
A manual categorization of new quality issues on
automatically-generated tests

Geraldine Galindo-Gutierrez
Bolivian Catholic University, Bolivia

Maxilimiliano Narea
Pontificia Universidad Católica de Chile, Chile

Alison Fernandez Blanco
Pontificia Universidad Católica de Chile, Chile

Nicolas Anquetil
Université de Lille, France

0000-0003-1486-8399

Juan Pablo Sandoval Alcocer
Pontificia Universidad Católica de Chile, Chile

0000-0002-8335-4351

Abstract—Diverse studies have analyzed the quality of auto-
matically generated test cases by using test smells as the main
quality attribute. But recent work reported that generated tests
may suffer a number of quality issues not necessarily considered
in previous studies. Little is known about these issues and their
frequency within generated tests. In this paper, we report on
a manual analysis of an external dataset consisting of 2,340
automatically generated tests. This analysis aimed at detecting
new quality issues, not covered by past recognized test smells. We
use thematic analysis to group and categorize the new quality
issues found. As a result, we propose a taxonomy of 13 new
quality issues grouped in four categories. We also report on the
frequency of these new quality issues within the dataset and
present eight recommendations that test generators may consider
to improve the quality and usefulness of the automatically
generated tests.

Index Terms—

I. INTRODUCTION

Unit tests are a critical asset in software development, as
they help identify and resolve issues early in the development
cycle. By verifying the behavior of individual program units in
isolation, unit tests help ensure that each unit of code performs
as intended, saving developers significant time and resources.
Unit tests can be created either manually or automatically.
Manually created tests can be time-consuming and may only
cover a limited set of test scenarios that developers or testers
consider. For this reason, diverse test strategies have been
proposed to automatically generate tests and reduce manual
effort. The latter can complement the manually created test
battery, increasing coverage and fault detection.

To ensure the effectiveness of unit tests, they must meet
several quality attributes, such as coverage, readability, main-
tainability, isolation, and speed. Previous studies have used test
smells to detect generated tests that contain code pieces that
may compromise their quality [24], [39], [45]. For example,
it has been found that automatically generated tests often
exhibit typical test smells, such as Eager Testing or Assertion
Roulette. However, Panichella et al. [39] recently identified
additional issues not fully captured by test smells. For instance,
tests that lack assertions and tests that involve a substantial
amount of setup but still result in exceptions. Consider an
example we found in our manual inspection, as shown in

1 public void test28 () throws Throwable {
2 XmlCalendar xmlCalendar0 = new XmlCalendar ();
3 CronText cronText0 = new CronText(xmlCalendar0);
4 cronText0.setStartDate(xmlCalendar0);
5 assertEquals (1, cronText0.getFrequency ());
6 assertEquals (0, cronText0.getInterval ());
7 }

Fig. 1. Example of test with inconsistent assertions.

Figure 1. In this case, the test assertions (lines 5–6) are
only related to the object initialization (lines 2–3), and the
method call setStartDate (line 4) is unrelated to the rest of
the test. These issues are partly associated with the unique
nature of automatically generated tests and reflect a disconnect
between the optimization metric of "coverage" and the real-
world validity of test cases. While previous studies reported
three of these issues, it remains unclear whether there are
additional similar issues and how widespread they are in
automatically generated tests.

In this paper, we manually review 2,340 automatically
generated tests provided in the curated dataset of Panichella
and colleagues [40] to detect quality issues that do not fully
match previously studied test smells. Similar to previous work,
we use the term “issue” to refer to portions of code that reflect
symptoms or concerns related to a broader quality problem,
where “issue” is the closed vocabulary to refer to them [39].
We refer to our proposition as quality issues, whereas we use
the phrase test smells for smells that have been published
previously.

We investigated the quality issues through an empirical
study. First (Section III-B), two of the authors manually
reviewed the curated dataset to locate (already known) test
smells and ensure that the (new) quality issues were not
already captured by any test smells. Then (Section III-C), they
detected and categorized “issues” by conducting a thematic
analysis and holding four meetings to refine the codes and
themes generated. The remaining authors held three meetings
to discuss disagreements to check the consistency of the
thematic analysis. Finally, we manually analyzed the “issues”
and counted the frequency of issues for projects, classes, and
methods within the curated dataset. As a result, we developed

ar
X

iv
:2

31
2.

08
82

6v
1

 [
cs

.S
E

]
 1

4
D

ec
 2

02
3

a taxonomy with 13 categories and eight recommendations
that test generator maintainers and researchers can consider
to improve or use test generator tools. The paper’s main
contribution is the design and execution of an empirical study
that analyzes quality issues not fully covered by current test
smells.

II. RELATED WORK

This section summarizes the literature related to (i) test
smells, (ii) automatic test generation, (iii) test smells in gener-
ated tests. It also points out the limitations of the prior work.

Test Smells. Test smells extend the definition of code
smells [8], [17], [37] to tests (i.e.,, structures or patterns that
indicate lousy test code [15]). Deursen et al. [15] presented the
first set of test smells in 2001, and posterior studies involving
other authors [34], [44] expanded the collection. By 2018,
Garousi et al. [23] found eight formally published sources
presenting new test smells [1], [10], [15], [16], [22], [32], [33],
[36]. Aljeedaani et al. [3], [7], [14], [26]–[29], [45] studied
test smells detection tools and found that nine presented new
test smell definitions. Many empirical studies [5], [53] have
investigated the prevalence of test smells and their effects and
found them to be detrimental to program comprehension and
maintenance. As a result, some of these test scents are used
for analyzing automatically generated tests (see Section II-B)
and for improving the quality of generated tests.

A. Automatically-Generated Tests

The goal of automatic test generation is to save effort
and time by generating test suites with minimal human in-
tervention [2], [21], [30], [46]. Among various generation
tools [11], [35], [52], our focus in this study is on the EvoSuite
Java tool [18], [40]. EvoSuite is designed to achieve the
maximum possible coverage on its generated test suites [19]
using generation algorithms that consider the test generation as
a multi-objective problem [41], [42]. With its latest algorithm,
DynaMOSA, EvoSuite produces shorter tests with higher
coverage [9], [39], [42]. In order to improve EvoSuite, a
number of studies have focused on: (i) readability [12], [13],
[25], [31], [43], [47] and (ii) scenario generation [48], [50].

B. Test Smells in Automatically-Generated Tests

Previous studies have explored test smells in generated
tests using detection tools(e.g., tsDetect [45], JNose [54]) and
manual revision [40]. Palomba et al. [38] used the Test Smell
Detector [4] to investigate the frequency of the Deursen et
al. test smells [15] on the SF110 dataset [20]. The results
showed that 83% of the classes were smelly. Grano et al.
conducted a similar study with a smaller but significant sample
of SF110 [24]. The results showed a high proportion of tests
generated with Assertion Roulette and Eager Test smells.
Panichella et al. [39] presented a new review of the topic
analyzing the Deursen smells [15], using the same sample
as Grano et al. [24], but generating tests with DynaMOSA
algorithm [41] and extended parameters in EvoSuite. As a
result, Panichella et al. found that such test smells were less

extensive than thought when tests were generated with better
configurations.

