
Revisiting Machine Learning based Test Case
Prioritization for Continuous Integration
1st Yifan Zhao

Key Laboratory of High Confidence
Software Technologies (Peking

University), Ministry of Education
Beijing, China

zhaoyifan@stu.pku.edu.cn

2nd Dan Hao∗
Key Laboratory of High Confidence

Software Technologies (Peking
University), Ministry of Education

Beijing, China
haodan@pku.edu.cn

3rd Lu Zhang
Key Laboratory of High Confidence

Software Technologies (Peking
University), Ministry of Education

Beijing, China
zhanglucs@pku.edu.cn

Abstract—To alleviate the cost of regression testing in con-
tinuous integration (CI), a large number of machine learning-
based (ML-based) test case prioritization techniques have been
proposed. However, it is yet unknown how they perform under the
same experimental setup, because they are evaluated on different
datasets with different metrics. To bridge this gap, we conduct the
first comprehensive study on these ML-based techniques in this
paper. We investigate the performance of 11 representative ML-
based prioritization techniques for CI on 11 open-source subjects
and obtain a series of findings. For example, the performance
of the techniques changes across CI cycles, mainly resulting
from the changing amount of training data, instead of code
evolution and test removal/addition. Based on the findings, we
give some actionable suggestions on enhancing the effectiveness of
ML-based techniques, e.g., pretraining a prioritization technique
with cross-subject data to get it thoroughly trained and then
finetuning it with within-subject data dramatically improves its
performance. In particular, the pretrained MART achieves state-
of-the-art performance, producing the optimal sequence on 80%
subjects, while the existing best technique, the original MART,
only produces the optimal sequence on 50% subjects.

Index Terms—test prioritization, machine learning, continuous
integration

I. INTRODUCTION

Continuous Integration (CI) is a software development prac-
tice. It is widely used in industry, making software release
more rapid and reliable [1]. In the CI environment, developers
continuously commit code to modify software functionalities.

To guarantee the quality of committed code, regression
testing [2] tends to be conducted in each CI cycle, which is
widely recognized to be time-consuming [3] and may hamper
rapid software release. Many test case prioritization (TCP)
techniques have been proposed to alleviate the cost of regres-
sion testing. Still, most of them target the general regression
testing process. They cannot be directly applied to regression
testing in CI, because a large amount of modification on code
and tests occurs during frequent CI, which most existing TCP
techniques cannot appropriately deal with [4], [5].

To address the specific problem of TCP in CI, heuristic-
based and machine learning-based (ML-based) techniques
are proposed. Some researchers give the first attempt by
scheduling tests based on heuristics (e.g., time since the last

∗Dan Hao is the corresponding author.

test failed [6] or test diversity [7]). Other researchers harness
the power of machine learning by using a large amount of
historical data in CI, and propose numerous ML-based TCP
techniques which have been demonstrated to be promising.
These ML-based techniques build neural models to predict the
optimal sequence of tests instead of human-defined strategies.
In particular, these ML-based techniques can be categorized
into supervised learning-based (SL-based) [8]–[10] and rein-
forcement learning-based (RL-based) techniques [11]–[14]. In
training cycles, an SL-based technique trains a classification
model based on tests and their labels. In testing cycles, the
model is used to predict priority values for tests. That is,
once the model completes training, it uses a fixed strategy to
prioritize testing instances. In contrast, the RL-based technique
continuously adjusts its prioritization strategy. In each cycle,
it is first tested (i.e., prioritizing the test suite) and then
trained based on the prioritization feedback. In other words,
it incrementally trains on coming data. Although ML-based
techniques are widely studied in TCP for CI as reflected by a
series of publications, it remains unknown how the SL-based
and RL-based techniques perform under the same experimental
setup, because they are evaluated on different datasets with
different input and metrics [8]–[10], [12], [13]. Note that a few
prior works [15], [16] compare several SL-based techniques
through empirical studies, but they ignore recently proposed
RL-based techniques. Therefore, a developer will find it hard
to choose an effective TCP technique to use in CI, and a
researcher will find it hard to conduct more profound research
without a commonly-agreed setup.

To investigate the performance of ML-based TCP in CI, in
this paper we conduct a comprehensive experimental study on
11 highly-starred open-source projects from GitHub. Through
the systematic analysis, we find that the metrics (i.e., AFPD,
NAPFD, and NRPA) used by the existing work have problems
in fair comparison and discernment. Therefore, we propose
the rectified APFD (rAPFD), with which we evaluate 11
representative ML-based TCP techniques (including six SL-
based techniques and five RL-based techniques), in terms of
their effectiveness, efficiency and applicability in CI.

Our study reveals a series of findings. First, data imbalance
is a common phenomenon in TCP for CI. On more-failure

ar
X

iv
:2

31
1.

13
41

3v
1

 [
cs

.S
E

]
 2

2
N

ov
 2

02
3

and less-failure subjects (i.e., subjects with higher or lower
ratio of failing tests to all tests), the performance of ML-
based TCP techniques is different, which is caused by data
imbalance. Second, the performance of ML-based TCP
techniques changes across CI cycles, mainly caused by the
changing amount of training data instead of code evolution
and test removal/addition. More training data may improve
the effectiveness of TCP techniques. Third, RL-based tech-
niques generally have a much longer training time than SL-
based techniques. Fourth, the RL-based technique PPO1-LI
is inapplicable to CI in some subjects, whereas the other
techniques are generally applicable to the CI context. The
SL-based technique MART helps developers save more
than 95% testing time in most subjects. Based on the
findings, we give some actionable suggestions that can boost
existing techniques, supported by our additional experiments.
First, techniques robust to data imbalance, like ensemble
learning or cost-sensitive techniques, are promising in
this scenario. Besides, over-sampling approaches like SMOTE
can be applied to alleviate the imbalance problem and boost
existing techniques. Second, cross-subject data can be used
to pretrain TCP techniques to get them thoroughly trained
and improve their effectiveness. It is also worth noting
that we pretrain MART using cross-subject data and greatly
enhance its effectiveness: The pretrained MART achieves
state-of-the-art performance, producing the optimal sequence
on 80% subjects, while the original MART, which is reported
to be the best technique [9], [15], produces the optimal
sequence on only 50% subjects. Based on the comparison
of test duration and the prediction time of techniques, we
also suggest that test duration should be estimated to
assess the necessity of applying any TCP technique and
the overhead of TCP techniques deserves more attention.
Overall, this work advances our understanding of ML-based
TCP techniques in CI and provides valuable insights for
improving their effectiveness.

This paper presents three key contributions. First, it offers
the first comprehensive study on ML-based TCP techniques in
CI. The study analyzes the impact of data imbalance, the quan-
tity of training data, and code changes on the effectiveness of
prioritization techniques. It also investigates the efficiency and
applicability of the techniques. Second, it provides actionable
suggestions to enhance existing ML-based TCP, based on the
study’s findings. Third, a replication package is available at
https://github.com/yifan-CodeDir/ml-citcp.

II. BACKGROUND AND RELATED WORK

Continuous Integration automates the integration of code
changes from multiple contributors and has been widely
adopted by companies like Google, Facebook, Microsoft [17].
In CI environment, developers copy the software project to the
local machine and introduce new features, repair bugs, and
change existing test cases. The code changes are submitted
and integrated into the “mainline” after local build and test,
and the project is then rebuilt and tested, which completes a

CI cycle. Through CI, developers can easily track the progress
of development and reduce the risk of accumulating bugs.

TCP was first proposed in regression testing [18] to schedule
the execution order of test cases for some goals, e.g., reveal-
ing faults as early as possible. A large amount of research
contributes to the TCP domain, resulting in many surveys [3],
[19]–[21] and applications in industry [22]–[24]. Although
many TCP techniques [3], [8], [9], [11], [25]–[32] have been
proposed in the literature, these general TCP techniques may
not work in CI due to the following characteristics of CI.
First, frequent code commit and integration in CI may result
in big code difference in various CI cycles. However, the
existing TCP techniques usually schedule the tests based on
the structural coverage (e.g., statement or method coverage),
which may lose effectiveness in the current commit. Second,
tests may be updated with the code in CI. The newly-added
tests with no previous execution results and structural coverage
information present a challenge for priority prediction. Third,
TCP in CI has an extra time constraint (i.e., low overhead) [33]
since CI is proposed to speed up development. However,
existing TCP techniques schedule the tests offline and thus
they usually have no such constraint. To sum up, TCP in CI
is different from TCP in existing scenarios. Since this paper
focuses on ML-based TCP in CI, due to space limitation, in
this section, we review only the work of TCP in CI.

