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Abstract—Incorrect placement of methods within classes is
a typical code smell called Feature Envy, which causes addi-
tional maintenance and cost during evolution. To remove this
design flaw, several Move Method refactoring tools have been
proposed. To the best of our knowledge, state-of-the-art related
techniques can be broadly divided into two categories: the first
line is non-machine-learning-based approaches built on software
measurement, while the selection and thresholds of software
metrics heavily rely on expert knowledge. The second line is
machine learning-based approaches, which suggest Move Method
refactoring by learning to extract features from code information.
However, most approaches in this line treat different forms
of code information identically, disregarding their significant
variation on data analysis. In this paper, we propose an approach
to recommend Move Method refactoring named RMove by
automatically learning structural and semantic representation
from code fragment respectively. We concatenate these rep-
resentations together and further train the machine learning
classifiers to guide the movement of method to suitable classes.
We evaluate our approach on two publicly available datasets.
The results show that our approach outperforms three state-of-
the-art refactoring tools including PathMove, JDeodorant, and
JMove in effectiveness and usefulness. The results also unveil
useful findings and provide new insights that benefit other types
of feature envy refactoring techniques.

I. INTRODUCTION

For a long time, the significance of architectural design
decisions has been acknowledged in the software research
and industry community. The placement of methods within
classes in an object-oriented system is a critical criterion
for software architecture maintenance. During the software
evolution, however, developers may inadvertently and uninten-
tionally implement methods in inappropriate classes, resulting
in a typical code smell: Feature Envy [1]. Previous studies
[2, 3] also indicated that the Feature Envy is one of the most
recurring code smells, negatively and seriously affecting the
software system’s maintainability.

To tackle this design flaw, several automatic Move Method
refactoring approaches have been proposed, which moves the
inappropriate method from its current class to its enviable
class. This code transformation eliminates the Feature Envy
by improving the internal code structure without changing its
external behaviours. Most of these approaches can be more
broadly divided into two categories: The first line is metric-
based approaches, built on software measurement, such as
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cohesion and coupling. Although these approaches can intu-
itively characterize Move Method refactoring from the struc-
tural and semantic perspective, the selection and thresholds of
software metrics heavily rely on expert knowledge. The second
line is machine learning-based approaches, which suggest
Move Method refactoring by learning to extract features from
the source code. However, in most cases, these approaches
treat different forms of code information identically, disre-
garding their significant variation in data analysis. In reality,
various forms of code information, such as structural infor-
mation and semantic information, require drastically different
machine learning algorithms for extracting features.

In this paper, we combined the comprehensive analysis
of metric-based approaches and the automatic feature ex-
traction of machine learning-based approach, and proposed
an approach to recommend Move Method refactoring named
RMove by learning structural and semantic representation of
code fragment separately.

To capture the structural representation of code, we are
motivated by the work of Qu et al. [4]. Their results demon-
strated that the graph embedding technique: node2vec [5]
can effectively characterize the topology of code structure
and encode them into low-dimensional vector space as the
structural representation of code. Their results presented that
these extracted representations are proved to be practical in
predicting bugs. Thus, in our method refactoring recommen-
dation task, followed by the work of Qu et al. [4], we collect
method dependency network as structural information. We
further investigate 7 graph embedding techniques to capture
structural representations of code based on collected data and
make a systematic comparison.

To capture the semantic representation of code, we are
motivated by the work of Alon et al. [6, 7]. Different from
the previous techniques capturing program semantics from
identifiers and comments using bag-of-words model [8–10],
they use code embedding techniques learn continuous dis-
tributed vectors from AST paths using graph neural network
as semantic representation, mapping semantically similar code
snippets to close vectors. Their results also demonstrated that
these extracted representations are proved to be useful in
predicting method names. Therefore, in our method refactoring
recommendation task, followed by the work of Alon et al.
[6, 7], we collect AST path as semantic information. We
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employ 2 code embedding techniques to capture semantic
representations of code based on collected data and further
investigate their impact on the recommendation’s performance.

The procedure of our approach: RMove is demonstrated
as follows: We first extract method structural and semantic
information from the dataset. Next, we create the structural
and semantic representation of collected data. We further
normalized and fuse them together as the hybrid represen-
tation. Finally, based on these hybrid representations, we train
machine learning classifier to suggest moving a target method
to a more structurally and semantically similar class. We
evaluate our approach using two publicly available datasets
including a synthetic dataset of injected instances [11] and a
real-world dataset of instances annotated by experts [12]. In
terms of accuracy and effectiveness, we make a systematic
comparison of our approach and other state-of-the-art tools.
The results suggest that our approach outperforms state-of-the-
art tools such as PathMove [13], JDeodorant [14], and JMove
[12]. The results also unveil useful findings and provide new
insights that benefit other types of feature envy refactoring
techniques like move field, move class and move package.

In summary, we make the following contributions:
• A new perspective to recommend Move Method refac-

toring opportunities by exploiting structural and semantic
representations of code snippets.

• A systematic exploration of implementations of our
approach based on combinations of 2 code embed-
ding techniques, 7 graph embedding techniques, and 9
machine learning classifiers. The results suggest that
Code2Vec+SDNE (CV+SN), Code2Seq+Line (CS+LN),
and Code2Seq+SDNE (CS+SN) achieve the best results.

• A comprehensive evaluation of our approach on the
publicly available dataset. Our approach demonstrates an
increase of 14%-36% in precision, 19%-45% in recall,
and 27%-44% in f1-measure compared to stat-of-the-art
tools: PathMove, JDeodorant, and JMove.

• A benchmark to investigate the effectiveness of structural
and semantic representation of code snippets on two
widely used datasets. All data are publically available
[15].

II. PRELIMINARY

In this section, we explain the terminologies used in our
paper.

Move Method Refactoring Detection. The Move Method
refactoring detection can be regarded as discovering a set
of movable methods and target classes from the source
code, which is defined as MoveMethodSet. Each item in
MoveMethodSet can be further modeled as a set of three
elements, which is formally defined as follows:

MoveMethodSet = {(mi, sci, tci) | i = 1, 2, · · · , k} (1)

where mi represents the potentially movable method. sci
represents the source class which mi belongs to. tci represents
the corresponding target class for mi.

