
The Visual Debugger Tool
Tim Kräuter∗ , Harald König†∗ , Adrian Rutle∗ , Yngve Lamo∗

∗Western Norway University of Applied Sciences, Norway
†FHDW Hannover, Germany

{tkra, aru, yla}@hvl.no, harald.koenig@fhdw.de

Abstract—Debugging is an essential part of software mainte-
nance and evolution since it allows software developers to analyze
program execution step by step. Understanding a program is
required to fix potential flaws, alleviate bottlenecks, and imple-
ment new desired features. Thus, software developers spend a
large percentage of their time validating and debugging software,
resulting in high software maintenance and evolution cost. We
aim to reduce this cost by providing a novel visual debugging
tool to software developers to foster program comprehension
during debugging. Our debugging tool visualizes program ex-
ecution information graphically as an object diagram and is
fully integrated into the popular Java development environment
IntelliJ IDEA. Moreover, the object diagram allows interactions
to explore program execution information in more detail. A
demonstration of our tool is available at https://www.youtube.
com/watch?v=lU OgotweRk.

Index Terms—Debugging, Visual Debugging, Visual Debugger,
IntelliJ IDEA Plugin, Software Maintenance, Software Visualiza-
tion

I. INTRODUCTION

Debugging is an essential part of software maintenance
and evolution since it allows a software developer to analyze
program execution step by step. Nowadays, debugging tools
are integrated with every modern Integrated Development
Environment (IDE) and are indispensable in software develop-
ment. Debugging is used to understand program control- and
data flow such that a software developer can locate and fix
reported bugs or extend the program to implement new desired
features. Thus, debugging is crucial for software maintenance
and evolution, and software developers spend between 35 and
50 percent of their time validating and debugging software [1].
Consequently, 50-75 percent of the total budget of software
development projects is used for debugging, testing, and
verification [1]. We aim to reduce this cost by providing a
novel debugging tool to software developers to foster program
comprehension during debugging. Reduced time spent on
debugging can be used to implement new features, i.e., create
business value for customers.

Traditionally program execution information is represented
in a textual manner during debugging (see figure 2 in sec-
tion II). Debugging tools integrated with IDEs, such as IntelliJ
IDEA and Eclipse, show the top-level variables contained in
the current program scope. However, the desired program
execution information is often not present in the top-level
variables but spread out on lower levels of potentially different
variables. Thus, in specific scenarios, a graphical representa-
tion results in a faster and better understanding of the shown
program execution information. We have developed a tool that

visualizes the current program execution information graphi-
cally as an object diagram to foster program comprehension.
This open-source tool, called the visual debugger, is integrated
with IntelliJ IDEA1, which is the most popular Java IDE
according to the JVM Ecosystem Report 2021 [3]. Compared
to other tools, our visual debugger is optimized for industrial
use since it is straightforward, lightweight, and non-intrusive.
It can be used alongside the traditional textual debugger and
allows interactions to explore program execution information
in more detail. In addition, the tool’s architecture enables the
reuse of the visualization component in other debugging tools.

The remainder of this paper is structured as follows. We
describe the visual debugger tool in detail (section II) and
outline a typical usage scenario (section III) before explaining
the tool architecture (section IV). Finally, we discuss related
work in section V and conclude in section VI.

II. TOOL DESCRIPTION

We will describe our tool using the parts list model shown in
figure 1. A parts list describes the decomposition of Products
into sub-products and basic Materials. Given a parts list,
one can calculate the monetary cost and materials needed to
construct one or more pieces of a described product2.

component

components

Component

+ name: String

+ cost: Integer

Material Product

QuantifiedComponent

+ quantity: Integer

*
1

Fig. 1. Parts list class diagram

Figure 2 shows objects during debugging in IntelliJ IDEA
conforming to the parts list model. The default debugger uses
a textual representation for the program execution information.

We have unfolded the substructure of the folding wall table
object to see its components, especially the first component,
in more detail. The textual debugging representation is ideal if
one is only interested in a small part of the program execution
information, such as a single object and its attributes. However,

1The tool is available through the JetBrains Marketplace [2].
2This example is inspired by the course on information infrastructures

taught by Michael Löwe at the University of Applied Sciences FHDW,
Hannover.

ar
X

iv
:2

40
4.

