
Predicting Defective Visual Code Changes in a
Multi-Language AAA Video Game Project

Kalvin Eng
Quality, Verification & Standards

Electronic Arts
Edmonton, Canada

kalvin.eng@{ualberta.ca, ea.com}

Abram Hindle
Department of Computing Science

University of Alberta
Edmonton, Canada

abram.hindle@ualberta.ca

Alexander Senchenko
Quality, Verification & Standards

Electronic Arts
Vancouver, Canada
asenchenko@ea.com

Abstract—Video game development increasingly relies on using
visual programming languages as the primary way to build
video game features. The aim of using visual programming is
to move game logic into the hands of game designers, who
may not be as well versed in textual coding. In this paper,
we empirically observe that there are more defect-inducing
commits containing visual code than textual code in a AAA
video game project codebase. This indicates that the existing
textual code Just-in-Time (JIT) defect prediction models under
evaluation by Electronic Arts (EA) may be ineffective as they
do not account for changes in visual code. Thus, we focus our
research on constructing visual code defect prediction models that
encompass visual code metrics and evaluate the models against
defect prediction models that use language agnostic features, and
textual code metrics. We test our models using features extracted
from the historical codebase of a AAA video game project, as
well as the historical codebases of 70 open source projects that
use textual and visual code. We find that defect prediction models
have better performance overall in terms of the area under the
ROC curve (AUC), and Mathews Correlation Coefficient (MCC)
when incorporating visual code features for projects that contain
more commits with visual code than textual code.

Index Terms—visual code, defect prediction, software quality

I. INTRODUCTION

Visual code, also known as block-based code, low code,
no-code, or visual scripts, is a type of software development
practice that aims to simplify source code for non-traditional
programmers by representing code visually using drag and
drop nodes connected via edges, instead of using only text.
Non-traditional programmers are end-users who are not well-
versed in writing in line-by-line textual code [1]. Visual code,
illustrated in Figure 1, attempts to simplify the software de-
velopment process for non-traditional end-user programmers
by making dataflow clear and avoiding some classes of syntax
errors. Traditional professional programmers, in comparison,
mainly write software with textual code, and have adequate
tool support.

At EA (Electronic Arts), video game development teams
have shifted towards using visual code as the primary way
to build video game features, such as triggers on maps, or
game rules, so that all parts of a team can be involved in
the software development process. A video game development
team is diverse and includes managers, developers, designers,
artists, and testers. With many stakeholders, the goal of visual

Max/MSP

PureData

EA Visual Sript

Fig. 1: Visual code examples: Max/MSP, Pure Data, and EA
Visual Script.

code is to allow simple changes to code such as using different
variables or equations, without waiting for or consulting with
traditional professional programmers. Popular implementa-
tions of visual code occur in game development include Unreal
Engine Blueprints [2], and Unity Visual Scripting [3].

Due to the introduction of non-traditional end-user pro-
grammers using visual code in video game projects, we wish
to investigate how to predict defects in visual code. Using
the development history of a AAA video game project (a big
budget game from a large studio) along with 70 open source
visual programming projects to build defect prediction models,
we answer the following research questions:

RQ1. Do defect-inducing commits with visual code occur
more frequently than defect-inducing commits with
textual code in the projects studied?

RQ2. Do visual code features significantly improve the
performance of defect prediction models for tex-
tual/visual code projects?

RQ3. Do the types of files in commits or choice of learners
in projects significantly affect the outcome of defect
prediction models?

The goal of this research is to investigate whether contextual
features that describe visual code improve defect prediction in
projects that use textual and visual code. Visual code metrics,
to the best of our knowledge, have never been used for

ar
X

iv
:2

30
9.

03
41

4v
1 

 [
cs

.S
E

] 
 7

 S
ep

 2
02

3



predicting the likelihood of defects.