To diagnose whether a method is movable, state-of-the-art
related techniques analyze its structural and semantic infor-
mation from the code snippets, which are further illustrated as
follows:

Method Semantic Information. For each method, we first
parse involved the code snippets into the Abstract Syntax
Tree: AST , and further iteratively extract the path between
leaf nodes from the parsed Abstract Syntax Tree as Method
Semantic Information, which is formally defined as PathSet:

PathSet = {(ni, nj , path(ni, nj)) | ni, nj ∈ AST} (2)

where ni and nj represent a pair of leaf nodes in Abstract
Syntax Tree: AST . path(ni, nj) represents the path between
ni and nj , composed up of a sequence of intermediate AST
nodes, which is obtained by traversing through their lowest
common ancestor. Fig. 1 illustrates related concepts, including
a fragment of code snippet, its corresponding parsed AST, and
a path between two leaf nodes highlighted in blue. Arrows
in blue in Fig. 1 present the path between two AST leaf
nodes: b and a, which is represented as Path(b, a): {b ↑
BinaryExpression ↑ ConditionalExpression ↓ a}. Fur-
thermore, all paths: PathSet are gathered to obtain Method
Semantic Information.

Method Structural Information. Given a method, we first
extract Method Dependency Graph (MDG) from the source
code and further analyze the topological structure for this
method to obtain Method Structural Information. Method
Dependency Graph is defined as:

MDG = {V,E} (3)

where each node v ∈ V represents a method and the edge e ∈
E represents the method call dependency relationships. For a
pair of methods: vi and vj , (vi, vj) ∈ E if and only if vi has at
least one method call dependency relationship with vj . Fig. 2
illustrates related concepts, including a fragment of code snip-
pet and its corresponding Method Dependency Graph (MDG).
These dependency relations: {(m1,m2), (m1,m3), (m2,m3)}
are presented.

public int min(int a, int b) { 
return (a < b) ? a : b;

}

Method
Declaration

int min Parameter Parameter
Block

Statement

Return
Statementint a int b

Conditional
Expression

a bBinary
Expression

a b

Fig. 1. A illustrated example of extracted method semantic
information



m3m2

public void m1() { m2(); m3();}
public void m2() { m3();}
public void m3() {

System.out.println(“Hello”);        
}

m1

Fig. 2. A illustrated example of extracted method structural
information

III. METHODOLOGY

Fig. 3 presents the overview of our proposed approach:
RMove. We implement the automatic Move Method refactor-
ing recommendation system by: 1) mining dataset to gather
the Abstract Syntax Tree (AST) and the Method Dependency
Graph (MDG), 2) generating hybrid representations with code
embedding and graph embedding, and 3) training classification
model using machine learning techniques and deep learning
techniques. At last, we suggest Move Method refactoring
according to the classification result.

A. Data Collection

We start with extracting all pairs of movable methods
and target classes from the dataset, and then collect method
structural and semantic information as follows:

Method Semantic Information Collection. We use SR-
CML [16], a state-of-the-art source code parser, to retrieve the
source code of dataset’s collected movable methods and target
classes. SRCML is a lightweight, scalable, multi-language
parsing tool for converting source code into the XML format,
which supports code exploration, analysis, and manipulation.
We then mine AST paths: PathSet with ASTMINER [17],
a state-of-the-art static analysis tool, which is applied to
the retrieved source code, including movable methods and
target classes. ASTMINER is an open-source library for ex-
tracting AST paths from the source code. ASTMINER is a
efficient, flexible, and extensible tool to support code analysis
in various programming languages. We gather all extracted
paths:PathSet to obtain Method Semantic Information.

Method Structural Information Collection. we employ
DEPENDS [18], a state-of-the-art static analysis tool, to extract
dependencies among methods: MDG. DEPENDS is a depen-
dency extraction tool for the source code that aims to infer
dependency relationships between source code entities, such
as files and methods, from various programming languages.
DEPENDS also provides extensible interfaces to assist with
downstream tasks such as architectural analysis and program
comprehension. We gather all the Method Dependency Graph:
MDG for each involved project in dataset as Method Struc-
tural Information.

B. Representation Generation

For collected method structural and semantic information,
we use code embedding techniques and graph embedding tech-
niques to generate its corresponding structural and semantic
representations respectively, and further fuse them to generate
hybrid representations, which are illustrated as follows:

Code Embedding Generation. Given each method: mi and
gathered AST path set: PathSet, the code embedding: CE is
a mapping formally defined as:

CE = {(mi, cebdi) | path(mi) ∈ PathSet ∧ cebdi ∈ Rd}
(4)

where path(mi) represents the involved AST paths for mi

and cebdi represents the code embedding results for mi. In
this paper, we explore two state-of-the-art code embedding
techniques including Code2Vec and Code2Seq. The basic
ideas of these techniques are illustrated as follows:

Code2Vec [6] is a neural network that automatically gen-
erate vectors from code snippets. For AST paths of each
method, Code2Vec learns numeric vectors for involved leaf
nodes and intermediate nodes respectively. Code2Vec then
concatenates these vectors together as a combined context
vector. To generate the embedding result for code snippets,
based on the attention mechanism, Code2Vec further calculates
the weighted average of all combined context vectors by
assigning more weights to AST paths with more significant
semantics. The obtained fixed-length vectors for code snippets,
referred as the code embedding result, can be further used in
the downstream tasks.

Code2Seq [19] is also a neural network that produces
sequences from code snippets. The model tasks the AST
path set: PathSet as input and generates distinct embedding
results for tokens and paths in the AST path set before
combining them into a single vector. To build embedding
for tokens, Code2Seq first splits tokens into a sequence of
subtokens according to Camel and Snake naming conventions,
then transforms subtokens into a sequence of vectors with
the embedding matrix: Etoken, and finally combine these
vectors to the token embedding. To build embedding for paths,
code2seq embeds AST node types into numerical vectors
with another embedding matrix Enode and thus produce a
sequence of vectors. The obtained sequences then processed
through an LSTM with the path’s embedding determined by
the LSTM’s last state. The Code2Seq’s final step is to combine
the generated vectors into the embedding result. To support
this step, Code2Seq concatenates these vectors via a one-layer
fully-connected neural network.