12
93

2v
1 

 [
cs

.S
E

] 
 1

9 
A

pr
 2

02
4

https://orcid.org/0000-0003-1795-0611
https://orcid.org/0000-0001-6304-6311
https://orcid.org/0000-0002-4158-1644
https://orcid.org/0000-0001-9196-1779
https://www.youtube.com/watch?v=lU_OgotweRk
https://www.youtube.com/watch?v=lU_OgotweRk


Fig. 2. Variables during debugging in IntelliJ IDEA

if the goal is to understand the whole object world, i.e., mul-
tiple objects and their links, using the textual representation is
not adequate.

Consequently, research on visual debugging began with the
goal of fostering program comprehension. Our tool is one
of many visual debugging tools, but we aimed for excellent
usability by seamlessly integrating our tool in the debugging
process of the IntelliJ IDEA. In addition, our tool is straightfor-
ward and non-intrusive, i.e., it complements textual debugging.
The goal of our tool is to make debugging during software
development as efficient as possible to increase software
developer productivity.

Using our visual debugger tool, we obtain the object di-
agram shown in figure 33. It contains the same objects and
level of detail as figure 24 when ignoring the greyed-out part,
which we return to later.

folding_wall_table:Product

cost=5
name="Folding wall table"

0:QuantifiedComponent

quantity=1

component:Component

name="Main support"
cost=10

component

components

1:QuantifiedComponent

quantity=26

component:Component

name="Wood screw D3,5 x 20mm"
cost=1

component

components

component:Component

name="Wood screw D4 x 45mm"
cost=1

3:QuantifiedComponent

quantity=10

component

components

component:Component

cost=5
name="Hinge"

2:QuantifiedComponent

quantity=4

component

components

Fig. 3. Visual Debugger visualization comparable to figure 2

The visual debugger tool continuously visualizes the vari-
ables in the scope of the debugging session as an object
diagram. The visualization starts automatically when the first
breakpoint is reached during debugging if the visual debugger
tool is activated. Thus, if desired, a software developer can use
the visual debugger alongside the textual debugging view. The
visualization is always up to date since we listen to the events
generated by a debugging session in IntelliJ IDEA. Then, we
update the visualization whenever a new breakpoint is reached,
or a user steps through the source code.

3 Additional artifacts, including source code, a demonstration of the visual
debugger tool, and a description of the Visual Debugging API, can be found
in [4].

4One sees a little more information in figure 2 due to well-written toString()
methods, which are used by IntelliJ IDEA.

Textual debugging views only show the top-level variables,
i.e., root objects (directly in the debugging session scope)
without attributes when debugging is started. Similarly, we
do not visualize all objects linked to the root objects, but
we allow the user to configure a visualization depth. The
visualization depth describes how many links starting from
the root objects should be followed to find objects for the
initial visualization. Afterward, one can explore objects further
by double-clicking them in the visualization, just as in the
textual debugger. All objects reachable by outgoing links will
be included in the visualization. For example, in figure 3, one
quantified component was explored further. In the future, it can
also be interesting to load objects which have outgoing links
to the explored object, such that one can load information with
and against the link directions.

The visualization is browser-based and implemented in
a standalone visualization component, which automatically
layouts the object diagram using the Eclipse Layout Kernel
(ELK)5. The ELK layout works well but can be improved to
minimize the movement of unchanged objects in the visualiza-
tion during debugging. In addition, we provide a visualization
based on PlantUML embedded in IntelliJ IDEA. However, it
is not possible to explore objects inside the embedded visu-
alization since PlantUML provides static Unified Modeling
Language (UML) diagrams.

The visual debugger tool currently has 2662 unique down-
loads6 and only positive reviews. It consists of the debugging
and the visualization component, which we will describe in
more detail in the tool architecture section. Both components
are open-source3 and, when combined, result in the visual
debugger tool.

III. TYPICAL USAGE SCENARIO

A typical usage scenario for our tool is debugging a failing
unit test. Unit tests are usually structured according to the
Arrange-Act-Assert (AAA) pattern. The Arrange section sets
up the unit test context by, for example, initializing a set of
needed objects. Afterward, in the Act section, the method
under test is invoked. Finally, the Assert section verifies that
the outcome is as expected.

Figure 4 depicts a failing unit test for the parts list model
introduced earlier following the AAA Pattern. In the Arrange
section, the objects according to the variables view in figure 3
including the greyed-out part, are created.