II. BACKGROUND

Defect prediction models are classification models that
estimate the likelihood of a change in code being defective [4].
Tantithamthavor et al. [4] explain that defect prediction models
have been used to predict the likelihood of defects at dif-
ferent granularities including: packages [5], components [6],
modules [7], files [5, 8], and methods [9, 10]. Defect predic-
tion models have also been used at version control commit-
level [11–13]. The use of defect prediction models at the time
of code commits can be referred to as Just-In-Time (JIT) defect
prediction and can be leveraged immediately once a change is
committed to a repository [14]. JIT defect prediction is often
used to better understand where to deploy testing efforts [14].
EA uses JIT defect prediction models to perform focused code
reviews and testing efforts on specific changes of code at a
commit level [15]. The focus of this research is to improve
current EA JIT defect prediction models by including features
that involve visual code metrics in addition to process metrics,
and textual code metrics.

Process metrics capture information about changes during
the software development process and aims to describe the
relationship between changes and software quality [4]. It is
language agnostic and can be applied uniformly to software
written in different languages [16]. Examples of process
metrics may involve: number of revisions for a file, number of
developers for a file, number of modified lines, and number
of directories [16, 17]. According to Majumder et al. [16],
most studies investigating the use of process metrics show that
models that only use process metrics can outperform those that
combine process metrics and code metrics. However, Kamei
et al. [5] finds that combining process metrics and code metrics
improves defect prediction performance.

Code metrics, also referred to as product metrics, capture
information about code and aims to describe the relationship
between code properties and software quality [4]. Examples
of code metrics can include: lines of code in a file, cyclomatic
complexity of code in a file, and number of methods in a
file [16–18]. In this paper, we separate code metrics into 2
categories: textual which refers to the metrics described in
this paragraph that are derived from textual code and visual
which refers to metrics derived from visual code.

We define visual code metrics as metrics that capture
information about visual code to describe the relationship
between visual code properties and software quality. Visual
code metrics have been investigated by Kumar et al. [19] who
propose metrics derived from the operators and operands of
visual source code defined by the IEC 61131-3 Programmable
Logic Controller programming languages standards. Using the
same programming languages, visual code metrics have also
been investigated by Fischer et al. [20] who propose metrics
that measure complexity based on size, data structure, control
flow, information flow and lexical structure derived in the
textual and visual source code. The goal of this investigation

is to derive a suite of visual code metrics suitable for defect
prediction in visual code changes.

A. Choices in JIT Defect Prediction

Defect prediction is all about choices that can impact the
outcomes of defect prediction models. Since we are concerned
about Just In Time (JIT) defect prediction, we outline the
process summarized in Zhao et al. [21] that includes choices in
(1) data acquisition, (2) data preparation, (3) model building,
and (4) model evaluation.

(1) Data acquisition concerns the sources of data for a
defect prediction model which includes retrieving software
change history from version control systems and classifying
the software changes as defect-inducing or clean [21]. To mark
a software change as defect-inducing, defect-fixing changes
can be identified from issue tracking systems or commit
messages. Defect-fixing changes can be linked to defect-
inducing changes using variants of the SZZ algorithm [22, 23].
The choice of how defect-inducing changes are found can
affect the outcomes of a defect prediction model [24, 25].

(2) Data preparation encompasses feature acquisition and
processing, that is acquiring the sets of metrics from the
change history data that will be used for the defect prediction
model [21]. Features can be acquired from numerous sources
including: software changes, commit messages, issue tracking
systems, static analysis, and by automatically learning using
algorithms like deep learning [21]. Furthermore, features can
be extracted at different levels of granularity depending on
what granularity of defect prediction a model will be (e.g. file-
level vs commit-level). As well, these extracted features need
to be preprocessed including dealing with skew, collinearity
and multicollinearity, and class imbalance [21]. Hence, there
are many choices to be made about which features to include
in a model, and how to preprocess data for building the model.

(3) Model building includes deciding on the granularity
of defect prediction, choice of learner(s), and what data to
use [21]. The granularity of a defect prediction model is a
decision that impacts how interpretable a prediction is. A
coarse granularity level would mean prediction at a commit-
level, while a fine granularity level would be prediction at
a file-level. Wan et al. [26] mentions the conclusion of
[27] that finds the “practical value of prediction decreases
as the granularity level increases”, i.e., opting for a coarser
granularity may be more practical as it reduces the necessity
of reviewing a substantial number of files.