Implementations and hyper-parameter settings of code em-
bedding techniques are introduced in Section IV-A, referred
to previous papers [6, 19]. Table I presents the code em-
bedding results of the method: validateLiteralPresence in the
open source project: PMD [20]. We observed that these code
embedding results are vastly different.

Graph Embedding Generation. For a Method Dependency
Graph MDG = {V,E}, the graph embedding: GE is a
mapping formally defined as:

GE = {(mi, gebdi) | mi ∈ V ∧gebdi ∈ Rd∧d << |V |} (5)

where mi represents the node in Method Dependency Graph:
MDG and gembeddingi represents the graph embedding
results for mi. In this paper, we explore seven state-of-the-art
graph embedding techniques including DeepWalk, Node2Vec,
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Fig. 3. Overview of the proposed approach RMove including data collection, representation generation, and model training.

TABLE I: The embedding results of the method: validateLit-
eralPresence in the open source project: PMD

Embedding feature1 feature2 feature3 . . . featuren

Code2Vec 0.98 0.16 0.98 . . . 0.87
Code2Seq 0.18 -0.14 0.19 . . . -0.06
DeepWalk -1.25 0.62 0.19 . . . -0.003
GraRep 0.18 -0.14 0.19 . . . -0.06
Line -0.02 -0.25 0.43 . . . -0.06
Node2Vec -0.07 0.01 -0.31 . . . -0.03
ProNE -0.004 -0.31 0.38 . . . 0.01
SDNE 3.94 4.57 2.76 . . . -0.008
Walklets -3.16 -1.37 -0.44 . . . - 0.04

Walklets, GraRep, Line, ProNE, and SDNE. The basic ideas
of these techniques are illustrated as follows:

DeepWalk [21] and Node2Vec [5] employ random walk
to construct sample neighborhoods for nodes in graph based
on a Skip-gram [22] Natural Language Processing (NLP)
model. The goal of Skip-gram is to maximize the likelihood
of words appearing in a sliding window co-occurring. During
random walks, each path sampled from a graph correlates
to a sentence from the corpus in NLP, where each node
correlates to a word. For these paths, the Skip-gram then is
applied to the maximization of the probabilities of having a
node’s neighborhood based on its embedding results, which
implemented with Stochastic Gradient Descent (SGD) and
backpropagation on single hidden-layer feedforward neural
network [5]. In comparison to DeepWalk, Node2Vec uses
a more flexible notion of the node’s neighborhoods and a
more efficient graph searching algorithm achieving the trade-
off between Breadth-first Sampling (BFS) and Depth-first
Sampling (DFS) [23].

Walklets [24] is another random walk-based graph embed-
ding technique. In comparison to DeepWalk and Node2Vec,
Walklets explicitly encode multi-scale relationships between
nodes to produce the multi-scale representations for nodes.
Walklets first samples short random walks to extract multi-
scale relationships. Furthermore, for each random walk, Walk-
lets skips over steps and constructs latent representations,
capturing higher order relationships from the adjacency matrix.

GraRep [25] is a matrix factorization-based graph em-
bedding technique. These techniques construct matrices from
connections between nodes and factorize them to produce
the embedding result. The following matrices are frequently
investigated including node adjacency matrix, node transition
probability matrix, Laplacian matrix, etc. GraRep focuses on
factorizing the node proximity matrix. The time complexity of

GraRep is O(|V|3), having a scalability issue [23].

Line [26] calculates graph embedding results by specifying
two functions, one for the first-order node proximity and
the other for the second-order node proximity. The line then
minimizes the combination of these functions. For each pair
of nodes with the first-order proximity, Line defines two joint
probability distributions, one for the adjacency matrix and the
other for the embedding. The Kullback-Leibler (KL) diver-
gence of these distributions is then minimized. The calculation
of the second-order proximity follows a similar pattern [23].

ProNE [27] is a fast and scalable graph embedding tech-
nique that was recently introduced. ProNE includes two steps:
the first is to effectively initialize graph embedding results by
phrasing the problem as sparse matrix factorization, motivated
by the long-tailed distribution of most graphs and their spar-
sity. The second stage is to propagate the initial embedding
result using the higher-order Cheeger’s inequality [28], aiming
at capturing the graph’s localized clustering information. The
experimental results [27] reveal that ProNE is 10 to 400
times faster than DeepWalk, Node2Vec and Line. ProNE’s
performance in the multi-label node classification task also
outperformed existing graph embedding techniques.

SDNE [29] employs deep auto-encoders to generate embed-
ding results. The objective of an auto-encoder is to reduce the
reconstruction error. Multiple extremely non-linear functions
are included in both the encoder and the decoder. The encoder
converts input data into the representation space, and the
decoder converts representation space into the reconstruction
space [30]. There are two elements to the model: unsupervised
and supervised. The first contains an auto-encoder to recon-
struct the node’s neighborhood and generate its embedding.
The second is built on Laplacian Eigenmaps [31] and imposes
a penalty when similar nodes are mapped with wrong results
in the embedding space [23].

Implementations and hyper-parameter settings of graph em-
bedding techniques are introduced in Section IV-A, referred to
two recent survey papers [23, 30]. Table I also presents the
graph embedding results of the method: validateLiteralPres-
ence in the open source project: PMD [20]. We observed that
these graph embedding results are drastically different.

Representation Fusing. We first normalize code embedding
and graph embedding results respectively. Next, for each
method: mi, we concatenate its normalized code embedding
and graph embedding as the hybrid embedding: hebd(mi) with



a tuning parameter: α, which is formally defined as:

hebd(mi) = [α× cebdi, (1− α)× gebdi](mi, cebdi) ∈ NCE
∧(mi, gebdi) ∈ NGE

(6)

where cebdi represents the corresponding code embedding
for mi in the normalized embedding set: NCE and gebdi
represents the corresponding code embedding results for mi

in the normalized embedding set: NGE. In our paper, we set
the parameter α as 0.5, which means the hybrid embedding is
split evenly between the code and graph embedding.

For each class: Cj , its corresponding hybrid embedding is
calculated as an element-wise average of hybrid embedding
results of contained methods:

hebd(Cj) =
1

|Cj |
∑

mi ∈ Cj

hebd(mi) (7)

where |Cj | represents the number of methods in class: Cj .
These fused embedding results for methods and classes are

further employed in the model training process.