In this typical situation, the visual debugger tool can quickly
provide an overview of the unit test context created in the
Arrange section, i.e., the object world that was set up. One can
set a breakpoint at the start of the Assert section, which will
lead to the visualization shown in figure 3, including another
object containing the computed value from the Act section.
For the example in figure 4, a visualization depth of two or
higher is needed. Otherwise, the first level of objects must be
explored one level deep.

5https://www.eclipse.org/elk/
6Last checked on the 21st of Juli, 2022, see [2].

https://www.eclipse.org/elk/


Fig. 4. Example java unit test for the parts list in figure 3

The test case is wrong in this example since the expected
cost must be increased by 15. For example, the four hinges
in the folding wall table have been counted as one when the
expected price was manually computed. If the test case had
been correct, debugging would continue to the invoked method
in the Act section. Obviously, visual debugging can also help
understand control and data flow in methods.

Debugging failing unit tests is not our tool’s only possi-
ble usage scenario since it can be used anytime traditional
textual debugging is applicable. For example, to understand
the current codebase and then extend it with new features.
If desired, one could even use textual and visual debugging
simultaneously.

IV. TOOL ARCHITECTURE

First, the debugging component integrates with IntelliJ
IDEA by automatically hooking into all started debugging
processes of the IDE. The goal of the debugging component
is to obtain the current program execution information from
IntelliJ IDEA and pass it on to the visualization component.
In addition, the debugging component offers a method to
load detailed information for individual objects in the current
debugging scope, as described earlier. The debugging com-
ponent is written in Java, and its code quality and security
are continuously checked using static code analysis based on
SonarCloud and unit tests [4].

Second, the visualization component represents the pro-
gram execution information as an object diagram to ease
program understanding. Moreover, it allows interaction to load
additional program execution information for the currently
shown objects. The visualization component is browser-based
(JavaScript) and relies on a fixed Visual Debugging Appli-
cation Programming Interface (API) [4]. Consequently, we
could implement a debugging component for a different IDE,
such as Eclipse, and reuse the visualization component. Fur-
thermore, the visualization component is independent of the
programming language, which is debugged and can potentially
be reused to debug different object-oriented programming
languages.

The Visual Debugging API3 is based on WebSocket to
allow live updates about changes in the program execution
information, see figure 5.

Initially, a browser connects to the WebSocket server host-
ing the Visual Debugger API, for example, the server included

Visual
Debugger 

Visual Debugging
API (WebSocket)

Live
debugging
progress

Load
children of
elements

BrowserIDE
Plugin

Fig. 5. Communication using the Visual Debugger API

in our Visual Debugger tool. Afterward, the browser is updated
in real-time about new program execution information due to
debugging actions in the IDE, such as hitting a breakpoint
or jumping to the next line in the source code. In addition,
the visualization component allows a user to interact with the
visualization to load all direct children of shown objects.

Sending program execution information, i.e., object diagram
exchange, is standardized by an XSD schema [4]. Figure 6
depicts the metamodel for object diagrams realized by the
schema.

ObjectDiagram

Object

+ id: Integer

+ type: String

Link

+ type: String

AttributeValue

+ type: String

+ value: String
*

11 to from

*

objects attributeValues

links

*

Fig. 6. Object diagram metamodel

The ObjectDiagram is the root element in the schema
(highlighted in green) and contains a set of Objects and Links.
Objects and Links have a type, i.e., the name of a class or
association. In addition, each Object has a unique id provided
by the debugger and a set of attributeValues, which have a
primitive type and value modeled as strings.

Besides debugging, the visualization component provides
two export features. First, one can export object diagrams
during debugging as an SVG file. This can be useful if an
undesired program state has been reached and should be
documented in a bug tracking system. Second, diagrams can
be exported as an XML file that can be used to load and edit
them in the object diagram modeler, for example, to show the
actually desired program state. The object diagram modeler is
an open-source tool to create object diagrams in the browser,
developed by the first author [5].

V. RELATED WORK

Visual debugging has been researched since the 90s [6]–
[9], but most of the resulting tools are outdated. We will now
describe recent visual debugging tools and compare them to
our tool.

Java Interactive Visualization Environment (JIVE) is a plu-
gin for the Eclipse IDE [10]–[12]. It provides interactive
Java program execution visualization at different levels of
granularity. The program execution information is visualized



as a UML object diagram, while the call stack is represented
as a UML sequence diagram. JIVE is tightly coupled to
the Eclipse IDE and does not integrate with the Eclipse
debugger but rather is a debugging environment on its own.
This approach is significantly different from our tool, which
integrates with the debugging tool of the IDE. It makes JIVE
powerful but complex since it is hard to understand what is
happening in the multiple views provided by JIVE. Compared
to JIVE, the visual debugger tool focuses only on object
diagram visualization of the program execution information,
making it lightweight and straightforward to use. In addition,
our tool decouples debugging and visualization such that it
can be adopted to different IDEs even based on other object-
oriented programming languages than Java.