Limitations in the Prior Work. Most previous studies examine
the quality of generated tests by focusing on test smells using
detection tools and manual inspection. However, these studies
voluntarily ignore other problems present in generated tests.
Recently, Panichella and colleagues [39] reported “issues”
that are not necessarily fully captured by current test smells.
For example, they found tests with too many assertions, and
tests that required significant setup that ended up throwing
exceptions indicating failed setup. There is no thorough in-
vestigation of these problems or atypical code patterns within
the generated tests. Therefore, little is known about their
frequency, impact, or the existence of other problems.

Compared to most of the literature, our study is focused on
locating, exploring, and quantifying “issues” that (i) affect the
quality of automatically generated tests [6], [39] and (ii) are
not necessarily captured by the current test smells [39].

III. METHODOLOGY

To identify and quantify quality issues [6] that do not fully
match with existing test smells [39] in generated tests, we
focus on the following research questions:

• RQ1 – What issues or atypical patterns are present in
automatically-generated tests?

• RQ2 – How widespread are these issues in automatically-
generated tests?

RQ1 centers on discovering and categorizing quality issues
in automatically-generated tests. These issues (i) affect the
quality of generated tests [6] and (ii) are not necessarily
represented by current test smells [39]. To answer RQ1, we
opted for an approach of two steps: (i) collecting existing
test smells in automatically-generated tests (described in Sec-
tion III-B), and (ii) manually locating issues and generating a
classification scheme based on the detected issues (described
in Section III-C). We also provide recommendations to im-
prove the quality and usefulness of automatically generated
tests based on the detected issues. Finally, RQ2 focuses on
quantifying the identified issues. To answer RQ2, we manually
analyze the issues and collect the frequency of issues for
projects, classes, and methods.

The following subsections detail the steps in our methodol-
ogy.

A. Dataset Selection

To detect and quantify the quality issues in automatically-
generated tests, we chose the curated dataset of Panichella
and colleagues [39]. We opted for this dataset because (i) it
contains non-trivial classes sample suitable for studies centered
on understanding and characterizing automatically-generated
tests [24], [49], and (ii) it involves tests generated with
better configurations using the DynaMOSA algorithm [41],
and enhanced hyperparameters.

B. Test Smells Review

To identify quality issues that may not be captured by
the existing test smells definitions, we conducted a thorough
review of the definitions of test smells considered in previous
studies focused primarily on automatically generated tests
[15], [25], [39], [44]. We used this information as a starting
point for our manual inspection process, which allowed us to
analyze the code and detect any issues not covered by the
current test smells.

C. Quality Issues Identification and Classification

We performed a thematic analysis [51] to detect and classify
quality issues. To locate quality issues, the reviewer should
detect an issue that affects a test case’s quality and examine
that this issue is not captured by a test smell. Consequently,
the current test smells could not be reported as new quality
issues.

In order to create a classification scheme and locate quality
issues in automatically-generated tests, two authors conducted
a thematic analysis following a number of specific steps
detailed in the next paragraphs.

Familiarization. The two authors independently read and
reread each test case to have an overview of the structure and
the information of the test cases in the dataset.

Generating codes. The two authors independently determine
if any quality issue in each test case was not captured by
existing test smells in Section III-B. If an author considers
a quality issue in the source code, reviews the test smells’
definition, and notes that the located quality issue does not
match any current test smell. Then, the author makes an
annotation where he/she assigns codes that reflect the relevant
features of the detected quality issue and mentions the variable
or method involved with the issue. For example, one author
assigned the code duplicated_setup to indicate that in a test
case, two or more code lines are equally exact from the
setup in common. Additionally, the two authors conducted two
continuous reviews to refine codes and determine if they were
assigned correctly. The latter requires comparing two test cases
assigned to the same code to inspect if they reflect the same
issue.

Constructing initial themes. To generate coherent groups, the
two authors independently compiled the assigned codes along
their associated test cases. These groups allow identifying
initial themes (broader patterns) that help address the research
questions. The codes that did not belong to a specific theme
were grouped as miscellaneous and analyzed in the next step.

Reviewing themes. The two authors held two meetings
to check the initial themes created previously against the
associated test case (e.g., lines of code with the issue and
annotations). Then, they refined the initial themes to create a
final set of themes.

Defining and naming themes. Each theme of the final set was
defined with a description and an informative name based on
the identified patterns. For example, the theme Redundant code

contains quality issues involved with duplicated, redundant,
and/or unnecessary test code that can be extracted to avoid
redundancy or erased for simplicity. Note that this theme is
related to the test smell duplicated code. However, each quality
issue presents features that do not precisely match the exact
definition of the test smell duplicated code. Consequently, our
quality issues illustrate this difference in the interpretation
rules and corresponding examples.

Finally, to ensure the consistency of the process, the re-
maining authors checked the consistency of codes and themes
against the associated data. They examined if the themes were
created to respond to the research questions. Three meetings
were held to discuss the disagreements or potential issues
of the generated codes and themes. As a consequence, we
minimized potential inconsistencies in the coding process.

Note that the identified quality issues can be represented as
patterns in test cases. Therefore, they can be used to improve
the quality of test generators.

IV. RESULTS

We manually review 2,340 automatically generated tests to
detect and quantify quality issues. A total of two meetings
were held to identify test smells, and seven meetings were
carried out to classify and locate quality issues. The results of
our empirical study are detailed in the following subsections.

A. Quality Issues (RQ1)

After manually inspecting and categorizing the data using
thematic analysis, we identified a catalog of 13 quality issues
that we grouped into four categories. Table I summarizes these
categories, their rationale, as well as the rules (symptoms)
we used to manually detect and collect the frequency. This
section details each of the categories we found, providing
examples and a number of recommendations to improve the
test generator tools.

1) Act-Assert Mismatch: The Arrange-Act-Assert (AAA)
pattern is a standard structure for unit tests. In this pattern,
the Arrange step involves setting up the necessary objects and
data to perform the test, the Act step calls the stimulus (i.e., the
methods or actions being tested), and the Assert step verifies
the output of the stimulus. During our manual analysis, we
found that some tests included method calls unrelated to the
assertions made.

Not Asserted Side Effect. This category group tests that
contain calls to void methods that cause a side-effect (i.e., they
change the object’s state), but the assertions within the test do
not verify these effects. For example, consider the generated
test for the class SubstringLabeler shown in Figure 2. This
test only calls the void method addDataSourceListener, which
adds a TextViewer instance to an internal collection of listeners
within the SubstringLabeler object. However, the assertions
within the test only verify attributes such as matchAttributeName

and customName, which are unrelated to the void method call.
Although the void method call increases test coverage, the
test itself does not help to verify the correct behavior of the
addDataSourceListener method.

TABLE I
OBSERVED QUALITY ISSUES IN AUTOMATICALLY GENERATED TESTS

Act-Assert Mismatch

Not asserted side effects
(NASE)

Symptom. At least one void method call causes a
side effect, but no assertion verifies the side effect or
references the method call.

Rationale. Although a void method call may increase coverage
if no assertion is associated, the test reduces its ability to detect
future change behavior rather than exceptions.