C. Model Training

For fused hybrid representations, we further generate train-
ing data and feed them with various classifiers to build the
move method refactoring recommendation system, which is
illustrated as follows:

Training Data Generation. We generate training data
from a small set of detected move method detection results.
Algorithm 1 presents the procedure of training data generation.
The input of this algorithm is a set of detected move method
results: MoveMethodSet. This algorithm inspects each item
in MoveMethodSet iteratively. For each item, Line 4 re-
trieves movable method, source class and target class as mi,
sci, tci respectively. Line 6 concatenates hybrid embedding
results of mi and sci, and assigns with the false label as
the negative sample. Line 8 concatenates hybrid embedding
results of mi and tci, and assigns with the true label as
the positive sample. For example, for an instance of detected
results concluding a movable method: a from the source class:
A can be moved to the target class: B, we add a positive
sample: “m should be moved to B” and a negative sample:
“m should not be moved to A”. At the same time, if detected
results also contain an instance that the method: m from the
source class: A can be moved to a target class: C, we will
additionally add a positive sample: “m should be moved to
C” and a duplicate negative sample: “m should be moved to
A” to balance the dataset.

Classifier Selection. Machine learning and deep learning
models are frequently investigated for software data classifica-
tion, which acquire classification knowledge through intensive
training. In this paper, we employ 6 machine learning models
and 3 deep learning models including Decision Tree (DT),
Naive Bayes (NB), Support Vector Machine (SVM), Logistic
Regression (LR), Random Forest (RF), Extreme Gradient
Boosting (XGB), Convolutional Neural Network (CNN), Long

Algorithm 1 AutoTrainingDataGeneration(MoveMethodSet)

1: TrainData← ∅ % initialization
2: for item in MoveMethodSet do
3: % getting method, source class and target class respec-

tively
4: mi, sci, tci ← item[0], item[1], item[2]
5: % adding negative samples
6: TrainData.add(concat(hebd(mi), hebd(sci)), False)

7: % adding positive samples
8: TrainData.add(concat(hebd(mi), hebd(tci)), T rue)
9: end for

Short Term Memory Recurrent Neural Network (LSTM), and
Gated Recurrent Units Recurrent Neural Network (GRU).

Decision Tree is a flowchart-like structural classifier fre-
quently employed in fast data analysis tasks [32]. Naive Bayes
is a classifier according to Bayes’ Theorem with the indepen-
dent assumption of predictors [33]. Support Vector Machine
is a supervised machine learning technique supporting both
classification or regression tasks [34]. Logistic regression is a
classifier that estimates probabilities between the categorical
dependent variable and independent variables with the logistic
or sigmoid function [35]. Random Forest [36] and Extreme
Gradient Boosting [37] are ensemble models. Deep learning
models, inspired by the human brain structure, have lately
acquired enough attention in data classification. We employ
widely used models in this field including Convolutional
Neural Network (CNN) [38] and two variants of Recurrent
Neural Network (RNN) [39]: RNN-LSTM, and RNN-GRU.

IV. EVALUATION

We design the evaluation to answer the following three
research questions.

RQ1: Which embeddings are the most effective in recom-
mending move method refactoring? The answer to this
question would help us better understand the impact of
different embedding combinations on RMove’s perfor-
mance.

RQ2: How accurate is RMove in recommending move
method refactoring? The answer to this question would
demonstrate the RMove’s performance compared to
state-of-the-art tools.

RQ3: How useful is RMove in recommending move method
refactoring? The answer to this question would shed
light on the RMove’s effectiveness in practice.

TABLE II: Synthetic Dataset’s Information

Subjects #Version #LOC #Classes #Methods #MMethods
PMD 6.13.0 119,430 1,147 8,637 127
Cayenne 4.2 275,450 1,499 12,164 93
Pinpoint 1.9.0 290,974 2,551 17,024 105
Jenkins 1.51 155,667 768 6,292 38
Drools 7.22.0 680,234 2.758 27,793 256



TABLE III: Real-world Dataset’s Information

Subjects #Version #LOC #Classes #Methods #MMethods
Weka 3.6.9 257,897 908 16,034 31
Ant 1.8.2 103,402 760 8,586 25
FreeCol 0.10.3 93,605 535 6,616 17
JMeter 2.5.1 81,222 682 7,392 25
FreeMind 0.9.0 53,782 368 4,074 12
JTOpen 7.8 340,752 1,450 22,143 39
DrJava r5387 88,631 361 4,675 18
Maven 3.0.5 71,065 154 1,568 24

A. Experiment Setup

We illustrate the used dataset, evaluation, and experiment
settings as follows:

Datasets. We evaluate RMove using two publicly available
datasets: a synthetic dataset [11] and a real-world dataset [12].

Synthetic dataset. We use the synthetic dataset to evaluate
the impact of various embedding techniques on RMove’s
performance. The synthetic dataset contains five open-source
projects with high quality including PMD [20], Cayenne
[40], Pinpoint [41], Jenkins [42], and Drools [43]. The basic
information of these subjects is presented in Table II, including
the number of lines of source code (#LOC), number of classes
(#Classes), number of methods (#Methods), and number of
movable methods (#MMethods).

Real-world dataset. We use the real-world dataset to
conduct a comparison of RMove and other state-of-the-art
refactoring tools. Each instance in the real-world dataset is
manually entered by experts and these data are also frequently
investigated in previous work [12, 13]. The real-world dataset
contains 8 open-source projects with high quality including
Weak [44], Ant [45], FreeCol [46], JMeter [47], FreeMind
[48], JTOpen [49], DrJava [50], and Maven [51]. The basic
information of these subjects are also presented in Table III,
including the number of lines of source code (#LOC), number
of classes (#Classes), number of methods (#Methods), and
number of movable methods (#MMethods)

Evaluation Metrics. Following the previous work [13], we
use three widely-used evaluation metrics including precision,
recall, and F1 score, defined as follows:

Precision =
# of correct refactorings

# of recommended refactorings
(8)

Recall =
# of correct refactorings
# of moved methods

(9)

F1-Measure = 2× Precision× Recall
Precision + Recall

(10)

We calculate precision as the ratio between the number of
correct refactorings and the number of all recommended refac-
torings. We calculate recall as the ratio between the number
of correct refactorings and the number of moved methods. We
calculate F1-Measure as the harmonic mean of the precision
and recall results.