The choice of a learner can impact defect prediction per-
formance [28], thus multiple learners should be tried. There
are many popular choices of learners including: Logistic
Regression, Tree-based models (e.g. Random Forest, and C4.5
Decision Tree) and ensemble models (e.g. Random Forest, and
XGBoost) which affect the performance of defect prediction
results [21].

The choice of data used to build the model is also important
which includes many factors such as accounting for concept
drift, verification latency, defect types, and imbalanced prop-
erties of data [21]. Concept drift refers to how regularities in



the software change data gradually change or shift [21]. To
address concept drift, it is suggested that different slices of
data should be used for training [29].

Another issue to consider is verification latency which refers
to the “lag time between when a defect-inducing change
is committed to the [version control system] and identified
as such” [21]. An oversampling technique is suggested to
address verification latency [30]. Defect types should also be
considered since there are defect-fixing changes for “extrinsic”
defects that occur externally to the code. If extrinsic defects are
used to find defect-inducing changes, it can negatively impact
model performance as the changes have nothing to do with
the fix [31].

Finally, class imbalance, between classes such as defect-
inducing and clean, must also be considered. For example,
Jiang et al. [32] develop a local defect prediction model for
defect prediction as they theorize that different developers
exhibit different software change patterns. In a local model,
a model is created for a subset of data (e.g. a local model
for developers means that each developer will use a different
model). In contrast, a global model does not account for
subsets of data. It should be noted that local models might
under-perform global models in defect prediction [33].

(4) Model evaluation refers to how a model’s performance
is measured and encompasses the validation method used, the
choice of evaluation metrics, and whether or not to evaluate
feature importance. Validation methods can include cross-
validation, however it is suggested that the defect prediction
is time-sensitive and therefore data should be split on time
instead [34]. Choices of popular model evaluation metrics
include: accuracy, precision, recall, F-measure, AUC, and
MCC [21, 35]. Different measures should be considered de-
pending on the needs of a defect prediction model and the
importance of measuring misclassifications [36]. Feature im-
portance is another dimension that can be explored, this refers
to how important a feature is to explain the predicted outcome
of a model. Techniques such as LIME [37], SHAP [38], and
PyExplainer [39] can be used for feature explanations [4].

B. Investigating Visual Code Defect Prediction

We develop a commit-level visual code defect prediction
model, that supports the ongoing EA evaluation of quality
assurance which already uses commit-level textual code Just-
in-Time (JIT) defect prediction. To encourage replication of
our work, we implement a number of visual code defect
prediction models using open source projects. Our choices for
our visual code defect prediction models are based on the
background in Section II-A. Our data collection choices are
introduced in Section III. Our category of features is explained
in Section IV. Our method for preprocessing the data and
training the defect predictors is explained in Section V and
evaluated in Section VI answering RQ1, RQ2, and RQ3.

III. DATASETS

To build a defect prediction model for evaluation, we use
2 datasets: a AAA video game project, and an open source

Jan
2020

Jan
2021

Jan
2022

Jan
2023

Jul Jul Jul Jul

Month Year

0

200

400

600

800

1000

1200

1400 Commits
Defect-inducing
Reported Defects
Defect-fixing

Fig. 2: AAA Video Game project activity over time.

projects dataset. Our AAA video game project is chosen
because it is a project that was primarily developed using
visual code with 38% of commits consisting of visual code.
Our open source projects dataset consists of 70 projects with
each project containing a combination of Max/MSP visual
code and textual code. The open source projects dataset is
used to motivate replication of our work, and to demonstrate
generality and feasibility of using visual code features for
defect prediction in projects with visual code and textual code.

A. AAA Video Game

In the AAA video game, there are 26,326 commits as of
May 14, 2023, where 5,296 are defect-fixing commits, and
5,184 are defect-inducing commits. Defect-inducing commits
were found using textual SZZ [40] for any textual code, while
SZZ-VC (max change-depth) [23] (an SZZ method for finding
defect-inducing changes in visual code) is used for any visual
code. To find the defect-fixing changes to identify defect-
inducing changes, we consider in the AAA video game project
commits that are linked to a fix in the issue tracker. We plot
this project activity over time in Figure 2.

