V. Riccio, “Sbst tool competi-
tion 2021,” in 2021 IEEE/ACM 14th International Workshop on Search-
Based Software Testing (SBST). IEEE, 2021, pp. 20–27.

[44] A. Arcuri and G. Fraser, “Parameter tuning or default values? an
empirical investigation in search-based software engineering,” Empirical
Software Engineering, vol. 18, no. 3, pp. 594–623, 2013.

[45] M. Rai, “Robust optimal aerodynamic design using evolutionary meth-
ods and neural networks,” in 42nd AIAA Aerospace Sciences Meeting
and Exhibit, 2004, p. 778.

173

Authorized licensed use limited to: TU Delft Library. Downloaded on December 20,2022 at 07:48:27 UTC from IEEE Xplore. Restrictions apply.

[46] K. Deb and D. Deb, “Analysing mutation schemes for real-parameter
genetic algorithms,” International Journal of Artificial Intelligence and
Soft Computing, vol. 4, no. 1, pp. 1–28, 2014.

[47] L. C. Briand, Y. Labiche, and M. Shousha, “Using genetic algorithms
for early schedulability analysis and stress testing in real-time systems,”
Genetic Programming and Evolvable Machines, vol. 7, no. 2, pp. 145–
170, 2006.

[48] H. Eskandari and C. D. Geiger, “A fast pareto genetic algorithm
approach for solving expensive multiobjective optimization problems,”
Journal of Heuristics, vol. 14, no. 3, pp. 203–241, 2008.

[49] H. G. Cobb and J. J. Grefenstette, “Genetic algorithms for tracking
changing environments.” Naval Research Lab Washington DC, Tech.
Rep., 1993.

[50] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast elitist
multi-objective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, pp. 182–197, 2000.

[51] A. Panichella and U. R. Molina, “Java unit testing tool competition-fifth
round,” in 2017 IEEE/ACM 10th International Workshop on Search-
Based Software Testing (SBST). IEEE, 2017, pp. 32–38.

[52] A. Arcuri, “Test suite generation with the many independent objective
(mio) algorithm,” Information and Software Technology, vol. 104, pp.

195–206, 2018.
[53] L. Alt and C. Reitwiessner, “Smt-based verification of solidity smart

contracts,” in International Symposium on Leveraging Applications of
Formal Methods. Springer, 2018, pp. 376–388.

[54] P. Chapman, D. Xu, L. Deng, and Y. Xiong, “Deviant: A mutation testing
tool for solidity smart contracts,” in 2019 IEEE International Conference
on Blockchain (Blockchain). IEEE, 2019, pp. 319–324.

[55] W. J. Conover, Practical nonparametric statistics. John Wiley & Sons,

1998, vol. 350.
[56] A. Arcuri and L. Briand, “A practical guide for using statistical tests

to assess randomized algorithms in software engineering,” in2011 33rd
international conference on software engineering (ICSE). IEEE, 2011,

pp. 1–10.
[57] A. Vargha and H. D. Delaney, “A critique and improvement of the cl

common language effect size statistics of mcgraw and wong,”Journal
of Educational and Behavioral Statistics, vol. 25, no. 2, pp. 101–132,
2000.

[58] A. Arcuri and L. Briand, “A hitchhiker’s guide to statistical tests for
assessing randomized algorithms in software engineering,”Software
Testing, Verification and Reliability, vol. 24, no. 3, pp. 219–250, 2014.

174

Authorized licensed use limited to: TU Delft Library. Downloaded on December 20,2022 at 07:48:27 UTC from IEEE Xplore. Restrictions apply.