Experiment Settings. We run the experiments on a 2.4GHz
Intel Xeon-4210R server with 10 logical cores and 128GB of
memory. We also follow most of default hyper-parameters of
code embedding and graph embedding techniques in previous
work [4, 6, 19], which is presented in Table IV.

In answering RQ1 (embedding evaluation), we train classi-
fiers with various embedding techniques on the whole syn-
thetic data and evaluate its effectiveness on RMove’s per-
formance. We implement machine learning classifiers based
on the python library: SCIKIT-LEARN [52] and deep learning
classifiers based on the python library: KERAS [53]. We use
the grid search strategies to automatically tune the hyper-
parameters of classifiers [54]. We also repeat the 10-fold cross-
validation 10 times (10×10) to reduce the bias caused by the
randomness in experiments. The evaluation metrics are also
calculated as the average value during these times.

In answering RQ2 (accuracy evaluation), we select the top 3
embedding combinations and related trained models according
to the answer to RQ1. Furthermore, we evaluate the accuracy
of the most effective models of these embedding combinations
on the real-world dataset and compare these results to other
state-of-the-art refactoring tools.

In answering RQ3 (usefulness evaluation), we conduct a
human study by hiring 15 experienced software engineers to
analyze recommended instances of move method refactoring
for each refactoring tools in RQ2. All the participants are not
the authors of this paper. Furthermore, we randomly select
5 instances from the detection result from each refactoring
tool to reduce the complexity of analyzing the move method
refactoring and thus maintain the concentration of participants.

B. Experiment Result

Embedding Evaluation (RQ1). To analyze the effective-
ness of various embedding techniques, we conduct a systemic
comparison of 14 combinations of 2 code embedding tech-
niques and 7 graph embedding techniques. For each combina-
tion, we further investigate its performance with 9 classifiers
on the synthetic dataset. Table V presents the performance
of combinations of various embedding techniques on the
synthetic data. For each column, we highlight the greatest pre-
cision, recall and f1-measure results with a grey background
color and a + mark. For the row: “avg”, we also highlight the
top 3 results of precision, recall, and F1-measure with a grey
background color and a * mark. We further perform Kruskal-
Wallis test and Dunnett’s test on the experimental results of
14 combinations, which suggests that there is a significant
difference among these approaches. Accordingly, we label
the top 3 embedding combinations with a grey background
color. Fig. 4 further presents the average results of embedding
combinations on various classifiers, where the vertical axis
shows various embedding combinations, and the horizontal
axis shows the precision, recall, and f1-measure respectively.
For Fig. 4.(a)-(c), we label the top 3 results with a red color
and corresponding embedding combinations with a * mark.

As presented in Table V and Fig. 4, we observed
that 1) Combinations of Code2Vec+SDNE (CV+SN),
code2Seq+Line (CS+LN), and Code2Seq+SDNE (CS+SN)
outperform other embedding combinations. Code2Seq+SDNE
(CS+SN) achieves the greatest results in precision, recall, and
f1-measure. Code2Vec+SDNE (CV+SN) presents the greatest
recall score and Code2Seq+Line (CS+LN) presents a relatively



TABLE IV: Hyper-parameter settings of code embedding and graph embedding techniques

Techniques Hyper-parameter settings

Code2Vec num epochs=20, train batch size=1024, test batch size=1024, code vector size=128, path embeddings size =128
token embeddings size = 128, csv buffer size=100*1024*1024, default embeddings size = 128

Code2Seq num epochs=3000, test batch size=256, batch size=256, shuffle buffer size=10000, max path length = 9
csv buffer size=100*1024*1024, max contexts = 200, embeddings size = 128, decoder size = 128

DeepWalk representation size=128, clf ratio=0.5, number walks=10, walk length=80, workers=8, window size=10
GraRep kstep=4
Line representation size=128, order=3, negative ratio=5, clf ratio=0.5
Node2Vec p=0.25, q=0.25
ProNE dimension=128, step=10, theta=0.5, mu=0.2
SDNE alpha=1e-6, beta=5, nu1=1e-5, nu2=1e-4, batch size=200, epoch=100
Walklets dimensions=128, walk-number=5, walk length=80, window size=5, workers=4, min count=1, p=1.0, q=1.0

TABLE V: The performance of combinations of various embedding techniques on the synthetic data. CV: Code2Vec, CS:
Code2Seq, DW: DeepWalk, GR: GraRep, LN: Line, PN: ProNE, SN: SDNE, P: Precision, R: Recall, F1: F1-Measure.

CV+DW CV+GR CV+LN CV+NV CV+PN CV+SN CV+WL
Model P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1
DT .78 .81+ .79 .82 .79 .80 .75 .81+ .78 .84 .80 .82+ .78 .81+ .80 .83 .85 .84+ .81+ .83+ .82+

NB .55 .35 .43 .68 .48 .56 .71 .51 .60 .67 .46 .55 .66 .52 .58 .63 .86 .72 .58 .52 .55
SVM .76 .74 .75 .73 .70 .71 .79 .78 .78 .80 .75 .78 .82 .76 .79 .70 .87 .78 .77 .79 .78
LR .74 .74 .74 .71 .78 .74 .77 .77 .77 .77 .75 .76 .79 .80 .79 .75 .81 .77 .77 .75 .76
RF .83 .80 .81 .81 .78 .79 .84+ .81+ .82+ .85+ .74 .79 .83 .76 .79 .85+ .80 .82 .80 .67 .73
XGB .85+ .81+ .83+ .87+ .81+ .84+ .82 .74 .78 .80 .75 .78 .84+ .78 .81+ .85+ .81 .83 .79 .78 .78
CNN .62 .74 .68 .61 .79 .69 .66 .68 .67 .54 .87+ .67 .66 .80 .72 .54 .92+ .68 .72 .72 .72
LSTM .74 .73 .73 .65 .70 .67 .77 .78 .77 .76 .78 .77 .78 .79 .78 .76 .78 .77 .72 .76 .74
GRU .73 .73 .74 .69 .47 .56 .77 .69 .73 .79 .67 .73 .80 .69 .74 .80 .73 .76 .78 .65 .71
Avg .73 .72 .72 .73 .70 .71 .76 .73 .74 .76 .73 .74 .77 .74 .76 .74 .82∗ .78∗ .75 .72 .73