The existing work on TCP in CI can also be classified into
techniques [6]–[9], [11], [17] and experimental studies [7],
[34], [35]. TCP techniques use heuristic strategies [6], [7],
[36] or machine learning models [8]–[11], [13] to predict the
priority value of each test and schedule them accordingly. We
will discuss these techniques in detail in Section III-A. Besides
these techniques, a series of empirical studies [7], [9], [15],
[16], [34], [35] have been proposed. In particular, Hemmati et
al. [34] conducted an experiment with three black-box TCP
techniques on Firefox and found that historical information is
essential for TCP in CI. Haghighatkhah et al. [7] conducted
an experiment to compare two categories of heuristic-based
TCP, i.e., history-based TCP and diversity-based TCP in CI.
Bertolino et al. [9] conducted an experiment to compare
learning-to-rank with ranking-to-learn strategies for TCP in
CI. However, there are design flaws in their metric [37] and
some recent ML-based techniques [10], [12], [13] are not
included. Bagherzadeh et al. [12] conducted an experiment
on RL-based algorithms in CI, by combining them with three
alternative ranking models, and regarded ACER-PA as the best
prioritization technique. Jin and Servant [35] compared 10
techniques using selection and prioritization strategies in CI
and analyzed the benefit of different design decisions. They
targeted a much broader scope, i.e., comparing selection and
prioritization techniques at the build and test levels to find
out what design decision brings benefits. However, our work
focuses on a specialized scope, ML-based test prioritization,
and aims to provide valuable insights for improving them
through a fair comparison study. Jin and Servant’s work only
included four prioritization techniques, which are all heuristic-
based techniques. In contrast, our work investigates recent

https://github.com/yifan-CodeDir/ml-citcp

ML-based techniques, which are more advanced and perform
better. Elsner et al. [16] evaluated SL-based and heuristic-
based TCP techniques exclusively rely on metadata from VCS
and CI systems as the metadata are readily available and
inexpensive. Ling et al. [38] conducted an empirical study
comparing nine heuristic-based and SL-based TCP techniques.
Yaraghi et al. [15] investigated the performance of one specific
SL-based technique MART by considering the influence of
data collection time, ML models, features, and the decay
of effectiveness. To sum up, the existing experiments have
various goals, and the goal of this paper is different, i.e., a
comprehensive study of ML-based TCP techniques in terms
of effectiveness, efficiency, and applicability.

III. STUDY DESIGN

In this section, we present the design details of this study.

A. TCP Technique Selection

To address the problem of TCP in CI, researchers have
recently put dedicated efforts into this domain and have pro-
posed many techniques [6]–[11], [13], [36]. The first attempt
starts with heuristics-based techniques, e.g., Elbaum et al. [6]
prioritized tests based on whether they have not been executed
for long or have failed in the recent commits, Haghighatkhah
et al. [7] scheduled tests based on the combination of their
previous execution results and similarity. In this paper, we only
consider ML-based techniques because they have better effec-
tiveness and lower overhead (shown in recent research [10],
[11], [15]). We select all the state-of-the-art ML-based TCP
techniques for CI mainly by considering the review [37].
Moreover, some new approaches published after the review
are also included.

1) Inclusion: We include 11 TCP techniques from pre-
vious work, which can be classified from two orthogonal
aspects. First, they can be classified based on the learning
strategy: SL-based techniques and RL-based techniques. SL-
based techniques train neural networks to predict scores of
tests (e.g., 1/0 for a failing/passing test). Then they treat the
prediction results as priority values and produce prioritization
results accordingly. Note that for supervised learning, the
neural model gets the training data at once, using data batch to
accelerate and stabilize training. Unlike SL-based techniques,
RL-based techniques use predefined reward signals to guide
the update of the prioritization strategy. The reward signal
is calculated based on the execution result of a test or the
distance between the predicted rank and the optimal rank of
the test. RL-based techniques continuously update the strategy
based on the coming data in each cycle. Second, the techniques
can be classified based on the comparing strategy: pointwise,
pairwise, and listwise ranking. The pointwise ranking strategy
predicts scores for each single test. The strategy then gets
the prioritization result by sorting the tests according to their
predicted scores. The pairwise ranking strategy orders a pair
of tests at a time. The strategy then gets the prioritization
result using all the ordered pairs. The listwise ranking strategy
orders a complete list of tests at a time, i.e., it takes in all the

tests and directly produces the prioritization result. Table I
lists the selected techniques along with their features. We use
“SL” and “RL” to represent SL-based and RL-based technique
respectively. We use “PO”, “PA”, “LI” to represent pointwise,
pairwise, listwise strategy respectively [12]. In the following,
we present the details of the selected TCP techniques.

MART, RankNet, RankBoost, CA, L-MART: Bertolino
et al. [9] study seven supervised learning algorithms (MART,
RankNet, Rankboost, CA, L-MART, KNN, RF) and three
reinforcement learning algorithms (RL, RL-MLP, RL-RF)
on TCP in CI. Among them, MART, RankBoost, L-MART
are ensemble algorithms and MART is shown to have the
best performance. Besides MART, our study includes other
competitive SL-based techniques, i.e., RankNet, Rankboost,
CA, and L-MART. We exclude RL-MLP and RL-RF because
they are reported [12] to be less effective than the following
RL-based techniques.

ACER-PA, PPO2-PO, PPO1-LI: Bagherzadeh et al. [12]
propose to apply ten state-of-the-art reinforcement learning
(RL) algorithms (A2C, PPO1, PPO2, TRPO, DQN, ACKTR,
ACER, DDPG, TD3, SAC) to TCP in CI. These RL algorithms
are applied to three alternative ranking models, respectively:
listwise ranking, pairwise ranking, and pointwise ranking. In
the paper [12], ACER-PA (i.e., ACER algorithm applied to
pairwise ranking model) is the best and the recommended
technique. In our study, besides ACER-PA, we also include
the best pointwise technique (PPO2-PO) and the best listwise
technique (PPO1-LI) to get a more comprehensive view.

RETECS: RETECS is the first RL-based technique [11],
which builds a shallow neural network to prioritize tests based
on the failure history, timestamp for previous execution, and
approximated execution duration. We implement RETECS and
use “RL” to refer to it following previous study [9].

DeepOrder: DeepOrder [10] is a SL-based technique. It
trains a deep neural network to predict each test’s priority
value. The priority label is calculated by a heuristic technique,
ROCKET [36]. DeepOrder uses processed test history from
previous CI cycles to better capture the feature of tests.

COLEMAN: COLEMAN [13] is a RL-based technique. It
formulates tests as bandits and calculates the expected gain Q
for each bandit, which is then treated as the priority value in
prioritization. The paper proposes two policies and two reward
functions for COLEMAN. We use the best configuration for
COLEMAN as shown in the paper, i.e., the combination of
FRRMAB policy with TimeRank as the reward function.

2) Exclusion: In our study, we discard some techniques.
Their details and why they are excluded are given below.

Busjaeger et al. proposed a TCP technique based on ma-
chine learning [8] and applied it in a large-scale CI en-
vironment. They extracted useful test features and used an
SVM classifier to give priority to the tests. We discard this
technique because it takes coverage information as input,
which is expensive to get in the CI scenario. Besides, the
authors do not publish their code and dataset. Yang et al. [14]
conducted a systematic study on the reward function of RL
for TCP in CI. They explored the effects of the three reward

TABLE I
THE SELECTED TECHNIQUES

Approach Feature
MART (SL, PA),
RankNet (SL, PA),
RankBoost (SL, PA),
CA (SL, LI),
L-MART (SL, PA),
RL (RL, PO),
PPO2-PO (RL, PO),
ACER-PA (RL, PA),
PPO1-LI (RL, LI)

Number of test methods in a test class,
Failure history of test cases,
Previous execution time,
Time span since the test case’s last execution,
Code characteristics

DeepOrder (SL, PO)

Failure history of test cases,
Timestamp for the test case’s last execution,
Approximated execution time of test cases,
Heuristically processed failure history

COLEMAN (RL, PO)

Number of test methods in a test class,
Failure history of test cases,
Timestamp for the test case’s last execution,
Approximated execution time of test cases

functions, APHF, HFC, TF, and proposed to use time window
in reward calculation to improve efficiency. We discard this
technique because its network structure is identical to that
of RETECS, with the only variation being the utilization of
different reward functions. Besides, the authors do not publish
their code, either.

B. Metrics Selection

Before exploring and comparing the performance of existing
techniques, it is critical to decide how to measure the applica-
bility and effectiveness of TCP in CI. In terms of applicability,
we use Normalized Time Reduction (NTR) [13] to measure
the ratio of the reduction time to the total execution time. In
this metric, only failing CI cycles (i.e., CI cycles containing
failing tests) are considered. It is computed as follows:

NTR(s) =

∑CIfail

t=1 (r̂t − rt)∑CIfail

t=1 (r̂t)
(1)

where CIfail represents the number of failing CI cycles, r̂t
represents the total execution time of all the tests in a cycle,
rt represents the time spent until the first test fails.

In terms of effectiveness, three metrics APFD, NAPFD,
and NRPA have been used in existing work [9], [11], [12].
Therefore, we will first introduce them in Section III-B1, then
analyze their suitability in CI context in Section III-B2.

1) Existing Metrics: APFD measures the average percent-
age of faults detected by the scheduled tests [39] as follows:

APFD (s) = 1−
∑

t∈s rank (s, t) ∗ t.v
|s| ∗m +

1

2 ∗ |s| (2)

where m represents the total number of faults, t.v represents
the verdict of test t (t.v = 1/0 means t failed/passed), and
rank(s, t) represents the position of test t in the scheduled
test sequence s. A larger APFD value indicates that the failing
tests are scheduled ahead. As a variant of APFD, NAPFD
is proposed when some tests are not executed due to time
constraints [40]. It normalizes the APFD value by including
the percentage of faults detected by executed tests. As this
paper does not investigate the performance of TCP in CI with
time truncation, we do not consider NAPFD in this paper.