A plugin called Java Visualizer has been developed for the
IntelliJ IDEA [13]. It visualizes the call stack and objects
contained in the Java heap as a box-and-pointer diagram during
a debugging session. However, even in simple scenarios, the
visualized call stacks are long since all objects from the Java
heap are visualized and not only the variables in the debugging
scope. This leads to much noise in the visualization, especially
if one is only interested in the objects currently in the scope
of the debugging session. In contrast, our tool only shows
relevant information from the current scope and allows users
to load more information if needed.

In [14], the authors describe a tool to debug distributed
applications. It can connect to multiple Java virtual machines
and show the retrieved objects separately in an object diagram
or combine the same objects from different JVMs using object
identifiers or other properties. The tool is also tightly integrated
with the Eclipse IDE and tackles the problem of debugging
distributed applications, which we do not address. However,
we could not find and test the tool by ourselves. In the
future, we could incorporate these ideas by allowing multiple
debugging components (one for each application) to connect
to one visualization component. The visualization component
can then show the different debugging views separately or
combined as described in [14].

JAVAVIS is a standalone tool to help students understand
program execution in Java [15]. It makes use of object- and
sequence diagrams to represent program behavior. However, it
is not integrated with modern IDEs such as Eclipse or IntelliJ
IDEA. Our tool can help students learn Java or object-oriented
program execution in general, but we currently do not provide
a sequence diagram visualization.

The Data Display Debugger (DDD) provides a graphical
data visualization that can be explored incrementally and
interactively, similar to our approach [16]. However, the tool
is not integrated with modern IDEs.

Besides source code, behavioral models can also be ex-
ecuted and debugged. For example, UML state-machines,
Petri-Nets, or Business Process Modeling Notation (BPMN)
processes, have clearly defined execution semantics [17], [18].
For BPMN, the bmpn-js token simulation7 was developed,

7https://bpmn-io.github.io/bpmn-js-token-simulation/

enabling the token simulation of BPMN process models in
the browser. The simulator can be seen as a BPMN debugger
since one can pause activities, which will stop tokens from
flowing through them, similar to breakpoints in source code.
In general, our tool could be adapted to debug behavioral
models. Especially, the visualization component and Visual
Debugging API could be extended to visualize behavioral
model execution.

VI. CONCLUSION & FUTURE WORK

The main contribution of this paper is the new open-
source visual debugging tool, which differs from previously
created tools in the following three aspects. First, it is fully
integrated with IntelliJ IDEA, a modern and popular IDE for
Java software development. According to the JVM Ecosystem
Report 2021, over 70% of JVM developers use IntelliJ IDEA
[3]. In addition, the tool received good feedback and was
downloaded nearly 2700 times already6.

Second, the visualization part of the tool is independent,
such that it can be reused in other visual debugging tools. For
example, one could develop a plugin for Eclipse IDE or Visual
Studio Code in the future.

Third, we aimed for the excellent usability of our tool
alongside present debugging tools. Thus, it automatically starts
when debugging in IntelliJ IDEA and can be used straight
away without any configuration. Moreover, we only show the
most relevant program execution information in the debugger
by default and allow the user to interactively display more
relevant information, similarly to the widely used textual
debuggers.

We plan to improve and extend the tool in multiple ways in
the future. First, we want to do more field testing using our tool
to gather feedback on its usability and current features. This
should lead to continuous improvement of the tool and greater
tool use, which leads to more feedback from practitioners.
Primarily, the scalability of the tool when debugging large
software systems must be investigated. The scalability of the
visual debugger should be similar to the scalability of present
textual debuggers, such that our tool is ready for industrial use.
Afterward, we plan a qualitative study to investigate to what
extent our tool speeds up software development compared to
traditional debugging.

Second, we plan to implement visual debuggers for other
IDEs and object-oriented programming languages by reusing
our visualization component. The first candidates are Eclipse
IDE for Java and Visual Studio Code for C#.