CS+DW CS+GR CS+LN CS+NV CS+PN CS+SN CS+WL
Model P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1
DT .76 .75+ .75 .82 .71 .76 .84 .83 .83 .74 .82 .78 .81 .78 .80 .84 .89 .87 .78 .71+ .74+

NB .58 .40 .47 .55 .33 .42 .66 .77 .71 .66 .41 .51 .69 .73 .71 .68 .94+ .79 .55 .59 .57
SVM .73 .67 .70 .82 .77 .79 .82 .75 .78 .79 .73 .76 .80 .78 .79 .74 .83 .78 .75 .66 .70
LR .68 .65 .66 .83 .77 .80 .84 .76 .80 .81 .75 .78 .83 .78 .80 .75 .75 .75 .68 .65 .66
RF .85+ .69 .76+ .86+ .75 .78 .88 .81 .84 .87+ .81 .84+ .87+ .78 .82 .92+ .84 .88+ .84+ .66 .73
XGB .81 .71 .76+ .83 .83+ .83+ .89+ .87 .88+ .86 .83+ .84+ .87+ .86+ .87+ .92+ .85 .88+ .78 .67 .72
CNN .73 .67 .63 .65 .63 .62 .54 .96+ .70 .72 .67 .63 .73 .69 .65 .76 .68 .64 .77 .68 .63
LSTM .68 .61 .64 .74 .63 .68 .83 .76 .79 .79 .72 .76 .79 .78 .78 .77 .81 .79 .63 .57 .60
GRU .71 .54 .61 .71 .52 .60 .75 .63 .68 .78 .61 .68 .77 .68 .72 .78 .78 .78 .65 .57 .61
Avg .72 .63 .66 .76 .66 .70 .78∗ .79∗ .78∗ .78∗ .71 .73 .79∗ .76 .77 .80∗ .82∗ .80∗ .71 .64 .66

TABLE VI: The accuracy of various refactoring tools on the real-world dataset. P: Precision, R: Recall, F1: F1-Measure.

PathMove JDeodorant JMove RMove-1 RMove-2 RMove-3
Subjects P R F1 P R F1 P R F1 P R F1 P R F1 P R F1
Weka .224 .645 .332 .059 .548 .107 .108 .741 .189 .508 .959+ .664+ .514+ .917 .659 .485 .729 .583
Ant .197 .56 .292 .171 .48 .252 .173 .84 .287 .491 .905+ .637+ .503+ .857 .634 .472 .69 .561
FreeCol .048 .647 .089 .03 .294 .054 .074 .764 .135 .483 .879 .623 .513+ .906+ .655+ .506 .772 .611
JMeter .264 .36 .305 .236 .52 .325 .275 .76 .404 .466 .923+ .62+ .469 .847 .604 .473+ .76 .583
FreeMind .8+ .333 .47 .166 .583 .258 .148 .666 .242 .517 .964+ .673+ .524 .857 .65 .484 .764 .593
JTOpen .416 .512 .459 .207 .447 .283 .208 .894+ .337 .484 .872 .623 .497 .854 .628 .521+ .812 .635+

DrJava .428 .5 .461 .128 .555 .208 .128 .777 .22 .526+ .96+ .68+ .5 .825 .623 .518 .81 .632
Maven .545+ .541 .543 .139 .25 .179 .104 .375 .163 .496 .853 .627 .505 .771 .61 .51 .876+ .645+

Avg .365 .512 .369 .142 .46 .208 .152 .727 .247 .496 .914∗ .643∗ .503∗ .854 .633 .496 .777 .605

high precision and f1-measure score. A possible explanation
is that SDNE comprehensively captures the method semantic
information to improve the recall score whereas Code2Seq
efficiently characterizes the method semantic information to
increase the precision score. 2) Random Forest (RF) and
Extreme Gradient Boosting (XGB) outperform other classifiers
in most embedding combinations. Although Decision Tree
(DT) performs effectively in specific embedding combinations,
Random Forest (RF) and Extreme Gradient Boosting (XGB)
present the best precision, recall and f1-measure results in
most cases. This result demonstrates that deep learning classi-
fiers do not perform as well as we expected in recommending
move method refactorings. The reason might be that software
data, unlike image and text, is more suitable for machine

learning classifiers.
Answer to RQ1: Code2Vec+SDNE (CV+SN), Code2Seq
+Line (CS+LN), and Code2Seq+SDNE (CS+SN) are the
most effective embedding combinations.
Accuracy Evaluation (RQ2). To evaluate the accuracy of

RMove, we select three most effective embedding combina-
tions: Code2Vec+SDNE (CV+SN), Code2Seq+Line (CS+LN),
and Code2Seq+SDNE (CS+SN). Furthermore, we rank related
trained models of these embedding combinations on the real-
world dataset and label the most effective classifier for each
combination. Therefore, we regard these combinations and
related classifiers with the best performance as three vari-
ants of RMove: RMove-1, RMove-2, and RMove-3, which
corresponds to Code2Vec+SDNE (CV+SN), Code2Seq+Line



(CS+LN), and Code2Seq+SDNE (CS+SN) respectively. Fig. 5
presents the performance of classifiers on selected three
embedding combinations. Fig. 5.(a)-(c) presents the results
of Code2Vec+SDNE (CV+SN), Code2Seq+Line (CS+LN),
and Code2Seq+SDNE (CS+SN) respectively, while the most
effective classifier was labeled with a * mark. Table VI
presents the accuracy of various refactoring tools on the
real-world dataset including PathMove [13], JDeodorant [14],
JMove [12], RMove-1, RMove-2, and RMove-3. For each
row/subject, we highlight the greatest precision, recall and f1-
measure results with a grey background color and a + mark.
Specifically, for the row: “avg”, we highlight the maximum
average scores of precision, recall and f1-measure on studied
subjects with a grey background color and a * mark. Accord-
ingly, we label the most accurate refactoring tool with a grey
background color.