The most used metric for TCP in CI is NRPA [9], [12], i.e.,
normalized rank percentile average. Different from APFD and
NAPFD, NRPA is designed to measure how close a scheduled
test sequence s is to the optimal sequence so. The RPA value
of a scheduled test sequence s is computed as follows:

RPA(s) =

∑
t∈s

∑k
i=rank(s,t) |s| − rank (so, t) + 1

k2(k + 1)/2
(3)

where rank(s, t) denotes the position of test t in s, k denotes
the total number of tests in the sequence. NRPA is obtained
by normalizing the RPA value, i.e., NRPA(s) = RPA(s)

RPA(so)
,

which ranges from 0 to 1. A larger NRPA value indicates that
the scheduled test sequence is closer to the optimal one. Note
that APFD and NAPFD can only be computed in failing CI
cycles, but NRPA can be computed in all CI cycles. For NRPA,
in CI cycles with no failing tests, the optimal sequence means
the passing tests are ranked based on the ascending order of
their execution time.

2) Analysis on Metrics: Although being widely used, both
NRPA and APFD have design flaws in measuring TCP in CI.

NRPA treats failing and passing tests as equally important
and has unsatisfactory discernment. First, NRPA only focuses
on the rank of tests, ignoring their execution results. Given an
optimal sequence [5,4,3,2,1] (each number denotes the test’s
priority value) and a sequence scheduled by a TCP technique
[5,2,3,4,1], NRPA only cares about the index, ignoring the
tests’ verdicts, i.e., we get NRPA=0.93 for the scheduled
sequence regardless of execution results. However, if the tests
with the priority of 2 and 4 are both passing, the scheduled
sequence has the same fault detection ability as the optimal
sequence. That is, the metric fails to evaluate sequences
based on their ability to detect faults. Second, NRPA has
unsatisfactory discernment. If the tests with the priority of
2 and 4 are passing and failing respectively, the scheduled
sequence [5,2,3,4,1] and the optimal sequence [5,4,3,2,1] have
a large difference in fault detection ability, but the NRPA value
of the former sequence (i.e., 0.93) is close to 1, indicating that
it is close to the optimal. Moreover, NRPA can be misleading
in certain scenarios [37], with a sequence having a higher
NRPA value potentially being worse. Therefore, we do not
adopt NRPA as the measurement.

Compared with NRPA, APFD is more reliable because it
only considers the ranks of failing tests. However, it cannot
power fair comparison across CI cycles because it has different
value ranges across CI cycles. Let us suppose each failing test
accounts for a distinct fault. In the best situation where all
failing tests are prioritized ahead, we get APFDmax(s) =
1− 1+2+···+m

|s|∗m + 1
2|s| = 1− m

2|s| , while in the worst situation,

we get APFDmin(s) = 1 − (|s|−m+1)+···+|s|
|s|∗m + 1

2|s| =
m
2|s| .

Therefore, APFD may have different upper bound and lower
bound in different CI cycles, depending on the number of
tests (|s|) and faults (m) in the test suite. Therefore, APFD
values in different cycles can hardly be compared. Moreover,
APFD values cannot reflect the distance between the scheduled
and optimal sequences. To address these issues, we normalize
the AFPD value with min-max normalization, resulting in the

following rectified APFD (rAPFD), used as our metric.

rAPFD(s) =
APFD(s)−APFDmin(s)

APFDmax(s)−APFDmin(s)
(4)

For various cycles, rAPFD has the same value range [0, 1].
rAPFD = 1 indicates that the scheduled sequence is optimal.

C. Research Questions

This paper studies ML-based TCP techniques in CI from
three aspects: effectiveness, efficiency, and applicability.

RQ1. Effectiveness comparison. The existing techniques
have not been fully evaluated under the same experimental
setup. Therefore, we compare their effectiveness and propose
two minor research questions.

RQ1.1. How do the ML-based techniques perform across
subjects? This research question aims to examine whether
ML-based TCP techniques exhibit different performance on
different subjects and to identify the reasons for any observed
difference. To answer this question, we compute the rAPFD
results of the studied TCP techniques on each subject. An-
swering this question can help us choose an appropriate TCP
technique when facing different kinds of subjects.

RQ1.2. How do the ML-based techniques perform
across CI cycles? This research question aims to examine
whether ML-based TCP techniques exhibit different perfor-
mance across CI cycles and the reasons behind it. To answer
this question, we plot the trend of the rAPFD results on the
subjects based on the timeline. Answering this question can
help us understand the effect of continuously coming CI data
on the effectiveness of TCP techniques.

RQ2. Efficiency Comparison. Time cost plays an impor-
tant role in choosing techniques because TCP is proposed to
speed up fault detection during testing. This research question
aims to study the efficiency of ML-based TCP techniques, in
terms of the time spent for model learning (i.e., training time)
and the time spent for scheduling tests (i.e., prediction time).

RQ3. Applicability. In this RQ, we aim to investigate
if the techniques are applicable in practice. If the training
or prediction time is longer than the commit interval, the
technique cannot complete training or produce a prioritization
result before the next commit comes, which makes it inappli-
cable. Therefore, we compare the average commit interval of
each subject with the techniques’ training and prediction time.
Besides, a large overhead makes TCP unnecessary if simply
executing all the tests costs less time. Therefore, we compare
the total execution time of the tests with the prediction time
of the techniques. What is more, we would like to know with
TCP techniques how much time could be saved. Therefore,
we compute the NTR results of the studied TCP techniques.

D. Subjects

In this study we construct a new dataset based on 11 highly-
starred, open-source subjects from GitHub, since the existing
datasets [9], [12], [15], [16] do not contain all features of
the studied techniques (given by Table I). We select the top
11 highly-starred projects with restrictions on program size
(> 10k SLOC), the number of commits (> 800), and the

number of test classes per commit (> 10). In particular, four of
them (i.e., bcel, csv, dbcp, text) are Apache Commons projects
and the rest are popular large-scale projects. The four Apache
projects have been deployed on Github CI while the other
projects have been deployed on Travis CI, which is exactly
the application scenario we target at.

As existing work [9] does, we collect the CI data as follows.
For each subject, we collect the latest 800 commits, including
the source code and the test suite for each commit, regarded
as 800 CI cycles. Therefore, in total we obtain 8,800 versions
of the 11 subjects, each with a corresponding test suite. In
each CI cycle, we extract files affected by the changed code
and select the test classes covering the changed files. In other
words, we remove the CI cycles without selected test classes
and prioritize only selected test classes. Table II presents the
statistics of the 11 subjects, where Column “Failure rate”
presents the ratio of failing test classes. Column “Avg commit
interval” presents the average commit interval for the 800
commits. Column “Test duration” presents the range of the
regression testing time in each cycle. Note that the duration
varies a lot in a single subject, because we only consider the
selected test classes in each cycle.

E. Implementation

We implement all the techniques using their default param-
eters and strictly use the features proposed in their papers [9],
[10], [12], [13] as input. More specifically, we use Ranklib
library [41] to implement MART, L-MART, RankNet, CA, and
RankBoost [9], while using the published code to implement
the other techniques. Besides, we use Understand [42] to
obtain the static code features of the studied TCP techniques.
When calculating rAPFD, we regard each failing test as
revealing a unique fault.

For each subject, we use the first 2000 test classes of the
selected 800 cycles as training instances and the remaining
as testing instances following previous work [9]. In other
words, we select as many CI cycles until reaching 2000
test classes and treat them as training cycles. Regarding the
testing instances, in each cycle, each compared ML-based TCP
technique produces a scheduled sequence of test classes. We
then evaluate the sequence using the selected metric. All the
experiments are conducted on a server with Ubuntu 16.04 x64
OS, 2 Intel Xeon E5-2680 v4 CPUs, and 377GB memory.

IV. RESULTS AND ANALYSIS

In this section, we present and analyze the results.