Not asserted return val-
ues (NARV)

Symptom. At least one method call returns a value that
is not checked by any assertion or used later in the test.

Rationale. If a test excludes method call return values from its
assertions, it misses the opportunity to verify that the behavior
of the method under test is correct.

Assertions with not
related parent class
method (ARPM)

Symptom. At least one assertion calls an inherited
method that checks a value unrelated to the method
under test.

Rationale. Asserting methods that are not tested is not very
useful. Also, the peculiarity of asserting parent class methods
may fit as a special case of indirect testing.

Redundant Code

Asserting object initial-
ization multiple times
(OIMT)

Symptom. Two or more tests in which the assertions
check for values that are set in the constructor, or check
for default values.

Rationale. A limited number of tests should be dedicated to
checking the correct initialization of an object. However, this
becomes redundant when repeated throughout the suite.

Duplicated Setup (DS) Symptom. Two or more tests sharing at least two equal
lines of setup code.

Rationale. Test maintenance and analysis becomes difficult due
to duplicate code.

Testing the same excep-
tion scenario (TSES)

Symptom. Two or more tests with the same exceptions
and console output calling different methods with the
same setup.

Rationale. If there are two tests that evaluate the same exception
scenario, one of them can be considered to be semantically
redundant.

Testing the same void
method (TSVM)

Symptom. Two or more tests that call the same void
method and that report instances of side effects that are
not asserted.

Rationale. It is important to have two or more tests of the
same method to cover different branches. But their usefulness
for finding bugs is limited if the assertions are unrelated to the
behavioral differences in the method.

Redundant not null As-
sertion (NNA)

Symptom. At least one assertNotNull is redundant. It
is redundant (i) after initializing an object, (ii) if some
other assert checks the value content, and (iii) if the
method being tested does not return null.

Rationale. In order to reduce the size of the test and the amount
of time that developers spend analyzing it, it may be useful to
remove redundant statements.

Failed Setup

Exceptions due to null
arguments (EDNA)

Symptom. Tests handling NullPointerException caused
by null arguments passed directly to constructors or
methods.

Rationale. In some scenarios, testing for exceptions caused by
null arguments can be valuable. However, if the class is designed
to assume that no null arguments are sent, testing will not cover
new branches, and the result is predictable.

Exceptions due to
external dependencies
(EDED)

Symptom. Tests that handle HeadlessException,
SQLException or NotYetConnectedException.

Rationale. Typically, these exceptions occur when a test
uses external resources. Thus, these tests are no longer self-
contained.

Exceptions due to in-
complete setup (EDIS)

Symptom. Tests that construct an object, call a method
and handle an exception thrown by an uninitialized
value.

Rationale. In these cases, much of the generated suite contains
exceptions caused by incomplete test setup steps. Rather than
interesting test scenarios, these tests reflect the difficulty of the
generator tool.

Testing only Field Accessors and Constants

Testing only field acces-
sors (TOFA)

Symptom. Tests containing only object initialization
and field accessor (getter/setter) assertions.

Rationale. Field accessors are straightforward and predictable
operations; we expect an obvious result upon their assertion.

Asserting constants
(AC)

Symptom. At least one assertion verifies the value of a
variable declared as a static final on its class.

Rationale. Asserting constants is uncommon because the assert
won’t fail unless the value is manually changed.

We found 328 (14%) tests that contain this code pattern. One
question that arises for these tests is: Is it possible to verify
these side effects? After manually reviewing the classes under
test, we realized that 31% of the side-effects can be verified by
calling another method within the class, but 69% of the classes
do not provide any public method (i.e., accessors) to help
verify these side-effects (e.g., printing values in a terminal).
We found only one test that contains both cases.

Not Asserted Return Values. This category group tests
that contain a method call that returns a value not verified
by the test’s assertions. For instance, consider the generated

test for the class ExternalXid (Figure 3), where none of its
assertions verify the returned value of the equals method call.
We inspected the equals method and confirmed that: (i) it
returns a boolean, (ii) it does not cause any side effects, and (iii)
it has no relation with the formatId (the only assertion in the
test). Consequently, we concluded that although this increases
the coverage, it does not help verify this method’s behavior,
as it is the only method being tested. We found 242 (10.3%)
tests in this category.

Assertions with not related parent class method. We found
that 121 (5.1%) tests contain assertions that use methods

1 public void test79 () throws Throwable {
2 SubstringLabeler substringLabeler0 = new

SubstringLabeler ();
3 TextViewer textViewer0 = new TextViewer ();
4 substringLabeler0.addDataSourceListener(textViewer0);
5 assertEquals("Match",
6 substringLabeler0.getMatchAttributeName ());
7 assertEquals("SubstringLabeler",
8 substringLabeler0.getCustomName ());
9 }

Fig. 2. Not asserted side effect.

1 public void test22 () throws Throwable {
2 byte[] byteArray0 = new byte [6];
3 ExternalXid externalXid0 = new ExternalXid ((-1), ...);
4 Object object0 = new Object ();
5 externalXid0.equals(object0);
6 assertEquals ((-1), externalXid0.getFormatId ());
7 }

Fig. 3. Example of not asserted return values.

from the parent class of the class under test. However, these
methods are not related to the methods being tested. For
instance, consider the following generated test that asserts
the method isFocusTraversalPolicySet defined in the Container

class, although the class under test is Field (Figure 4).
The Container class is extended by the JComponent class,
which is then extended by the JPanel class, and finally by
the Field class. It is also important to note that we veri-
fied that the method isFocusTraversalPolicySet is not overrid-
den by the Field class. In this example, the paintComponent

method defined in Field does not modify the parent class
attribute focusTraversalPolicy. Therefore, the assertion that
calls the method isFocusTraversalPolicySet is not related to the
paintComponent method, which is the only operation called after
object initialization.

This category is similar to the previous one, except that the
methods used in the asserts belong to a parent class of the class
under test. We have separated this category as we believe it
may be useful for tool maintainers.

Recommendation 1. Test generator tools should priori-
tize the relationship between the act and assert steps in
the generation algorithm to enhance the effectiveness of
generated tests.

1 public void test12 () throws Throwable {
2 ...
3 Field field0 = new Field(handballModel0, colorModel0);
4 field0.paintComponent(graphics2D0);
5 assertFalse(field0.isFocusTraversalPolicySet ());
6 }
7 /* Field class parent */
8 class Container{
9 public boolean isFocusTraversalPolicySet () {

10 return (focusTraversalPolicy != null);
11 }
12 }

Fig. 4. Example of assertions with not related parent class method.