As presented in Table VI and Fig. 5, we observed that 1)
Naive Bayes outperforms other classifiers in all of selected em-
bedding combinations including Code2Vec+SDNE (CV+SN),
Code2Seq+Line (CS+LN), and Code2Seq+SDNE (CS+SN)
on the real-world dataset. Naive Bayes has the greatest re-
call score of all classifiers, resulting in a higher f1-measure
score. This result demonstrates that Naive Bayes outperforms
Random Forest (RF) and Extreme Gradient Boosting (XGB)
on the real-world dataset despite having the best performance
on the synthetic dataset in RQ1. One possible reason might
be that Naive Bayes is more prone to generalize to other
drastically different datasets in comparison to other classifiers.
2). RMove demonstrates an increase of 14%-36% in precision,
19%-45% in recall, and 27%-44% in f1-measure compared
to stat-of-the-art tools: PathMove [13], JDeodorant [14], and
JMove [12] while the statical test results also show that
RMove is significantly better than these three tools. Despite
PathMove’s high precision on 2 subjects and JMove’s high
recall on 1 subject, RMove outperforms other refactoring tools
in precision, recall, and f1-measure on most subjects of the
real-world dataset. Specially, RMove-1 presents the increase
of recall scores while RMove-2 presents the improvement of
precision scores. In real scenarios, software practitioners may
choose the proper embedding combinations and classifiers as
settings for recommending move method refactorings.

Answer to RQ2: RMove has an increase of 14%-36% in
precision, 19%-45% in recall, and 27%-44% in f1-measure
compared to stat-of-the-art refactoring tools.

Usefulness Evaluation (RQ3). To evaluate the usefulness
of RMove, we conducted a user study with 15 participants to
review detection results of 6 refactoring tools on the subject
FreeMind in RQ2. The studied subject: FreeMind is suitable
for understanding. All the participants are industrial engineers
having at least 6 years of working experience, which are also
not the authors of this paper. We offered the source code of
FreeMind and 6 groups of detection results and each group
has 5 instances, which have been sampled several times to
limit the overlap of these samples. We blindly present each
group of detection results in a random order to each participant

to ensure they do not know which tool was developed by
us. After reviewing all the groups, participants are required
to evaluate each group’s performance. We further asked the
participants to complete a questionnaire about refactoring
tools. For each tool, we ask participants the question “Would
you apply the refactoring tool?” and provide them with 5
ranking options including “Definitely Not”, “No”, “Maybe”,
“Yes”, and “Absolutely Yes”.

Table VII reports the results of the questionnaire of 15
participants. The first column presents the refactoring tool.
The other columns present the answer of each participant
for each refactoring tool. Fig. 6 presents the distribution of
participants’ answers for each refactoring tool. We observed
that 1) Generally, the majority of participants believe that
RMove is more helpful compared with the results of state-of-
the-art refactoring tools. 7-9 participants choose “Absolutely
Yes” or “Yes” for RMove while 1-4 participants support
other tools. 2) More participants believe that state-of-the-art
refactoring tools are not very helpful. 6-8 participants choose
“Definitely Not” or “No” for these refactoring tools. 3) More
participants hesitate to use state-of-the-art refactoring tools. 5-
6 participants choose “Maybe” for these refactoring tools. This
result indicates that RMove is more likely than state-of-the-art
refactoring tools to be embraced by software practitioners.

Answer to RQ3: RMove is more useful than other refactor-
ing tools in recommendation of move method refactoring
opportunities for most participants.

V. DISCUSSION

In this section, we discuss the limitation, threats to validity,
and applications of our approach.
Threats. Our research has the following threats: The first
threat comes from data used in our evaluation. We only evalu-
ate our approach in a part of selected open-source projects. It
is still unclear whether our approach will generalize to closed
source industrial projects and open-source projects from other
communities. Replicating our approach on more datasets is our
ongoing work. The second threat comes from the data quality
of our training data. The collected data may contain noise
which may lead to the bias of model training. To limit this
threat, we employ the popular open-source projects, which are
maintained by active communities containing less noise. We
further manually check each item of training data to improve
its quality. The third threat comes from the feasible evaluation
of our recommendation results. We employed 15 participants
to manually check the preconditions of our move method rec-
ommendation results. In our future work, we will further lever-
age automatic precondition validation techniques to ensure the
refactoring recommendation solutions are actually applicable.
The fourth threat comes from the run-time evaluation of our
approach. We only test the run-time of RMove on real-world
dataset. On these small subjects, RMove takes a relatively
long time to process data and train model. However, once
these phrases are completed, RMove can return refactoring
recommendation results rapidly. Table VIII presents the run-
time performance of RMove on the real-world dataset. On
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(a) Precision of embedding combinations
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(b) Recall of embedding combinations
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(c) F1-measure of embedding combinations

Fig. 4. The average precision, recall, and f1-measure of embedding combinations.
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(a) Classifier performance on CV+SN
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(b) Classifier Performance on CS+LN
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(c) Classifier performance on CS+SN

Fig. 5. Classifier performance on CV+SN, CS+LN, and CS+SN. CV: Code2Vec, CS: Code2Seq, SN: SDNE, LN: Line.

TABLE VII: Participants’ answers to the question “Would you apply the refactoring tool?”. AY: Absolutely Yes, Y: Yes, M:
Maybe, N: No, DN: Definitely Not.

Tool P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15
PathMove AY N Y M N M M Y DN M N N DN Y M
JDeodorant M M DN N N M N N N DN M M DN M Y
JMove M Y M N M N M DN M DN N AY N DN N
RMove-1 AY Y N AY Y AY Y N Y M AY N M Y N
RMove-2 Y M N AY M Y Y N Y DN AY N M AY M
RMove-3 M N M AY Y Y AY M Y M Y N DN Y N
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Fig. 6. The distribution of participants’ answers for each
refactoring tool.

average, RMove responds within 2 seconds. Analyzing the
run-time performance of our approach on large scale subjects
is our ongoing work.