A. RQ1: Effectiveness Comparison

1) RQ1.1 Effectiveness across subjects: Fig. 1 shows the
rAPFD results of the TCP techniques across all failing cy-
cles in all subjects, where blue boxes represent SL-based
techniques and green boxes represent RL-based techniques.
Among the five RL-based techniques, the boxes of ACER-
PA and PPO2-PO are the highest, indicating that they are the
most effective RL-based techniques. Among the six SL-based
techniques, the boxes of DeepOrder and RankBoost are the

TABLE II
STATISTICS FOR SUBJECTS

Subjects SLOC Selected classes Failing classes CI cycle Failing CI cycle Failure rate (%) Avg commit interval (s) Test duration (s) Time period (months)
bcel 165,246 2,860 79 177 79 2.7622 12,756.52 0.065 ∼ 28.376 69
csv 168,508 2,913 5 270 5 0.1716 15,660.48 6.639 ∼ 62.261 86

dbcp 57,091 5,159 19 324 5 0.3683 11,236.82 11.627∼124.718 62
text 52,033 2,872 5 224 3 0.1741 16,955.01 0.212∼272.123 34

java-faker 66,313 11,645 15 217 14 0.1288 20,099.52 0.104 ∼ 131.940 87
jedis 60,782 15,019 290 446 214 1.9309 25,343.38 0.170 ∼ 6.622 78
jsoup 40,206 7,346 11 378 8 0.1497 11,514.23 0.102 ∼ 52.939 121
jsprit 192,861 3,748 177 75 27 4.7230 17,370.03 1.315 ∼ 32.412 83

maxwell 36,907 4,687 8 231 6 0.1707 20,943.48 3.273 ∼ 1,228.466 32
nfe 62,826 19,833 1,996 185 106 10.0640 18,304.21 0.13 ∼ 2,123.381 37

spring-data-redis 227,697 7,216 476 177 114 6.5965 18,490.62 1.298 ∼ 431.736 44

TABLE III
AVERAGE RAPFD FOR COMPARED TCP TECHNIQUES

Subjects More-failure subjects Less-failure subjects
bcel jedis jsprit nfe spring-data-redis csv dbcp text java-faker jsoup maxwell

MART (SL,PA) 0.7023 0.1930 1.0000 1.0000 0.9733 1.0000 1.0000 1.0000 0.9512 1.0000 0.6231
RankNet (SL,PA) 0.4525 0.6835 0.7967 0.4220 0.5453 1.0000 0.3586 0.7143 0.2543 0.3095 0.1468

RankBoost (SL,PA) 1.0000 0.6512 1.0000 0.9892 0.9908 0.6667 0.0839 0.2857 0.9589 0.8980 0.6960
CA (SL,LI) 0.8205 0.3377 0.6693 0.5005 0.9582 0.6111 0.4161 0.4286 0.4881 0.7998 0.6837

L-MART (SL,PA) 0.6255 0.3460 0.4769 0.8659 0.4044 0.2778 0.0526 0.4286 0.3385 0.4303 0.5938
DeepOrder (SL,PO) 0.9680 0.9991 0.6547 0.9752 0.2120 0.2222 0.6447 0.7143 0.4712 0.6832 0.9460

RL (RL,PO) 0.4792 0.4337 0.5171 0.5207 0.4875 0.5278 0.6694 0.4286 0.6455 0.3160 0.6828
COLEMAN (RL,PO) 0.8768 0.8031 0.0768 0.7034 0.3858 0.9722 0.8092 0.1429 0.5497 0.7416 0.3807

PPO2-PO (RL,PO) 0.9491 0.8770 0.7818 0.7249 0.8917 0.5556 0.2500 0.7143 0.2297 0.4840 0.0540
ACER-PA (RL,PA) 1.0000 0.7963 0.7985 0.9471 0.9839 0.2500 0.3553 0.2857 0.3543 0.3540 0.0312

PPO1-LI (RL,LI) 0.3872 0.4788 0.7705 0.5308 0.5024 0.7500 0.6431 1.0000 0.6450 0.4398 0.9545

MART
RankNet

Rankboost CA
L-MART

DeepOrder RL
COLEMAN

PPO2-PO
ACER-PA

PPO1-LI

0.0

0.2

0.4

0.6

0.8

1.0

rA
PF

D

SL-based RL-based

Fig. 1. rAPFD for each TCP technique across all failing cycles

highest, indicating that they are the most effective SL-based
techniques. Furthermore, among all the compared 11 TCP
techniques, the box of DeepOrder is the highest, indicating that
it achieves the best effectiveness across all CI cycles. In terms
of result distribution, MART exhibits the highest variance
in rAPFD values, suggesting its potential instability across
different CI cycles. Several approaches, such as DeepOrder,
PPO2-PO, and ACRE-PA have many outliers, which also show
their unstable performance.

To investigate whether these techniques perform signifi-
cantly differently, we conduct a non-parametric ANOVA anal-
ysis utilizing the Friedman test with the Iman and Davenport
extension [43], which is robust to non-normality and het-
eroscedasticity. The analysis result rejects the null hypothesis
of equal performance (with p < 2.2× 10−16), indicating that
at least one TCP technique performs significantly differently
from the others. Furthermore, to investigate which techniques
perform significantly better, we run a post hoc test (i.e., Fried-
man post hoc test corrected by Shaffer’s static procedure [44])
to compare each pair of TCP techniques. The analysis results

3 4 5 6 7 8

ACER−PA

RankBoost

DeepOrder

PPO2−PO

COLEMAN

MART

RankNet

CA

PPO1−LI

L−MART

RL

Fig. 2. Critical difference plot

are given by Fig. 2, where each technique is placed on an axis
according to its mean rank among the 11 techniques across all
outcomes. Therefore, TCP techniques with larger rAPFD are
placed on the left. The TCP techniques not grouped with a
horizontal line are significantly different (p < 0.05). A larger
distance between two TCP techniques indicates their larger
critical difference. From the figure, ACER-PA, RankBoost,
DeepOrder, and PPO2-PO are in the best group, i.e., each
of which significantly outperforms the techniques in the other
groups. The worst group includes RankNet, CA, PPO1-LI, L-
MART, and RL. Note that in the best group, all techniques are
pointwise and pairwise techniques, while in the worst group,
all listwise techniques are included (i.e., CA and PPO1-LI).
Therefore, we find that listwise techniques have relatively low
effectiveness for TCP in CI, which is consistent with previous
work [12]. Listwise ranking is more challenging because it
has a higher dimension of input, which grows linearly with
the number of tests in a test suite.

We further present the average rAPFD results in Table III,
where the 2nd to 6th columns present the subjects with a non-

trivial number of failures (denoted as more-failure subjects,
i.e., whose failure rate is larger than 1%), and the 8th to 13th
columns present the subjects with a trivial number of failures
(denoted as less-failure subjects, i.e., whose failure rate is
not larger than 1%). We highlight the top-5 rAPFD results
for each subject in bold font. In the following, we analyze
the rAPFD results of the compared TCP techniques on more-
failure subjects and less-failure subjects, respectively. On the
more-failure subjects (i.e., bcel, jedis, jsprit, nfe, and spring-
data-redis), ACER-PA outperforms other RL-based techniques
(on all the more-failure subjects, it is among the top-5 most
effective techniques). RankBoost outperforms other SL-based
techniques (on 4 out of 5 subjects, it is among the top-5 most
effective techniques). Moreover, ACER-PA performs better
than RankBoost, and thus it achieves the best performance on
more-failure subjects. On the less-failure subjects (i.e., csv,
dbcp, text, java-faker, jsoup, and maxwell), MART outper-
forms other SL-based techniques (on 5 out of 6 subjects, it
is among the top-5 most effective techniques), while PPO1-LI
outperforms other RL-based techniques (on 5 out of 6 projects,
it is among the top-5 most effective techniques). Moreover,
MART performs much better than PPO1-LI (on 4 out of 6
subjects, it produces the optimal sequence in each cycle, i.e.,
it has the rAPFD values of “1” on the 4 subjects). Therefore,
MART achieves the best performance on less-failure subjects.
For all subjects, MART is among the top-5 most effective
techniques on 8 out of 11 subjects, therefore, MART has the
best overall performance. Note that in Fig. 1, we analyze from
the perspective of all failing cycles. Therefore, DeepOrder
appears to have the best result because it performs the best
on jedis, which has the most failing cycles. However, from
the perspective of subjects, we reach a different conclusion.

Besides, it is also worth noting that the best TCP
technique on more-failure subjects, ACER-PA, performs
the worst on less-failure subjects. The result is contradic-
tory to previous work [12], where ACER-PA yields better
results than MART on all subjects. Here we analyze the
contradictory conclusion between our work and the previous
work [12]. First, in the evaluation comparison conducted by
the previous work, only less-failure subjects are used, each
of which contains a small number of failing cycles (< 10).
Second, the previous work uses the combination of NRPA
and APFD as the metric, i.e., NRPA results are reported
for passing cycles (cycles without failing tests) while APFD
results are reported for failing cycles. When it comes to the
overall average performance, NRPA yields misleading values
as explained in Section III-B2 and affects the average result
to a large extent due to the large proportion of passing cycles.