1 public void test07 () throws Throwable {
2 ScriptOrFnScope scriptOrFnScope0 =
3 new ScriptOrFnScope ((-806), (ScriptOrFnScope) null

);
4 ScriptOrFnScope scriptOrFnScope1 =
5 new ScriptOrFnScope ((-330), scriptOrFnScope0);
6 scriptOrFnScope1.preventMunging ();
7 ...
8 }
9 public void test08 () throws Throwable {

10 ScriptOrFnScope scriptOrFnScope0 =
11 new ScriptOrFnScope ((-806), (ScriptOrFnScope) null

);
12 ScriptOrFnScope scriptOrFnScope1 =
13 new ScriptOrFnScope ((-330), scriptOrFnScope0);
14 scriptOrFnScope1.declareIdentifier("");
15 ...
16 }
17 public void test09 () throws Throwable {
18 ScriptOrFnScope scriptOrFnScope0 =
19 new ScriptOrFnScope ((-806), (ScriptOrFnScope) null

);
20 ScriptOrFnScope scriptOrFnScope1 =
21 new ScriptOrFnScope ((-330), scriptOrFnScope0);
22 scriptOrFnScope1.munge();
23 ...
24 }

Fig. 5. Example of test with duplicated setup.

2) Redundant Code: We discovered pieces of duplicate,
redundant, or unnecessary test code that could be eliminated
for simplicity or extracted to prevent redundancy.

Duplicated Setup. We observed that several tests within the
same test suite initialize the same group of objects at the
beginning. Although not all tests in the suite have the same
initialization, some tests contain exactly the same statements
at the start. For instance, test07, test08, and test09 (shown in
Figure 5) are generated tests that demonstrate this duplication,
as each of them initializes the variables scriptOrFnScope0 and
scriptOrFnScope1 using the same constructor and arguments.
Therefore, the duplicated code could be extracted into a setUp
method to avoid redundancy.

We found 498 (21.2%) test methods with at least two
identical setup statements. These test methods belong to 35
test classes. It is important to note that EvoSuite generates a
test class for each class under test, which means that there are
at least 14 test methods per test class on average.

Recommendation 2. Test generator tools should identify
and refactor tests with duplicated setups into a separate
class with a common setup method. The latter will
reduce code duplication and improve code quality.

Testing the same exception scenario. We found 166 (7.1%)
tests that test the same exception scenario as another test
in the battery, with minor differences. These tests contain
mostly the same statements, differing only in the method
call that triggers the exception. However, the root cause of
the exception is either related to the shared statements or
another common factor. For example, two generated tests
(test04 and test08) differ only in the method called (initialize
and getClusterNodeAddresses), but both test the same exception

1 public void test04 () throws Throwable {
2 ClusterExecutorUtil clusterExecutorUtil0 =
3 new ClusterExecutorUtil ();
4 ClusterExecutorImpl clusterExecutorImpl0 =
5 new ClusterExecutorImpl ();
6 clusterExecutorUtil0.setClusterExecutor(

clusterExecutorImpl0);
7 // Undeclared exception!
8 try {
9 ClusterExecutorUtil.initialize ();

10 fail("Expecting exception: NoClassDefFoundError");
11 } catch(NoClassDefFoundError e) {
12 // Could not initialize class com.liferay.portal.

util.PropsValues
13 verifyException("com.liferay.portal.cluster.

ClusterBase", e);
14 }
15 }
16 public void test08 () throws Throwable {
17 ClusterExecutorUtil clusterExecutorUtil0 =
18 new ClusterExecutorUtil ();
19 ClusterExecutorImpl clusterExecutorImpl0 =
20 new ClusterExecutorImpl ();
21 clusterExecutorUtil0.setClusterExecutor(

clusterExecutorImpl0);
22 // Undeclared exception!
23 try {
24 ClusterExecutorUtil.getClusterNodeAddresses ();
25 fail("Expecting exception: NoClassDefFoundError");
26 } catch(NoClassDefFoundError e) {
27 // Could not initialize class com.liferay.portal.

util.PropsValues
28 verifyException(
29 "com.liferay.portal.cluster.ClusterBase", e);
30 }
31 }

Fig. 6. Testing the same exception scenario.

scenario where PropsValues cannot be found (shown in Figure
6). As such, we consider one of these tests redundant. This
category of tests handles various exception kinds, such as
NullPointerException, RuntimeException, and ClassCastException.

Recommendation 3. To improve the quality of the
test battery and reduce its size, test generator tools
should detect and eliminate redundant tests using inter-
test analysis, especially for exception scenarios.

Testing the same void method. We found 117 (5%) tests
that evaluate the same void method with small variations.
While these variations may help cover new branches of the
class under test, the assertions of these tests are unrelated to
the branch under test, limiting their usefulness for bug fault
detection. For example, consider two generated tests (Figure
Figure 7). In both tests, the release method is called from
DbConnectionBroker, which affects the maxConnections attribute.
However, the tests assert a different attribute (maxReached) and
do not verify the method’s side effects. This category is similar
to the previous category, "not asserted side-effect," but with
two or more tests executing different branches of the same
void method, where the assertions are unrelated to this method,
further limiting their usefulness.

1 public void test00 () throws Throwable {
2 DbConnectionBroker dbConnectionBroker0 = new

DbConnectionBroker ();
3 DbConnectionAttributes dbConnectionAttributes0 = new

DbConnectionAttributes (10);
4 dbConnectionBroker0.release(dbConnectionAttributes0);
5 assertEquals (0, dbConnectionBroker0.getMaxReached ());
6 }
7 public void test11 () throws Throwable {
8 DbConnectionBroker dbConnectionBroker0 = new

DbConnectionBroker ();
9 assertEquals (30, dbConnectionBroker0.getMax ());

10 DbConnectionAttributes dbConnectionAttributes0 = new
DbConnectionAttributes (15);

11 dbConnectionBroker0.release(dbConnectionAttributes0);
12 assertEquals (0, dbConnectionBroker0.getMaxReached ());
13 }

Fig. 7. Multiple calls to the same void method.

Recommendation 4. Test generator tools should gen-
erate assertions that verify the behavior associated with
different branches of the same method already covered
by the test battery.

Asserting object initialization multiple times. This category
includes tests with assertions that verify behavior related to
the object initialization during the test setup phase. While
testing for proper initialization is valid, some tests in the
same battery focus solely on initialization instead of the
tested method. These tests often have similar assertions. For
example, test14 and test27 in Figure 8 have identical assertions
for the PhotoController class that verify values set during
initialization. Note that although these two tests differ slightly,
with test14 calling the method setLens and test27 calling the
method getContentManager, there are no assertions related to
these methods. We found 550 (23,5%) tests that assert the
object initialization multiple times. These tests belong to 50
test suites.

Recommendation 5. Test generator tools should avoid
redundant tests that verify the same object initialization
in multiple tests and instead focus on testing the partic-
ular behavior of each test. This approach can reduce the
size of the test suite and ensure that each test contributes
uniquely to code coverage and error detection.

Redundant not Null Assertion. We found 77 (3.3%) tests
with redundant not null assertions. In particular, we identify
two cases: (i) When the not null assertion is used to verify
a recently created object – For example, consider the test
generated for the class HookHotDeployListener in Figure 9. The
test initializes an instance of the class using the new operator
and immediately follows it with an assertNotNull statement
over the newly created object. However, since an error would
be triggered if the object were not created, verifying its
existence with an assertNotNull statement is unnecessary.