Third, we plan to adapt our tool to debug executions
of behavioral models since not only source code can be
executed and debugged. The bpmn-js token simulation shows
that simulation and debugging benefit software developers
using a specific behavioral modeling language. Furthermore,
it is also possible to simultaneously visualize and debug
multiple heterogeneous behavioral model executions in hetero-
geneous modeling situations [19]. Debugging multiple behav-
ioral model executions simultaneously is similar to debugging
distributed applications [14].

https://bpmn-io.github.io/bpmn-js-token-simulation/


REFERENCES

[1] D. H. O’Dell, “The Debugging Mindset: Understanding the Psychology
of Learning Strategies Leads to Effective Problem-Solving Skills.”
Queue, vol. 15, no. 1, pp. 71–90, Feb. 2017.

[2] “Visual Debugger - IntelliJ IDEs Plugin — Marketplace,”
https://plugins.jetbrains.com/plugin/16851-visual-debugger.

[3] “JVM Ecosystem Report 2021 — Snyk,” https://snyk.io/jvm-ecosystem-
report-2021/, Jun. 2021.

[4] Tim Kräuter, “Artifacts - ICSME,”
https://github.com/timKraeuter/ICSME-2022, Oct. 2022.

[5] “Object diagram modeler,” https://github.com/timKraeuter/object-
diagram-modeler, Mar. 2022.

[6] R. A. Baeza-Yates, G. Quezada, and G. Valmadre, Visual Debugging
and Automatic Animation of C Programs. WORLD SCIENTIFIC, Nov.
1996, vol. 7, pp. 46–58.

[7] D. F. Jerding and J. T. Stasko, “Using visualization to foster object-
oriented program understanding,” Georgia Institute of Technology, Tech.
Rep., 1994.

[8] S. Mukherjea and J. T. Stasko, “Toward visual debugging: Integrating
algorithm animation capabilities within a source-level debugger,” ACM
Transactions on Computer-Human Interaction, vol. 1, no. 3, pp. 215–
244, Sep. 1994.

[9] D. R. Hanson and J. L. Korn, “A simple and extensible graphical
debugger,” in Proceedings of the Annual Conference on USENIX Annual
Technical Conference, ser. ATEC ’97. USA: USENIX Association,
1997, p. 13.

[10] J. K. Czyz and B. Jayaraman, “Declarative and visual debugging in
Eclipse,” in Proceedings of the 2007 OOPSLA Workshop on Eclipse

Technology eXchange - Eclipse ’07. Montreal, Quebec, Canada: ACM
Press, 2007, pp. 31–35.

[11] J. K. P., S. Jayaraman, B. Jayaraman, and S. M, “Finite-state model
extraction and visualization from Java program execution,” Software:
Practice and Experience, vol. 51, no. 2, pp. 409–437, Feb. 2021.

[12] “JIVE: Java Interactive Visualization Environment,”
https://cse.buffalo.edu/jive/.

[13] “Java Visualizer - IntelliJ IDEs Plugin — Marketplace,”
https://plugins.jetbrains.com/plugin/11512-java-visualizer.

[14] A. Koch and A. Zündorf, “Graphical debugging of distributed applica-
tions - using UML object diagrams to visualize the state of distributed
applications at runtime,” in Proceedings of the 3rd International Con-
ference on Model-Driven Engineering and Software Development, ser.
MODELSWARD 2015. Setubal, PRT: SCITEPRESS - Science and
Technology Publications, Lda, 2015, pp. 223–230.

[15] R. Oechsle and T. Schmitt, “JAVAVIS: Automatic program visualization
with object and sequence diagrams using the java debug interface (JDI),”
in Software Visualization, S. Diehl, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2002, pp. 176–190.

[16] A. Zeller and D. Lütkehaus, “DDD—a free graphical front-end for UNIX
debuggers,” SIGPLAN Not., vol. 31, no. 1, pp. 22–27, Jan. 1996.

[17] Object Management Group, “Unified Modeling Language, Version
2.5.1,” https://www.omg.org/spec/UML, Dec. 2017.

[18] ——, “Business Process Model and Notation (BPMN), Version 2.0.2,”
https://www.omg.org/spec/BPMN/, Dec. 2013.

[19] T. Kräuter, “Towards behavioral consistency in heterogeneous modeling
scenarios,” in 2021 ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems Companion (MODELS-C),
2021, pp. 666–671.


	Introduction
	Tool description
	Typical usage scenario
	Tool architecture
	Related work
	Conclusion & Future work
	References