From the preceding results, we get the following observa-
tions. First, within the two categories (i.e., SL-based and RL-
based) of TCP techniques, techniques have different perfor-
mance on more-failure and less-failure subjects. In the same
category, the best technique is not the same for the two kinds
of subjects. Second, across the two categories of TCP
techniques, RL-based technique ACER-PA performs the
best on more-failure subjects, while SL-based technique

0 25 50 75 100 125 150 175 200

0.0

0.2

0.4

0.6

0.8

1.0

rA
PF

D

jedis

MART
RankNet

Rankboost
CA

L-MART
DeepOrder

0 25 50 75 100 125 150 175 200

0.0

0.2

0.4

0.6

0.8

1.0

rA
PF

D

jedis

RL
COLEMAN

PPO2-PO
ACER-PA

PPO1-LI

0 10 20 30 40 50 60 70 80

0.0

0.2

0.4

0.6

0.8

1.0

rA
PF

D

nfe

MART
RankNet

Rankboost
CA

L-MART
DeepOrder

0 10 20 30 40 50 60 70 80

0.0

0.2

0.4

0.6

0.8

1.0

rA
PF

D

nfe

RL
COLEMAN

PPO2-PO
ACER-PA

PPO1-LI

0 20 40 60 80

0.0

0.2

0.4

0.6

0.8

1.0

rA
PF

D

spring-data-redis

MART
RankNet

Rankboost
CA

L-MART
DeepOrder

0 20 40 60 80

0.0

0.2

0.4

0.6

0.8

1.0

rA
PF

D

spring-data-redis

RL
COLEMAN

PPO2-PO
ACER-PA

PPO1-LI

Fig. 3. Effectiveness change across CI cycles (the left column for SL-based
techniques, the right column for RL-based techniques)

MART performs the best on less-failure subjects. Overall,
MART achieves the best effectiveness on all subjects. Why
do TCP techniques perform differently on more-failure and
less-failure subjects?

Hypothesis: The main difference between the two kinds
of subjects lies in the failure rate, which causes data imbal-
ance problem. RL-based techniques usually need a large
amount of data to be effective [45]. However, on the
less-failure subjects, there are too few failing tests for the
reinforcement learning model to learn a mature strategy. SL-
based techniques have different performance when facing
imbalanced data. However, some ensemble models [46]
have the advantage to deal with imbalanced data. MART
is a powerful ensemble model which continuously constructs
weak classifiers to minimize the error. Therefore, MART
performs the best on less-failure subjects.

Validation: To validate the preceding hypothesis, we de-
sign an additional experiment. We use the over-sampling
approach SMOTE to synthesize positive samples to alleviate
data imbalance. In particular, we apply SMOTE [47] to the
training data of the 11 subjects. Then we train the studied
TCP techniques using synthesized data and test them on the
original testing data. Table IV illustrates the rAPFD results
on the testing data. From the table, SMOTE boosts both SL-
based techniques (MART, RankNet, RankBoost, L-MART)
and RL-based techniques (ACER-PA). Especially on less-
failure subjects, more techniques produce the optimal sequence

TABLE IV
AVERAGE RAPFD FOR COMPARED TCP TECHNIQUES AFTER DATA PRE-PROCESSING

Subjects More-failure subjects Less-failure subjects
bcel jedis jsprit nfe spring-data-redis csv dbcp text java-faker jsoup maxwell

MART (SL,PA) 0.9295 1.0000 1.0000 1.0000 0.9881 1.0000 1.0000 1.0000 0.7183 1.0000 0.2509
RankNet (SL,PA) 0.5958 0.8702 1.0000 0.4353 0.7117 1.0000 0.3141 1.0000 0.7076 0.1952 0.6563

RankBoost (SL,PA) 1.0000 0.8769 1.0000 0.9929 0.9900 1.0000 0.3141 0.5714 1.0000 1.0000 0.9773
CA (SL,LI) 0.4341 0.9703 0.7428 0.0680 0.4000 0.0833 0.9737 0.0000 0.6354 0.5612 0.2188

L-MART (SL,PA) 1.0000 0.9659 0.5105 0.9131 0.9903 0.4444 1.0000 0.2857 0.1993 0.6433 1.0000
DeepOrder (SL,PO) 1.0000 0.9625 0.1451 0.1593 0.1885 0.2222 0.6447 0.7143 0.4081 0.6832 0.9460

RL (RL,PO) 0.5172 0.4196 0.4137 0.5221 0.4975 0.3899 0.7253 0.5714 0.5083 0.4326 0.6591
COLEMAN (RL,PO) 0.8505 0.7960 0.0870 0.8035 0.3546 0.5833 0.8092 0.8571 0.3679 0.5670 0.4839

PPO2-PO (RL,PO) 0.8418 0.7536 0.8637 0.7651 0.8711 0.6944 0.3766 0.2857 0.2142 0.4093 0.0417
ACER-PA (RL,PA) 0.8889 0.8220 1.0000 0.9712 0.9912 0.4167 0.3816 0.2857 0.8922 0.5241 1.0000

PPO1-LI (RL,LI) 0.5446 0.4693 0.6807 0.5354 0.4845 0.6111 0.6859 0.7143 0.4047 0.5437 0.4167
1 We use bold font to highlight the rAPFD values with better results compared to Table III and the optimal value 1.

in each cycle, as more “1” rAPFD values appear. These results
show that imbalanced data indeed hamper the effectiveness of
TCP techniques, but some data pre-processing approaches like
SMOTE can release the power of existing TCP techniques.

Finding 1: On more-failure subjects and less-failure sub-
jects, the performance of ML-based TCP techniques is
different. On more-failure subjects, the RL-based technique
ACER-PA performs the best, while on less-failure subjects,
the SL-based technique MART performs the best. This
phenomenon is caused by data imbalance.
Actionable suggestions: Techniques dealing with data
imbalance well may perform better for TCP in CI,
therefore, cost-sensitive, ensemble algorithms or other ro-
bust techniques are promising in this scenario. Besides,
pre-processing approaches alleviating data imbalance like
SMOTE can boost the existing TCP techniques.

2) RQ1.2: Effectiveness across CI cycles: The two cate-
gories of TCP techniques have different learning strategies.
While the SL-based techniques use only instances in early
cycles as training data, the RL-based techniques refine their
models continuously in coming cycles. In other words, SL-
based models are fixed once they finish training with data
from early cycles, but RL-based models may improve their
effectiveness if more CI cycle data are available. Therefore,
we investigate the effectiveness of the studied TCP techniques
across CI cycles.

In particular, we plot the trend of rAPFD values for the
compared TCP techniques across CI cycles in Fig. 3, where the
x-axis represents the number of failing CI cycles ordered by
timeline. We report the average rAPFD at every 5 commits for
readability. Due to space limitation, we only present results on
more-failure subjects jedis, nfe and spring-data-redis, because
they have more failing cycles, which presents a clearer trend.
Results on other subjects are referred to our website.

From Fig. 3, the performance of the techniques is more
stable on nfe, but tends to fluctuate on jedis and spring-data-
redis. In particular, for RL-based techniques, the rAPFD tends
to increase in some cases (e.g., ACER-PA and PPO2-PO on
jedis). For SL-based techniques, the rAPFD tends to decrease
in some cases (e.g., MART and L-MART on jedis). Why do

the TCP techniques perform differently across CI cycles?

Hypothesis: Along with software evolution, the perfor-
mance of the TCP techniques changes across CI cycles,
because the increasing number of CI cycles brings two
side-effects: more code change (including subject code evo-
lution and test removal/addition) and more training data.
We hypothesize that the two side-effects make techniques
perform differently. First, more code change indicates that
the previous prioritization strategy may not be suitable in
later CI cycles. For SL-based TCP techniques, the potential
big difference in code and tests across many CI cycles may
hamper their effectiveness, because these techniques regard
tests of early CI cycles as training data and cannot adapt to
the dynamic environment afterward. However, for RL-based
techniques, they have the ability to adapt to the highly variable
environment [9]. Therefore, the first side-effect affects SL-
based techniques to a larger extent. Second, more training
data may boost RL-based techniques, because they con-
tinuously get trained using the coming data, while SL-
based techniques cannot. Therefore, the second side-effect
affects RL-based techniques to a larger extent. To sum up,
we hypothesize the two side-effects to be the reason why
techniques perform differently on earlier and later CI cycles.

Validation: To validate the preceding hypothesis, we design
two additional experiments to investigate the impact of the two
side-effects.

First, to investigate the impact of more training data, we
use data from other subjects to “pretrain” the techniques,
then we “finetune” the techniques on their original training
instances and test them on the original testing instances. To
be more specific, on each subject, we first use data from
nfe to train the techniques (as nfe has the most instances)
and get the pretrained versions of them. Then we finetune
and test the pretrained techniques on the original dataset.
We run the 11 pretrained TCP techniques on the 10 subjects
(excluding nfe because it is used to pretrain the techniques).
Table V presents the average rAPFD results for the pretrained
techniques. From the table, we observe that pretraining can
greatly improve the performance of both RL-based techniques
and SL-based techniques. Specifically, the pretrained MART
and RankNet produce the optimal sequence for 80% and

TABLE V
AVERAGE RAPFD FOR PRETRAINED TCP TECHNIQUES

Subjects More-failure subjects Less-failure subjects
bcel jedis jsprit spring-data-redis csv dbcp text java-faker jsoup maxwell

MART (SL,PA) 0.6351 1.0000 1.0000 0.8595 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
RankNet (SL,PA) 1.0000 0.9358 1.0000 0.6677 1.0000 1.0000 1.0000 0.9904 1.0000 1.0000

RankBoost (SL,PA) 1.0000 1.0000 0.3801 0.4310 0.9722 0.6266 1.0000 0.9535 0.3754 0.5000
CA (SL,LI) 0.5893 0.9812 1.0000 0.7267 0.9722 0.5559 0.5714 0.9417 0.7943 0.8750

L-MART (SL,PA) 0.5113 0.5870 0.9741 0.3981 0.1667 0.9161 0.7143 0.8546 0.2781 0.9792
DeepOrder (SL,PO) 1.0000 0.5635 0.8594 0.8802 0.8333 0.6447 0.7143 0.6499 0.6832 0.9460

RL (RL,PO) 0.4349 0.4176 0.4977 0.4885 0.5278 0.1332 0.8571 0.4414 0.7189 0.6098
COLEMAN (RL,PO) 0.8768 0.8031 0.0826 0.3829 0.9722 0.8092 0.1429 0.5584 0.6623 0.3703

PPO2-PO (RL,PO) 0.6537 0.6370 0.9157 0.7146 0.2500 0.3240 0.8571 0.3174 0.4902 0.0312
ACER-PA (RL,PA) 0.7349 0.7891 0.5255 0.4911 0.6389 0.3865 0.2857 0.4072 0.5300 0.4223

PPO1-LI (RL,LI) 0.4404 0.4597 0.7943 0.4728 0.5000 0.6513 0.8571 0.5763 0.3993 0.1894
1 We use bold font to highlight the rAPFD values with better results compared to Table III and the optimal value 1.