Limitations. Our research has several limitations, which are
illustrated as follows: First, machine learning techniques are
significantly influenced by their hyper-parameters. To limit
this threat, we employ grid search to explore suitable hyper-

parameters of classifiers. However, we follow most of the
default hyper-parameters of embedding techniques used in
previous study [4, 6, 19], which may cause sub-optimal results.
In our future work, we will further explore the impact of
hyper-parameters of embedding techniques including code
embedding and network embedding. Second, we employ the
implementation of embedding techniques in previous work
[4, 6, 19], which may produce wrong results. To reduce
this threat, we reported our found defects. If they are not
fixed, we tried to fix them by ourselves. This can be further
reduced by using more advanced tools. Third, we only focus
on calling relationships between methods to generate structural
representation. We did not consider fine-grained information
of method calling behaviours as features in our approach, like
various types of callees and calling frequencies. We believe
these fine-grained features can be potentially useful and will
further leverage them to improve our approach in future work.

Applications. Our research can be further extended in several
directions, which are listed as follows: First, our approach uses
the synthetic dataset to train the classification model and some
results are promising. Despite its small size, the synthetic



TABLE VIII: The run-time performace of RMove.

Tool Weka Ant FreeCol JMeter FreeMind JTOpen DrJava Maven Avg
Rmove-1 1.45s 1.86s 1.97s 1.46s 1.37s 1.52s 1.30s 1.47s 1.55s
Rmove-2 1.06s 1.44s 1.51s 1.06s 0.93s 1.08s 0.90s 1.07s 1.13s
Rmove-3 1.61s 1.96s 2.06s 1.53s 1.47s 1.62s 1.47s 1.55s 1.66s

dataset is of great quality. This implies that in refactoring
recommendation tasks, data quality is more significant than
data quantity. In future work, high-quality synthetic data
could be leveraged to improve the performance of refactoring
recommendation techniques. Second, our results indicate that
various embedding combinations have drastically different ef-
fects on the refactoring recommendation results. Furthermore,
the performance of classifiers also varies depending on the
embedding combination. This opens up the possibility of using
the ensemble technique to combine several variants of our
approach implemented with various embedding combinations
and classifiers. Designing the proper ensemble technique to
improve the refactoring recommendation in future work is
deserved. Third, our results demonstrate that improving the
move method refactoring recommendation using structural
and semantic representations of code snippets is feasible.
It implies that the combination of structural and semantic
representations could help with further additional feature envy
refactoring techniques such as move attribute, move class
and move package, which are all related to the inappropriate
placement of code entities. Our future work will focus on the
existing refactoring recommendation technique improving by
exploiting both the structural and semantic representation of
code snippets.

VI. RELATED WORK

Over the past decades, numerous tools have been designed
to automatically suggest Move Method refactoring. In this
section, we provide an overview of existing approaches and
categorize them broadly into two groups:

Non-machine-learning-based approaches. The most rep-
resentative work in this area is JDeodorant, which was intro-
duced by Tsantalis et al. [14]. JDeodorant supports the detec-
tion of several types of code smells, including Feature Envy,
Long Method, and God Class, and recommend appropriate
refactoring suggestions to remove them. JDeodorant detects
Feature Envy based on the following rule: a method should
be moved when this method accesses more entities in other
classes than entities in its class. To ensure the correctness
of Move Method refactoring suggestions, JDeodorant also
employs a set of preconditions and automatically verifies
them. Terra et al. [12] introduced a Move Method refactoring
tool: JMove based on the similarity between dependency
sets. JMove considers dependencies such as method calls,
field accesses, return types, etc. JMove detects Feature Envy
according to the dependencies established by the method. The
results show that JMove outperforms JDeodorant in accuracy
and efficiency, especially for large methods. Liu et al. [55]
introduced a Move Method refactoring tool: Domino based
on the movement of other methods. Domino detects Feature
Envy based on a heuristic that similar methods should be

moved together. When a method is moved, Domino explores
possible methods and suggests to move. Ujihara et al. [56]
introduced a Move Method refactoring tool: C-JRefRec based
on static program analysis. C-JRefRec detects Feature Envy
by computing the semantic similarity between the method
and target class with TF-IDF vectors. Bavota et al. [57]
introduced a Move Method refactoring tool: MethodBook
using Relational Topic Model (RTM). MethodBook considers
both method calls and textual information, including identifiers
and comments, to support the detection of Feature Envy.
These proposed approaches are based on software metrics,
which require expert knowledge to define rules and thresholds,
whereas our approach employs embedding techniques to learn
features from code snippets automatically.

Machine learning-based approaches. Liu et al. [58] pro-
posed a deep learning-based approach to detect several code
smells including Feature Envy, Long Method, and Large Class.
They first extract textual information such as identifiers and
generate its representations with the word2vec technique [22].
Then, they further calculate the distance between representa-
tions and use Convolutional Neural Network (CNN) model to
identify Feature Envy. Hadj-Kacem et al. [59] also proposed a
deep learning-based approach to detect several code smells in-
cluding Feature Envy, Long Method, and Blob. They parse the
source code into Abstract Syntax Trees (AST) and generate its
representation using the Variational Auto-Encoder (VAE) [60].
They further use the Linear Regress classifier to detect Feature
Envy. Sharma et al. [61] systematically compare the detection
of code smells including Complex Method, Magic Number,
Empty Catch Block, and Multifaceted Abstraction with deep
learning models. The results present that Recurrent Neural
Network performs the best. Bryksin et al. [62] introduced a
Move Method refactoring tool: ArchReload using clustering
ensemble techniques. ArchReload combines the detection re-
sults of several heuristic-based approaches, such as ARI [63],
HAC [64], and CCDA [65]. Barbez et al. [66] also introduced
a Move Method refactoring tool with classifier ensemble
techniques. They first collect software metrics and further
employ these metrics to train machine learning classifiers and
ensemble them. These approaches extract identifiers from code
snippets and characterize features using word2vec techniques,
while our approach uses graph embedding techniques and
code embedding techniques to better capture the structure and
semantic properties of code snippets.

VII. CONCLUSION

In this paper, we proposed an approach to recommend Move
Method refactoring named RMove by automatically learning
both structural and semantic representation from code snippets.
We first extract method structural and semantic information
from the dataset. Next, we create the structural and semantic



representation, and further concatenate these representations.
Finally, we train the machine learning classifier to guide
the movement of method to suitable class. The results show
that our approach outperforms three state-of-the-art refactoring
tools including PathMove, JDeodorant, and JMove.
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