(ii) When another assertion indirectly verifies that a given
variable is not null, and deleting will not alter the test

1 public void test14 () throws Throwable {
2 Home home0 = new Home();
3 SwingViewFactory swingViewFactory0 = new

SwingViewFactory ();
4 PhotoController photoController0 = new

PhotoController(home0 , (UserPreferences) null ,
(View) null , swingViewFactory0 , (ContentManager
) null);

5 Camera.Lens camera_Lens0 = Camera.Lens.PINHOLE;
6 photoController0.setLens(camera_Lens0);
7 assertEquals (0, photoController0.getQuality ());
8 assertEquals (300, photoController0.getHeight ());
9 assertEquals (400, photoController0.getWidth ());

10 assertEquals (1.0F, photoController0.
get3DViewAspectRatio (), 0.01F);

11 assertEquals (1392409281320L, photoController0.
getTime ());

12 assertEquals (13684944 , photoController0.
getCeilingLightColor ());

13 }
14 public void test27 () throws Throwable {
15 Home home0 = new Home();
16 SwingViewFactory swingViewFactory0 = new

SwingViewFactory ();
17 PhotoController photoController0 = new

PhotoController(home0 ,(UserPreferences)null(
View) null , swingViewFactory0 , (ContentManager)
null);

18 photoController0.getContentManager ();
19 assertEquals (13684944 , photoController0.

getCeilingLightColor ());
20 assertEquals (300, photoController0.getHeight ());
21 assertEquals (0, photoController0.getQuality ());
22 assertEquals (400, photoController0.getWidth ());
23 assertEquals (1392409281320L, photoController0.

getTime ());
24 assertEquals (1.0F, photoController0.

get3DViewAspectRatio (), 0.01F);
25 }

Fig. 8. Asserting object initialization multiple times.

1 public void test00 () throws Throwable {
2 HookHotDeployListener hookHotDeployListener0 = new

HookHotDeployListener ();
3 assertNotNull(hookHotDeployListener0);
4 }

Fig. 9. Redundant not null assertion that verify a recently created object

semantics. – This happens when a test method contains another
assertion that indirectly verifies that a given variable is not null.
Therefore the assertNotNull could be deleted without chang-
ing the test behavior1. To illustrate, consider the following
generated test for the class SubstringLabeler, where there is
an assertNotNull for the variable string0 and an assertEquals

that checks that the variable string0 is equal to the string "

trainingSet" (Figure 10). In this test, the assertEquals indirectly
verifies that the variable string0 is not null since it does not
contain the expected value.

We found 47 tests that contained an assertNotNull after
initializing an object and 33 tests that presented another
assertion that indirectly verify the content of a given variable
besides the assertNotNull.

1It is important to mention that there are cases where even though another
assertion indirectly verifies a variable is not null, the not null assertion is not
redundant.

1 public void test74 () throws Throwable {
2 ...
3 String string0 = substringLabeler_Match0.getMatch ();
4 assertNotNull(string0);
5 assertEquals("trainingSet", string0);
6 ...
7 }

Fig. 10. Redundant not null assertion since the assertEquals indirectly
verifies that the variable is not null

1 public void test02 () throws Throwable {
2 PeersItem peersItem0 = new PeersItem ();
3 // Undeclared exception!
4 try {
5 peersItem0.refresh ((TableCell) null);
6 fail("Expecting exception: NullPointerException");
7 } catch(NullPointerException e) {
8 // no message in exception (getMessage () returned

null)
9 verifyException("org.gudy.azureus2.ui.swt.views.

tableitems.tracker.PeersItem", e);
10 }
11 }

Fig. 11. Exceptions due to null arguments.

Recommendation 6. To improve the effectiveness of
test generation, it is recommended that test generators
analyze the need for not-null assertions and avoid gen-
erating redundant assertions.

3) Failed Setup: Previous studies show that many tests
require significant setup but often fail, causing exceptions.
If the test generator tool struggles with initializing objects,
it can result in a large number of tests with failed setups.
We identified three types of failed setups during our manual
inspection, including eight test suites with all test methods
handling exceptions due to failed setups.

Exceptions due to null arguments. We observed that 300
(12.8%) tests trigger a NullPointerException because null ar-
guments are sent to a method call or class constructor. For
example, consider the test02 in Figure 11, where a null value
is sent to the refresh method. The exception is directly linked
to the null value and is triggered when the refresh method
attempts to execute the getDataSource method on the null value.
Note that the refresh method does not handle null arguments.
While sending a null argument may help cover new branches
or test exception scenarios, these tests have limited usefulness
as the exception triggered is directly linked to the null value
rather than any new branch of the tested method.

Exceptions due external dependencies. This category in-
volves tests that handle exceptions triggered by external
dependencies or resources rather than due to issues in the
behavior of the method being called. For example, consider
the following generated test for the EntryListView class shown
in Figure 12, which includes a try-catch statement that catches
a HeadlessException. This exception type is linked to code that
relies on keyboard, display, or mouse events in an environment
that does not support them. We found similar exceptions

1 public void test00 () throws Throwable {
2 try {
3 EntryListView.showView ();
4 fail("Expecting exception: HeadlessException");
5 } catch(HeadlessException e) {
6 // no message in exception (getMessage () returned null

)
7 verifyException("java.awt.GraphicsEnvironment",

e);
8 }
9 }

Fig. 12. Exceptions due to external dependencies.

1 public void test00 () throws Throwable {
2 AlphabeticTokenizer alphabeticTokenizer0 = new

AlphabeticTokenizer ();
3 // Undeclared exception!
4 try {
5 alphabeticTokenizer0.nextElement ();
6 fail("Expecting exception: NullPointerException");
7 } catch(NullPointerException e) {
8 // no message in exception (getMessage () returned

null)
9 verifyException("weka.core.tokenizers.

AlphabeticTokenizer", e);
10 }
11 }
12 /* Class under test*/
13 class AlphabeticTokenizer{
14 protected int m_CurrentPos;
15 public Object nextElement () {
16 int beginpos , endpos;
17 beginpos = m_CurrentPos;
18 while ((beginpos < m_Str.length) && ((m_Str[

beginpos] < ’a’) && (m_Str[beginpos] > ’z’))
&& ((m_Str[beginpos] < ’A’) && (m_Str[
beginpos] > ’Z’))) {

19 beginpos ++;
20 }
21 ...
22 return s;
23 }
24 }

Fig. 13. Exceptions due to incomplete call sequence.

such as SQLException and NotYetConnectedException. We found
52 (2.2%) test methods that handle exceptions due to external
dependencies. Multiple tests in the same test class have similar
exception handling code and the same root cause, which is a
failed setup.

Exceptions due to incomplete setup. This category contains
tests that handle exceptions triggered by an incomplete setup.
We analyzed the identified cases and discovered that unini-
tialized values or uncalled methods triggered the exceptions.
To illustrate, consider the following generated test for the
AlphabeticTokenizer class shown in Figure 13. To successfully
call the nextElement method, the m_CurrentPos attribute needs to
be initialized. Otherwise, the method will attempt to access a
null index inside an array. In test00, the default constructor of
AlphabeticTokenizer0 does not initialize m_CurrentPos. Therefore,
when calling nextElement, a NullPointerException is thrown. We
found 41 (1.7%) test methods that handle exceptions due to
external dependencies.