RL PPO2-PO ACER-PA PPO1-LI

0.0

0.2

0.4

0.6

0.8

1.0

rA
PF

D

earlier cycles later cycles

Fig. 4. rAPFD Results in earlier cycles and later cycles

70% subjects respectively, while for the original versions,
they only produce the optimal sequence for 50% and 10%
subjects respectively (on the ten subjects excluding nfe).
Besides, the pretrained PPO2-PO and ACER-PA perform
better on 67% and 83% less-failure subjects respectively.
It is also worth noting that the pretrained MART achieves
state-of-the-art TCP effectiveness. While producing the op-
timal sequence on 80% subjects, it also have stable and
satisfactory performance on the rest 20% subjects. According
to the experimental results, we can conclude that training data
play an important role in affecting the effectiveness of TCP
techniques.

Second, to investigate the impact of more code change, we
stop training the RL-based techniques once they get trained
on the first 2000 instances (i.e., we train them with the same
amount of data as SL-based techniques) and thus get their
“early-stopped” versions. To be more specific, as RL-based
techniques can continuously refine their strategies based on
coming data and adapt to the code change, their “early-
stopped” versions have not adapted to the code change in
the later cycles. Therefore, we investigate the impact of code
change by comparing the performance of the early-stopped
RL-based techniques in the earlier and later cycles. We run
four RL-based techniques (RL, PPO2-PO, ACER-PA, PPO1-
LI) on the three more-failure subjects (i.e., jedis, nfe, spring-
data-redis). For earlier and later cycles, we use the first 30
and last 30 cycles in the testing cycles respectively. Fig. 4
presents the results in the earlier and later cycles. From the
figure, the early-stopped techniques perform almost the same
in the earlier and later cycles, indicating that the models only
trained on earlier cycles do not have lower effectiveness on

TABLE VI
AVERAGE TRAINING AND PREDICTION TIME (IN SECONDS)

training time prediction time
MART (SL,PA) 0.0826-0.9157 0.0062-0.0340

RankNet (SL,PA) 0.0188-1.2222 0.0019-0.0111
RankBoost (SL,PA) 0.0446-0.6088 0.0019-0.0127

CA (SL,LI) 0.0493-0.5110 0.0017-0.0111
L-MART (SL,PA) 0.0056-0.0633 0.0021-0.0127

DeepOrder (SL,PO) 0.0000-0.0500 0.0191-0.0241
RL (RL,PO) 0.8018-2.1837 0.0011-0.0024

COLEMAN (RL,PO) 0.0000-0.0030 0.0001-0.0030
PPO2-PO (RL,PO) 65.5094-285.4404 0.6155-0.7852
ACER-PA (RL,PA) 56.4518-219.4478 1.5157-2.3241

PPO1-LI (RL,LI) 59.6611-1093.5445 0.9940-308.3892

later cycles. According to the experimental results, during the
certain period of time, we can conclude that code change
does not affect the effectiveness of TCP techniques to a large
extent in the CI scenario. The conclusion is reached on ML-
based techniques, but is consistent with previous study [4] on
traditional and time-aware TCP techniques.

Finding 2: The performance of the TCP techniques
changes across CI cycles mainly caused by the changing
amount of training data, rather than code evolution and test
removal/addition. The RL-based technique may perform
well on later CI cycles, because they continuously get
trained using the coming data, while SL-based techniques
cannot. Therefore, more training data lead to better effec-
tiveness for TCP in CI.
Actionable suggestions: Cross-subject data can be used to
pretrain TCP techniques. With more training data available,
TCP techniques get fully trained and perform better.

B. RQ2: Efficiency Comparison

Table VI presents the average training and prediction time
in each cycle for all subjects. Due to space limitation, we
give the time range of all subjects and more detailed data are
referred to our website. Note that the average training time of
SL-based techniques refers to their total training time divided
by the number of training CI cycles. From this table, the RL-
based techniques (e.g., RL, PPO2-PO, ACER-PA, and PPO1-
LI) generally have much longer training time, especially for
PPO2-PO, ACER-PA, and PPO1-LI. It is because for each
cycle, the three techniques are trained with 200 episodes,
while in each episode, they are trained at the minimum of

n ∗ log2(n) steps, where n represents the number of tests in
the cycle, to ensure enough training [12]. Therefore, although
ACER-PA achieves pretty good TCP effectiveness (according
to Section IV-A), it has longer training time. The large number
of episodes and comparisons in training make it among the
least efficient.

Prediction time is more important than training time for
ML-based TCP techniques, because training can be conducted
offline but prediction has to be conducted online. According
to Table VI, the prediction time of ACER-PA and PPO1-LI is
much longer than other techniques, indicating that they are the
least efficient. Especially for PPO1-LI, its average prediction
time for nfe is 308.3892 seconds, which is extremely long.
However, the prediction time of other TCP techniques is less
than 1 second, which is ignorable.

Finding 3: RL-based techniques generally have much
longer training time than SL-based techniques. In par-
ticular, ACER-PA is among the least efficient techniques
although achieves high effectiveness, while SL-based tech-
niques are all relatively efficient.

C. RQ3. Applicability

We investigate the applicability of the TCP techniques from
three aspects: First, we compare the commit interval with
the training and prediction time of the techniques. It should
be guaranteed that before the next commit, the techniques
have completed training and prediction. Otherwise, the adapted
model is not ready and the test suite is not scheduled when
the new cycle starts. Second, we compare the test duration
with the prediction time of the techniques. If the prediction
time is longer than the total test execution time, TCP becomes
unnecessary. Third, we investigate to what extent can the TCP
techniques save time. In each cycle, once the first failure is
revealed, the developers are reminded that bugs exist and can
start to fix them. We use the indicator NTR introduced in
Section III-B to measure the time reduction ratio.

Table II presents the average commit interval for each
subject, which ranges from 11234.82 seconds to 25343.38
seconds. As Table VI shows, the training time of most tech-
niques is shorter than 3 seconds, which is negligible to the
commit interval. For the least efficient techniques PPO2-PO,
ACER-PA, and PPO1-LI, the training time is shorter than 1100
seconds. Moreover, the prediction time for each technique
is shorter than the training time. Therefore, on average, all
techniques have sufficient time for training and prediction. We
provide the ratio of commits in each project for which training
and prediction is possible on our website.

Table II presents the average test duration for each subject,
which ranges from 0.065 to 2123.381 seconds. For some
subjects, e.g., jedis, jsprit, and bcel, executing all the tests only
costs less than 33 seconds after selection. However, PPO1-LI
costs 121.858 seconds, 122.823 seconds, and 102.9197 sec-
onds respectively to predict the results for the three subjects.
Therefore, PPO1-LI may be inapplicable in some subjects
because developers have to wait more time for prediction than

simply running all the tests. Other techniques all have rela-
tively short prediction time but may be unnecessary in some
cases, e.g., a cycle costs 0.65 seconds to execute all selected
tests in bcel. Therefore, we suggest developers applying TCP
techniques only if the estimated test duration is longer than
a predefined threshold (the execution time of a test can be
estimated by averaging its previous execution time [11]).

Table VII shows the average NTR for the techniques in
each subject. We highlight the best technique for each subject
in bold font. From the table, MART is the best technique
achieving the best results on 9 out of 11 subjects. Moreover,
most of its NTR values are above 0.95, indicating that the time
spent to reveal the first failure costs less than 5% of the total
duration. Besides MART, ACER-PA is also effective and most
of its NTR values are above 0.8. The results are consistent
with our previous analysis in Section IV-A1. Other techniques
may perform very poorly on one subject and the unstable
performance makes them less applicable. For example, the
NTR value of DeepOrder on csv is 0.0001, indicating that
the first failure is detected at the end. Note that Table VII and
Table III yield similar results in terms of the best technique
in each subject. Some difference exists because NTR only
considers the rank of the first failing test, but rAPFD considers
the whole picture, i.e., the ranks of all failing tests.

Finding 4: The average training and prediction time of all
techniques is shorter than the average commit intervals in
all subjects. However, PPO1-LI’s prediction time exceeds
the total test execution time in some subjects, which makes
it inapplicable. Except for PPO1-LI, other techniques are
generally applicable to the CI context. A good TCP tech-
nique (e.g., MART) can help developers save more than
95% time cost in most subjects.
Actionable suggestions: Test duration should be estimated
to assess the necessity of applying any TCP techniques.
The overhead of TCP techniques deserves more attention
and may become the bottleneck of application in practice.

V. THREATS TO VALIDITY

Threats to internal validity mainly come from possible
errors in implementing the compared techniques. To mitigate
the threats, we use the mature library Ranklib and the released
code to implement the techniques [9], [12], [13]. Besides, we
strictly follow the description and use the published processing
scripts to extract the features that each technique takes in.

Threats to external validity mainly come from subjects,
including the commits and tests used in the study, and the
potential flaky tests. As the existing datasets do not contain
sufficient feature information of studied techniques, we se-
lect 11 popular and large-scale projects from GitHub, which
are representative in terms of their project scale, popularity,
numbers of CI cycles and tests. The number and scale of
subjects used in our study are comparable to prior empirical
studies [4], [7], [9], [12], [14], [34]. Moreover, following
previous work [9], we select only test classes covering changed
files as candidate tests, which may filter out flaky tests.

TABLE VII
AVERAGE NTR FOR COMPARED TCP TECHNIQUES

Subjects More-failure subjects Less-failure subjects
bcel jedis jsprit nfe spring-data-redis csv dbcp text java-faker jsoup maxwell

MART (SL,PA) 0.6970 0.5029 0.9991 0.9969 0.9980 0.9994 0.9517 0.9772 0.9907 0.9845 0.8615
RankNet (SL,PA) 0.6108 0.8607 0.9848 0.9785 0.9782 0.9994 0.2517 0.9769 0.7721 0.1189 0.3411

RankBoost (SL,PA) 0.6977 0.7262 0.9991 0.9829 0.9954 0.9993 0.0737 0.9525 0.9874 0.9753 0.7316
CA (SL,LI) 0.2516 0.4990 0.2673 0.8919 0.9925 0.5669 0.3477 0.0731 0.1767 0.1042 0.5271

L-MART (SL,PA) 0.6974 0.7102 0.8797 0.9754 0.9672 0.3784 0.0200 0.8888 0.4832 0.9409 0.7721
DeepOrder (SL,PO) 0.4895 0.8643 0.0704 0.6394 0.0144 0.0001 0.0810 0.0246 0.1299 0.0441 0.2707

RL (RL,PO) 0.3083 0.4738 0.3846 0.9232 0.7870 0.6452 0.7165 0.0820 0.7974 0.0346 0.6204
COLEMAN (RL,PO) 0.5039 0.5631 0.4177 0.9225 0.9315 0.9991 0.8587 0.0003 0.7641 0.8886 0.2459

PPO2-PO (RL,PO) 0.6977 0.8802 0.9437 0.9410 0.9951 0.9991 0.4749 0.9769 0.7272 0.9276 0.5515
ACER-PA (RL,PA) 0.6977 0.8497 0.9981 0.9837 0.9949 0.9960 0.8707 0.9525 0.8034 0.9344 0.5500

PPO1-LI (RL,LI) 0.2631 0.4950 0.6972 0.9210 0.7900 0.6901 0.7254 0.9772 0.5222 0.7512 0.8526

Because flaky test failures are usually introduced into the
program before the latest version [48].

Threats to construct validity come from the metrics we
use and the recognition of more-failure and less-failure sub-
jects. To reduce the former threats, we use the existing metric
NTR to measure the applicability of the techniques [13]. For
the effectiveness metric, we first analyze the existing metrics
systematically. Then we take advantage of the widely-used
metric APFD [10], [12] and do min-max normalization to fit
it in the CI context. The normalization does not change the
monotonicity of APFD. We may use more appropriate new
metrics in our future work. To reduce the latter threats, we
use the 1% failure rate as the boundary because He et al. [49]
reported three levels of data imbalance: the ratios of 100:1,
1000:1, and 10,000:1 between majority and minority classes.

VI. DISCUSSION

To alleviate the resource consumption in CI, two orthogonal
directions in CI have been explored in the literature, build
selection/prioritization and test selection/prioritization [35].
The former targets prioritizing or selecting builds to detect
failure early, whereas the latter focuses on tests instead of
builds. To reduce the building and the following testing time
cost, Liang et. al [17] proposed prioritizing commits based on
test execution history, and Jin [50] proposed models to predict
commits and builds that can be skipped. In this paper we
present the first extensive study on ML-based TCP techniques
in CI by controlling these factors (e.g., build prioritization and
selection), and plan to investigate the combination of the two
directions in the future.

Among existing studies, only the works conducted by
Bertolino et al. [9] and Bagherzadeh et al. [12] are close to this
paper (i.e., comparing RL-based and SL-based techniques). In
particular, this paper confirms the following findings (in our
Finding 1, Finding 3) by including more advanced techniques:
(1) Pairwise and ensemble learning algorithms have better ef-
fectiveness. (2) RL algorithms require long training time. This
paper extends the existing works by including the following
new findings (in our Finding 1, Finding 2, Finding 4): (1) ML-
based TCP techniques perform differently on different subjects
due to failure rate. (2) The performance change across CI
cycles is mainly caused by more training data rather than code
evolution. (3) Most TCP techniques are generally applicable

to CI. Moreover, this paper also produces findings (in our
Finding 1, Finding 4) that contradicted existing studies, i.e.,
PPO1-LI is inapplicable in some subjects and ACER-PA does
not perform better than MART on less-failure subjects.

We here provide a discussion outlining the recommended
use scenarios of the TCP techniques based on our experimental
results. When facing more-failure subjects, we suggest using
ACER-PA as the TCP technique. Conversely, when facing
less-failure subjects, we suggest using MART. This recom-
mendation is based on the fact that ACER-PA and MART
have demonstrated superior performance on these respective
types of subjects in our experiment. To estimate the failure
ratio, one can rely on the test results obtained during early
CI cycles. If a subject has a high CI cycle frequency and,
consequently, a low average commit interval, we suggest using
SL-based techniques such as MART. This is because RL-
based techniques tend to be more time-consuming for training
and predicting. If a subject has a relatively long evolution
process, we suggest using RL-based techniques like ACER-
PA. RL-based techniques have the advantage of continuously
improving their strategies as new data become available,
without requiring retraining after a certain period, which is in
contrast to SL-based techniques [15]. If the subject is newly-
created and has few commits which cannot support sufficient
training, or the developers want to improve the performance
of TCP techniques, we suggest collecting test execution data
from other high-quality subjects. These data can then be used
to train the ML models and improve their effectiveness.

VII. CONCLUSION

To learn how ML-based TCP techniques perform in CI, we
present the first comprehensive study on 11 GitHub projects,
including 11 state-of-the-art ML-based TCP techniques. In our
study, we systematically analyze the effectiveness, efficiency,
and applicability of existing TCP techniques and get a series
of findings and actionable suggestions. Our study gives a
comprehensive view of TCP in CI as well as future directions
for improving TCP techniques in CI.

ACKNOWLEDGMENT

This work was supported by National Natural Science
Foundation of China under Grant No. 62232001 and No.
62232003.

REFERENCES

[1] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, “Usage,
costs, and benefits of continuous integration in open-source projects,” in
2016 31st IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2016, pp. 426–437.

[2] T. Ji, L. Chen, X. Mao, X. Yi, and J. Jiang, “Automated regression
unit test generation for program merges,” Science China Information
Sciences, vol. 65, no. 9, p. 199103, 2022.

[3] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Prioritizing
test cases for regression testing,” IEEE Transactions on software engi-
neering, vol. 27, no. 10, pp. 929–948, 2001.

[4] Y. Lu, Y. Lou, S. Cheng, L. Zhang, D. Hao, Y. Zhou, and L. Zhang,
“How does regression test prioritization perform in real-world software
evolution?” in Proceedings of the 38th International Conference on
Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016,
L. K. Dillon, W. Visser, and L. A. Williams, Eds. ACM, 2016, pp.
535–546. [Online]. Available: https://doi.org/10.1145/2884781.2884874

[5] S. Wang, J. Nam, and L. Tan, “QTEP: quality-aware test case
prioritization,” in Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2017, Paderborn,
Germany, September 4-8, 2017, E. Bodden, W. Schäfer, A. van
Deursen, and A. Zisman, Eds. ACM, 2017, pp. 523–534. [Online].
Available: https://doi.org/10.1145/3106237.3106258

[6] S. Elbaum, G. Rothermel, and J. Penix, “Techniques for improving
regression testing in continuous integration development environments,”
in Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, 2014, pp. 235–245.

[7] A. Haghighatkhah, M. Mäntylä, M. Oivo, and P. Kuvaja, “Test prioriti-
zation in continuous integration environments,” Journal of Systems and
Software, vol. 146, pp. 80–98, 2018.

[8] B. Busjaeger and T. Xie, “Learning for test prioritization: an industrial
case study,” in Proceedings of the 2016 24th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, 2016, pp.
975–980.