1 public void test05 () throws Throwable {
2 DirEntry dirEntry0 = new DirEntry ();
3 dirEntry0.setModtime("");
4 String string0 = dirEntry0.getModtime ();
5 assertEquals("", string0);
6 }

Fig. 14. Testing only field accessors.

1 public void test06 () throws Throwable {
2 ...
3 connectionConsumer0.connectionError("summa.persistent")

;
4 assertEquals (0, ConnectionConsumer.

DEFAULT_SUBSEQUENT_RETRIES);
5 }

Fig. 15. Asserting constants.

Recommendation 7. Test generator tools should be able
to detect situations where the object initialization is
unsuccessful because this can lead to multiple tests with
similar exception scenarios.

4) Testing Field Accessors, and Constants: Tests, where
the behavior under test is rather simple, belong to this cat-
egory. Apart from improving code coverage and preventing
exceptions, the behavior under test is predictable and straight-
forward.

Testing only field accessors. We identified 139 (5.9%) tests in
which, apart from object initialization, the behavior under test
solely consisted of field accessors such as getters and setters.
An example of this is the generated test for the DirEntry class
shown in Figure 14, which solely reads and writes the modtime

field using the getModtime and setModtime methods. Although
calling these methods increases coverage for the class under
test, we believe that testing only field accessors that do not
add any additional behavior beyond exposing a class field are
strong candidates for test reduction or prioritization.

Asserting Constants. We observed that 20 (0.8%) tests only
check the value of a constant using assertions. While testing
constant values can be valuable in certain cases, these tests
also tend to call different methods and only assert unrelated
constant values. For example, consider the generated test for
the ConnectionConsumer class shown in Figure 15. This test
initializes an object of the class and invokes the connectionError

method, but the only assertion in the test checks the
DEFAULT_SUBSEQUENT_RETRIES constant, which is always initialized
to zero unless manually modified. Moreover, this constant is
irrelevant to the connectionError method. Tests that only check
constant values in this manner do not significantly contribute
to the test suite, as the outcome of such assertions is always
obvious.

Recommendation 8. Tests that solely use accessors or
validate constant values might not substantially impact
the test suite. Therefore, test generator tools should iden-
tify such tests as potential candidates for prioritization
or removal to reduce the total number of tests to execute
or analyze.

B. Quality Issue Distribution (RQ2)

The frequency of the categories above at the test method,
class, and project levels can be found in Table IV-B. Our
results indicate that the reported issues were present across
various classes and projects within the data set. The latter
suggests that the issues are not specific to any particular project
or class. Although the percentage of test methods with at least
one issue is small (less than 20%), the number of classes and
test suites containing at least one issue is considerable. For
instance, the issue “not asserted side effects” appear at least
once in 57 out of 100 generated test suites.

TABLE II
FINE-GRAINED QUALITY ISSUES: CATEGORIES AND FREQUENCY

% Test
Methods

Test
Methods

Test
Classes

#
Projects

Act-Assert Mismatch
Not asserted side effects 14.0% 328 49 26
Not asserted return values 10,3% 242 30 19
Assertions w/ not related parent class method 5,1% 121 13 9

Redundant Code
Asserting object initialization multiple times 23,5% 550 50 24
Duplicated setup 21,2% 498 35 18
Testing the same exception scenario 7,1% 166 24 16
Testing the same void method 5,0% 117 20 15
Redundant not null assertion 3,3% 77 12 12

Failed Setup
Exceptions due to null arguments 12,8% 300 64 30
Exceptions due to incomplete setup 2,2% 52 19 12
Exceptions due to external dependencies 1,7% 41 20 12

Testing Field Accessors and Constants
Testing only field accesors 5,9% 139 17 13
Asserting constants 0,8% 20 11 6

Relation between Quality Issues. The heat map shown
in Figure 16 shows the relationships between the identified
issues, with the color of each cell indicating the number of
generated tests that have both of these issues. The two most
closely related quality issues are "Not asserted side effects"
(NASE) and "Assertion with no related parent class" (ARPM).
Therefore, a significant proportion of tests that do not assert
side effects also contain an assertion with a method call
to a parent class unrelated to the under-test behavior. Two
other related issues are: "Exceptions due to null arguments"
(TWNA) and "Testing the same exception scenario" (TSES).
Although the tests with these issues have slightly different
codes, in many cases, the root cause of the exception is null
arguments. It is worth noting that the exception scenarios
are not exclusively related to null values, which is why the
color box is not dark blue. Overall, Figure 16 shows that
no two quality issues overlap entirely in the same group of

O
IM

T

D
S

N
AS

E

ED
N

A

N
AR

V

TS
ES

TO
FA

AR
PM

TS
VM N
N

A

ED
IS

ED
ED AC

OIMT

DS

NASE

EDNA

NARV

TSES

TOFA

ARPM

TSVM

NNA

EDIS

EDED

AC

Fig. 16. Relation between identified quality issues

tests, suggesting that each issue has unique characteristics not
covered by other issues.

V. THREATS TO VALIDITY

This study presents a manual categorization of a particular
sample of automatically generated tests, and like any other
study, it is subject to a number of threats to validity.

Constructor Validity. In order to search for code parts or
code anti-patterns that do not match the current test smell
definitions, we use a set of test smells as a basis for the
analysis. The fact that not all relevant test smells proposed by
previous literature are covered may be a threat to the validity of
this study. Consequently, a quality issue may partly overlap the
definition of a test smell not included in our set of test smells.
To reduce this threat, we utilized the test smells considered
by Panichella and colleagues [39], since this study collects
the test smells proposed by formally-published sources [15],
[25], [44] which can affect tests generated by EvoSuite.

Internal Validity. We performed a thematic analysis to answer
our research questions. Two authors performed the systematic
process to conduct the analysis. Since this process includes
generating codes and defining themes, these aspects vary
depending on the coder’s experience, point of view, and level
of abstraction. For example, to respond to RQ1, we detected
quality issues involved with duplicated, redundant, and/or
unnecessary test code. These quality issues are related to the
code smell of duplicated code. However, each quality issue
shows particularities associated to the nature of generated tests.
We tried to reduce this threat by checking the consistency of
the process. The remaining authors examined the description
of themes, generated codes, and the test cases involved with
codes. We held three discussion meetings to diagnose the

codes and the themes generated. As a result, we solve any
discrepancies.
External Validity. In our study, we identified and categorized

quality issues in a sample of 2,340 tests generated by EvoSuite.
However, besides involving a significant manual effort, the
generalizability of our findings is limited. Additional issues
may be present in tests generated by other tools or in different
projects. Nevertheless, this paper presents an initial taxonomy
of quality issues highlighting the discrepancy between gener-
ated and manually-written tests. The latter confirms that test
smells alone do not capture all the quality issues present in
generated tests.