[9] A. Bertolino, A. Guerriero, B. Miranda, R. Pietrantuono, and S. Russo,
“Learning-to-rank vs ranking-to-learn: strategies for regression testing
in continuous integration,” in Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, 2020, pp. 1–12.

[10] A. Sharif, D. Marijan, and M. Liaaen, “Deeporder: Deep learning
for test case prioritization in continuous integration testing,” in 2021
IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 2021, pp. 525–534.

[11] H. Spieker, A. Gotlieb, D. Marijan, and M. Mossige, “Reinforcement
learning for automatic test case prioritization and selection in continuous
integration,” in Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2017, pp. 12–22.

[12] M. Bagherzadeh, N. Kahani, and L. Briand, “Reinforcement learning
for test case prioritization,” IEEE Transactions on Software Engineering,
2021.

[13] J. A. do Prado Lima and S. R. Vergilio, “A multi-armed bandit approach
for test case prioritization in continuous integration environments,” IEEE
Transactions on Software Engineering, 2020.

[14] Y. Yang, Z. Li, L. He, and R. Zhao, “A systematic study of reward for
reinforcement learning based continuous integration testing,” Journal of
Systems and Software, vol. 170, p. 110787, 2020.

[15] A. S. Yaraghi, M. Bagherzadeh, N. Kahani, and L. Briand, “Scalable
and accurate test case prioritization in continuous integration contexts,”
IEEE Transactions on Software Engineering, 2022.

[16] D. Elsner, F. Hauer, A. Pretschner, and S. Reimer, “Empirically evalu-
ating readily available information for regression test optimization in
continuous integration,” in Proceedings of the 30th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2021, pp.
491–504.

[17] J. Liang, S. Elbaum, and G. Rothermel, “Redefining prioritization:
continuous prioritization for continuous integration,” in Proceedings of
the 40th International Conference on Software Engineering, 2018, pp.
688–698.

[18] W. E. Wong, J. R. Horgan, S. London, and H. Agrawal, “A study of
effective regression testing in practice,” in PROCEEDINGS The Eighth
International Symposium On Software Reliability Engineering. IEEE,
1997, pp. 264–274.

[19] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: a survey,” Softw. Test., Verif. Reliab., vol. 22, no. 2, pp.
67–120, 2012.

[20] C. Catal and D. Mishra, “Test case prioritization: a systematic mapping
study,” Software Quality Journal, vol. 21, no. 3, pp. 445–478, 2013.

[21] Y. Lou, J. Chen, L. Zhang, and D. Hao, “A survey on regression test-case
prioritization,” vol. 113, pp. 1–46, 2019.

[22] M. Machalica, A. Samylkin, M. Porth, and S. Chandra, “Predictive
test selection,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP).
IEEE, 2019, pp. 91–100.

[23] J. Anderson, S. Salem, and H. Do, “Improving the effectiveness of test
suite through mining historical data,” in Proceedings of the 11th Working
Conference on Mining Software Repositories, 2014, pp. 142–151.

[24] K. Herzig, M. Greiler, J. Czerwonka, and B. Murphy, “The art of
testing less without sacrificing quality,” in 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, vol. 1. IEEE, 2015,
pp. 483–493.

[25] S. Li, N. Bian, Z. Chen, D. You, and Y. He, “A simulation study on
some search algorithms for regression test case prioritization,” in 2010
10th International Conference on Quality Software. IEEE, 2010, pp.
72–81.

[26] Z. Li, M. Harman, and R. M. Hierons, “Search algorithms for regression
test case prioritization,” IEEE Transactions on software engineering,
vol. 33, no. 4, pp. 225–237, 2007.

[27] L. Zhang, S.-S. Hou, C. Guo, T. Xie, and H. Mei, “Time-aware test-case
prioritization using integer linear programming,” in Proceedings of the
eighteenth international symposium on Software testing and analysis,
2009, pp. 213–224.

[28] Q. Peng, A. Shi, and L. Zhang, “Empirically revisiting and enhancing ir-
based test-case prioritization,” in Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2020, pp.
324–336.

[29] D. Hao, L. Zhang, L. Zhang, G. Rothermel, and H. Mei, “A unified test
case prioritization approach,” ACM Transactions on Software Engineer-
ing and Methodology (TOSEM), vol. 24, no. 2, pp. 1–31, 2014.

[30] D. Hao, X. Zhao, and L. Zhang, “Adaptive test-case prioritization guided
by output inspection,” in 2013 IEEE 37th annual computer software and
applications conference. IEEE, 2013, pp. 169–179.

[31] Y. Lou, D. Hao, and L. Zhang, “Mutation-based test-case prioritization
in software evolution,” in 2015 IEEE 26th International Symposium on
Software Reliability Engineering (ISSRE). IEEE, 2015, pp. 46–57.

[32] F. Li, J. Zhou, Y. Li, D. Hao, and L. Zhang, “Aga: An accelerated greedy
additional algorithm for test case prioritization,” IEEE Transactions on
Software Engineering, vol. 48, no. 12, pp. 5102–5119, 2021.

[33] M. Fowler and M. Foemmel, “Continuous integration,” 2006.
[34] H. Hemmati, Z. Fang, M. V. Mäntylä, and B. Adams, “Prioritizing

manual test cases in rapid release environments,” Software Testing,
Verification and Reliability, vol. 27, no. 6, p. e1609, 2017.

[35] X. Jin and F. Servant, “What helped, and what did not? an evaluation
of the strategies to improve continuous integration,” in 2021 IEEE/ACM
43rd International Conference on Software Engineering (ICSE). IEEE,
2021, pp. 213–225.

[36] D. Marijan, A. Gotlieb, and S. Sen, “Test case prioritization for
continuous regression testing: An industrial case study,” in 2013 IEEE
International Conference on Software Maintenance. IEEE, 2013, pp.
540–543.

[37] R. Pan, M. Bagherzadeh, T. A. Ghaleb, and L. Briand, “Test case se-
lection and prioritization using machine learning: a systematic literature
review,” Empirical Software Engineering, vol. 27, no. 2, pp. 1–43, 2022.

[38] X. Ling, R. Agrawal, and T. Menzies, “How different is test case
prioritization for open and closed source projects?” IEEE Transactions
on Software Engineering, vol. 48, no. 7, pp. 2526–2540, 2021.

[39] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Test case
prioritization: An empirical study,” in Proceedings IEEE International
Conference on Software Maintenance-1999 (ICSM’99).’Software Main-
tenance for Business Change’(Cat. No. 99CB36360). IEEE, 1999, pp.
179–188.

[40] X. Qu, M. B. Cohen, and K. M. Woolf, “Combinatorial interaction
regression testing: A study of test case generation and prioritization,” in
2007 IEEE International Conference on Software Maintenance. IEEE,
2007, pp. 255–264.

[41] “Ranklib,” https://sourceforge.net/p/lemur/wiki/RankLib/, 2020.

https://doi.org/10.1145/2884781.2884874
https://doi.org/10.1145/3106237.3106258
https://sourceforge.net/p/lemur/wiki/RankLib/

[42] Scientific Toolworks, Inc., “Understand,” https://www.scitools.com/,
2020, accessed on July 2021.

[43] R. L. Iman and J. M. Davenport, “Approximations of the critical
region of the fbietkan statistic,” Communications in Statistics-Theory
and Methods, vol. 9, no. 6, pp. 571–595, 1980.

[44] B. Calvo and G. Santafé Rodrigo, “scmamp: Statistical comparison of
multiple algorithms in multiple problems,” The R Journal, Vol. 8/1, Aug.
2016, 2016.

[45] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot,
D. Horgan, J. Quan, A. Sendonaris, I. Osband et al., “Deep q-learning
from demonstrations,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 32, no. 1, 2018.

[46] V. López, A. Fernández, S. Garcı́a, V. Palade, and F. Herrera, “An insight
into classification with imbalanced data: Empirical results and current
trends on using data intrinsic characteristics,” Information sciences, vol.
250, pp. 113–141, 2013.

[47] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
synthetic minority over-sampling technique,” Journal of artificial intel-
ligence research, vol. 16, pp. 321–357, 2002.

[48] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis
of flaky tests,” in Proceedings of the 22nd ACM SIGSOFT international
symposium on foundations of software engineering, 2014, pp. 643–653.

[49] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE
Transactions on knowledge and data engineering, vol. 21, no. 9, pp.
1263–1284, 2009.

[50] X. Jin, “Reducing cost in continuous integration with a collection of
build selection approaches,” in Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2021, pp. 1650–1654.

https://www.scitools.com/

	Introduction
	Background and related work
	Study Design
	TCP Technique Selection
	Inclusion
	Exclusion

	Metrics Selection
	Existing Metrics
	Analysis on Metrics

	Research Questions
	Subjects
	Implementation

	Results and Analysis
	RQ1: Effectiveness Comparison
	RQ1.1 Effectiveness across subjects
	RQ1.2: Effectiveness across CI cycles

	RQ2: Efficiency Comparison
	RQ3. Applicability

	Threats to validity
	Discussion
	Conclusion
	References