VI. CONCLUSION

This paper presents a manual categorization of quality issues
for a data set of 2,340 generated tests, resulting in a taxonomy
of 13 issues that reflect atypical patterns in automatically
generated tests. Our study shows that the reported issues are
not specific to a particular class or project. Furthermore, our
issue catalog highlights the importance of considering the code
being tested when analyzing the test quality. For example,
methods with side effects and complex object initialization
may trigger a number of issues in the generated tests. Our
findings are consistent with previous work in revealing a
discrepancy between the optimization metric used by test
generator tools and the usefulness of the generated tests. Based
on the issues we identified, we provide eight recommendations
that demonstrate their applicability and usefulness. As future
work, we plan to extend the external validity of the issues
found by automatically searching the reported issues in other
projects, and generator tools.

ACKNOWLEDGMENT

Juan Pablo Sandoval Alcocer thanks ANID FONDECYT
Iniciación Folio 11220885 for supporting this article.

REFERENCES

[1] Jennitta Andrea, Gerard Meszaros, and Shaun Smith. Catalog of
xp project ‘smells’. In 2002 International Conference on Extreme
Programming and Agile Processes in Software Engineering, 06 2002.

[2] Alberto Bacchelli, Paolo Ciancarini, and Davide Rossi. On the ef-
fectiveness of manual and automatic unit test generation. In 2008
The Third International Conference on Software Engineering Advances,
pages 252–257, 2008.

[3] P. Baker, D. Evans, J. Grabowski, H. Neukirchen, and B. Zeiss. Trex -
the refactoring and metrics tool for ttcn-3 test specifications. In Testing:
Academic & Industrial Conference - Practice And Research Techniques
(TAIC PART’06), pages 90–94, 2006.

[4] Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia,
and Dave Binkley. Are test smells really harmful? an empirical study.
Empirical Software Engineering, 20:1052–1094, 2015.

[5] Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia, and
David Binkley. An empirical analysis of the distribution of unit test
smells and their impact on software maintenance. In 2012 28th IEEE
International Conference on Software Maintenance (ICSM), pages 56–
65, 2012.

[6] Carolin Brandt and Andy Zaidman. Developer-centric test amplifica-
tion: The interplay between automatic generation human exploration.
Empirical Softw. Engg., 27(4), jul 2022.

[7] Manuel Breugelmans and Bart Van Rompaey. Testq: Exploring structural
and maintenance characteristics of unit test suites. In WASDeTT-1: 1st
International Workshop on Advanced Software Development Tools and
Techniques. Citeseer, 2008.

[8] Aloisio S Cairo, Glauco de F Carneiro, and Miguel P Monteiro. The
impact of code smells on software bugs: A systematic literature review.
Information, 9(11):273, 2018.

[9] José Campos, Yan Ge, Nasser Albunian, Gordon Fraser, Marcelo Eler,
and Andrea Arcuri. An empirical evaluation of evolutionary algorithms
for unit test suite generation. Information and Software Technology,
104:207–235, 2018.

[10] Woei-Kae Chen and Jung-Chi Wang. Bad smells and refactoring
methods for gui test scripts. In 2012 13th ACIS International Confer-
ence on Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing, pages 289–294, 2012.

[11] Christoph Csallner and Yannis Smaragdakis. Jcrasher: An automatic
robustness tester for java. Softw. Pract. Exper., 34(11):1025–1050, sep
2004.

[12] Ermira Daka, José Campos, Gordon Fraser, Jonathan Dorn, and Westley
Weimer. Modeling readability to improve unit tests. In Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2015, page 107–118, New York, NY, USA, 2015. Associa-
tion for Computing Machinery.

[13] Ermira Daka, José Miguel Rojas, and Gordon Fraser. Generating unit
tests with descriptive names or: Would you name your children thing1
and thing2? In Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages 57–67, 2017.

[14] Julien Delplanque, Stéphane Ducasse, Guillermo Polito, Andrew P.
Black, and Anne Etien. Rotten green tests. In Proceedings of the
41st International Conference on Software Engineering, ICSE ’19, page
500–511. IEEE Press, 2019.

[15] Arie Deursen, Leon M.F. Moonen, A. Bergh, and Gerard Kok. Refactor-
ing test code. Technical report, Delft University of Technology, NLD,
2001.

[16] Bill Dudney and Jonathan Lehr. Jakarta Pitfalls: Time-Saving Solutions
for Struts, Ant, JUnit, and Cactus (Java Open Source Library). John
Wiley & Sons, 2003.

[17] Martin Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley Professional, 1st edition, 1999.

[18] Gordon Fraser and Andrea Arcuri. Evosuite: Automatic test suite
generation for object-oriented software. In Proceedings of the 19th
ACM SIGSOFT Symposium and the 13th European Conference on
Foundations of Software Engineering, ESEC/FSE ’11, page 416–419,
New York, NY, USA, 2011. Association for Computing Machinery.

[19] Gordon Fraser and Andrea Arcuri. Whole test suite generation. IEEE
Transactions on Software Engineering, 39(2):276–291, 2012.

[20] Gordon Fraser and Andrea Arcuri. A large-scale evaluation of automated
unit test generation using evosuite. ACM Trans. Softw. Eng. Methodol.,
24(2), dec 2014.

[21] Gordon Fraser, Matt Staats, Phil McMinn, Andrea Arcuri, and Frank
Padberg. Does automated unit test generation really help software
testers? a controlled empirical study. ACM Transactions on Software
Engineering and Methodology (TOSEM), 24(4):1–49, 2015.

[22] Steve Freeman and Nat Pryce. Growing Object-Oriented Software,
Guided by Tests. Addison-Wesley Professional, 1st edition, 2009.

[23] Vahid Garousi and Barış Küçük. Smells in software test code: A
survey of knowledge in industry and academia. Journal of Systems
and Software, 138:52–81, 2018.

[24] Giovanni Grano, Fabio Palomba, Dario Di Nucci, Andrea De Lucia, and
Harald C Gall. Scented since the beginning: On the diffuseness of test
smells in automatically generated test code. Journal of Systems and
Software, 156:312–327, 2019.

[25] Giovanni Grano, Simone Scalabrino, Harald C. Gall, and Rocco Oliveto.
An empirical investigation on the readability of manual and gener-
ated test cases. In Proceedings of the 26th Conference on Program
Comprehension, ICPC ’18, page 348–351, New York, NY, USA, 2018.
Association for Computing Machinery.

[26] Michaela Greiler, Arie Van Deursen, and Margaret-Anne Storey. Auto-
mated detection of test fixture strategies and smells. In 2013 IEEE
Sixth International Conference on Software Testing, Verification and
Validation, pages 322–331. IEEE, 2013.

[27] Alex Gyori, August Shi, Farah Hariri, and Darko Marinov. Reliable
testing: Detecting state-polluting tests to prevent test dependency. In
Proceedings of the 2015 international symposium on software testing
and analysis, pages 223–233, 2015.

[28] Chen Huo and James Clause. Improving oracle quality by detecting
brittle assertions and unused inputs in tests. In Proceedings of the 22nd

ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pages 621–631, 2014.

[29] Negar Koochakzadeh and Vahid Garousi. Tecrevis: a tool for test
coverage and test redundancy visualization. In Testing–Practice and
Research Techniques: 5th International Academic and Industrial Confer-
ence, TAIC PART 2010, Windsor, UK, September 3-5, 2010. Proceedings,
pages 129–136. Springer, 2010.

[30] Jeshua S. Kracht, Jacob Z. Petrovic, and Kristen R. Walcott-Justice. Em-
pirically evaluating the quality of automatically generated and manually
written test suites. In 2014 14th International Conference on Quality
Software, pages 256–265, 2014.

[31] Bin Lin, Csaba Nagy, Gabriele Bavota, Andrian Marcus, and Michele
Lanza. On the quality of identifiers in test code. In 2019 19th Interna-
tional Working Conference on Source Code Analysis and Manipulation
(SCAM), pages 204–215, 2019.

[32] Mikael Lundin. Testing with F#. Packt Publishing, 2015.
[33] Gerard Meszaros. xUnit Test Patters. Addison-Wesley, 2007.
[34] Gerard Meszaros, Shaun M. Smith, and Jennitta Andrea. The test

automation manifesto. In Frank Maurer and Don Wells, editors, Extreme
Programming and Agile Methods - XP/Agile Universe 2003, pages 73–
81, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[35] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas
Ball. Feedback-directed random test generation. In Proceedings of the
29th International Conference on Software Engineering, ICSE ’07, page
75–84, USA, 2007. IEEE Computer Society.

[36] Alan Page and Ken Johnston. How We Test Software at Microsoft.
Microsoft Press, USA, 2008.

[37] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Fausto Fasano,
Rocco Oliveto, and Andrea De Lucia. On the diffuseness and the
impact on maintainability of code smells: a large scale empirical
investigation. In Proceedings of the 40th International Conference on
Software Engineering, pages 482–482, 2018.

[38] Fabio Palomba, Dario Di Nucci, Annibale Panichella, Rocco Oliveto,
and Andrea De Lucia. On the diffusion of test smells in automatically
generated test code: An empirical study. In Proceedings of the 9th
international workshop on search-based software testing, pages 5–14,
2016.

[39] A. Panichella, Sebastiano Panichella, Gordon Fraser, Anand Ashok
Sawant, and Vincent Hellendoorn. Test smells 20 years later: Detectabil-
ity, validity, and reliability. Empirical Software Engineering, 27(7),
2022.

[40] Annibale Panichella, José Campos, and Gordon Fraser. Evosuite at
the sbst 2020 tool competition. In Proceedings of the IEEE/ACM
42nd International Conference on Software Engineering Workshops,
ICSEW’20, page 549–552, New York, NY, USA, 2020. Association for
Computing Machinery.

[41] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. Au-
tomated test case generation as a many-objective optimisation problem
with dynamic selection of the targets. IEEE Transactions on Software
Engineering, 44(2):122–158, 2017.

[42] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. Au-
tomated test case generation as a many-objective optimisation problem
with dynamic selection of the targets. IEEE Transactions on Software
Engineering, 44:122–158, 2018.

[43] Sebastiano Panichella, Annibale Panichella, Moritz Beller, Andy Zaid-
man, and Harald C Gall. The impact of test case summaries on bug
fixing performance: An empirical investigation. In Proceedings of the
38th international conference on software engineering, pages 547–558,
2016.

[44] Anthony Peruma, Khalid Almalki, Christian D. Newman, Mo-
hamed Wiem Mkaouer, Ali Ouni, and Fabio Palomba. On the distribu-
tion of test smells in open source android applications: An exploratory
study. In Proceedings of the 29th Annual International Conference
on Computer Science and Software Engineering, CASCON ’19, page
193–202, USA, Nov. 2019. IBM Corp.

[45] Anthony Peruma, Khalid Almalki, Christian D Newman, Mo-
hamed Wiem Mkaouer, Ali Ouni, and Fabio Palomba. Tsdetect: An open
source test smells detection tool. In Proceedings of the 28th ACM joint
meeting on european software engineering conference and symposium
on the foundations of software engineering, pages 1650–1654, 2020.

[46] José Miguel Rojas, Gordon Fraser, and Andrea Arcuri. Automated
unit test generation during software development: A controlled ex-
periment and think-aloud observations. In Proceedings of the 2015
International Symposium on Software Testing and Analysis, ISSTA 2015,

page 338–349, New York, NY, USA, 2015. Association for Computing
Machinery.

[47] Devjeet Roy, Ziyi Zhang, Maggie Ma, Venera Arnaoudova, Annibale
Panichella, Sebastiano Panichella, Danielle Gonzalez, and Mehdi Mi-
rakhorli. Deeptc-enhancer: Improving the readability of automati-
cally generated tests. In Proceedings of the 35th IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE ’20,
page 287–298, New York, NY, USA, 2021. Association for Computing
Machinery.

[48] Domenico Serra, Giovanni Grano, Fabio Palomba, Filomena Ferrucci,
Harald C. Gall, and Alberto Bacchelli. On the effectiveness of manual
and automatic unit test generation: Ten years later. In 2019 IEEE/ACM
16th International Conference on Mining Software Repositories (MSR),
pages 121–125, 2019.

[49] Sina Shamshiri, José Miguel Rojas, Gordon Fraser, and Phil McMinn.
Random or genetic algorithm search for object-oriented test suite gen-
eration? In Proceedings of the 2015 Annual Conference on Genetic and
Evolutionary Computation, GECCO ’15, page 1367–1374, New York,
NY, USA, 2015. Association for Computing Machinery.

[50] Sina Shamshiri, José Rojas, Luca Gazzola, Gordon Fraser, P.S. McMinn,
Leonardo Mariani, and Andrea Arcuri. Random or evolutionary search
for object-oriented test suite generation? Software Testing, Verification
& Reliability, 2017.

[51] Gareth Terry, Nikki Hayfield, Victoria Clarke, and Virginia Braun.
Thematic analysis. The Sage handbook of qualitative research in
psychology, pages 17–37, 2017.

[52] Paolo Tonella. Evolutionary testing of classes. In Proceedings of
the 2004 ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA ’04, page 119–128, New York, NY, USA, 2004.
Association for Computing Machinery.

[53] Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano
Di Penta, Rocco Oliveto, Andrea De Lucia, and Denys Poshyvanyk.
An empirical investigation into the nature of test smells. In Proceedings
of the 31st IEEE/ACM International Conference on Automated Software
Engineering, ASE ’16, page 4–15, New York, NY, USA, 2016. Associ-
ation for Computing Machinery.

[54] Tássio Virgínio, Luana Martins, Larissa Rocha, Railana Santana, Adri-
ana Cruz, Heitor Costa, and Ivan Machado. Jnose: Java test smell
detector. In Proceedings of the XXXIV Brazilian Symposium on Software
Engineering, SBES ’20, page 564–569, New York, NY, USA, 2020.
Association for Computing Machinery.

	Introduction
	Related Work
	Automatically-Generated Tests
	Test Smells in Automatically-Generated Tests

	Methodology
	Dataset Selection
	Test Smells Review
	Quality Issues Identification and Classification

	Results
	Quality Issues (RQ1)
	Act-Assert Mismatch
	Redundant Code
	Failed Setup
	Testing Field Accessors, and Constants

	Quality Issue Distribution (RQ2)

	Threats to Validity
	Conclusion
	References