This game has been in development since July 2019 and is
still actively maintained. The project is forked from a different
project that has been in development since March 2014 and
uses 399 of its commits. We retrieve our code change commits
from Perforce, while issue reports are extracted from Jira. It
should be noted that our Jira issue tracker has been designed to
work under a quality assurance workflow where defect-fixing
commits are recorded in the issue as well as the version of
when a defect was first found.

B. Open Source Max/MSP Visual Code Projects

Max/MSP visual code is a popular visual music program-
ming language that is widely used by computer music pro-
grammers to realize their music compositions [41]. Burlet et
al. [41] describe Max/MSP as a language that allow users to
programmatically arrange rectangular objects (nodes) on the
screen and connect them with lines (edges) called patch cords



to generate sound and respond to human-computer interaction
devices. We choose Max/MSP projects because it uses nodes
and edges similar to the visual code of the AAA video game
project.

To find projects that contain visual code and textual code,
we use the U version of the World of Code (WoC) [42]
to discover 7,033 initial projects containing a commit in its
history with at least one Max/MSP file with the file extension
.maxpat or .maxhelp and includes “patcher” in its source
code. It should be noted that the projects chosen are the
“most central” repository to represent a group of repositories
found with the Louvain community detection algorithm in the
WoC and does not represent every project in existence on
GitHub [43].

We set criteria for projects that we would study:
• They must have at least 200 commits on their main

branch (as suggested by Shrikanth et al. [44]) after
parsing with PyDriller [45];

• Projects must be textual and visual with at least 1 visual
commit and 1 textual commit;

• Projects must have at least 1 defect-fixing commit (by
matching commit messages using perfective keywords
from Rosen et al. [13]), 1 visual code defect-inducing
commit using (SZZ-VC (max change depth) [23]), and
1 textual code defect-inducing commit (using textual
SZZ [40]).

As a result, this paper uses 70 open source projects con-
sisting of 64,246 commits (8,189 defect-fixing commits and
13,002 defect-inducing commits) for evaluating visual code
defect prediction.

The 70 projects chosen contain a wide variety of commits
with textual code including C, C++, C#, Java, JavaScript, Lua,
Objective-C, PHP, Python, Ruby, Swift, and TypeScript along
with Max/MSP visual code. This mix of textual and visual
code in commits is similar to the AAA video game. The
mined open source project data is available for download in
our replication package [46].

IV. DEFECT PREDICTION FEATURES

Our study aims to see how visual code metrics affect
commit-level defect prediction, hence we choose 3 categories
of metrics for features: process metrics, textual code metrics,
and visual code metrics. The process metrics are similar to the
ones used by Kamei et al. [14] and Madeyski et al. [17].

A. Process Metric Features

The process metric features are derived from the version
control system. We derive our features from valid textual code
files and valid visual code files. This derivation of features by
file type is similar to the datasets of Ni et al. [47] and McIntosh
et al. [29] which appear to derive metrics for only valid file
types. We present each of the process metrics below along
with their intuition.

Total Modified File Sizes: By measuring the total size of
the code, the larger the file sizes, the greater the potential for
defects.

Average Modified File Sizes: By measuring the average size
of the code, the intuition is that with larger file sizes, the
greater the potential for defects.

Number of Unique Modified Directories [14]: The more
directories that a change touches, the greater the potential for
defects.

Average Depth of Directories [14]: The deeper the directo-
ries in a change, the greater the potential for defects as the
change becomes more complex (deeper directories indicate
more submodules).

Number of Files Modified [14]: The more files that are
modified, the more complex the change and the greater the
potential for defects.

Average Elapsed Time Since Last Commit of Modified
File [14]: The less time between commits, the greater the
potential for defects.

Average Number of Revisions Per File [17]: The more
revisions, the greater the potential for defects, because more
changes mean that a file is more complex.

Number of Developers [14]: The more developers that have
touched a commit, the greater the potential for defects, as each
developer can have different ideas about the code.

Number of Unique Changes [14]: The more changes per
commit, the more information a developer needs to keep track
of, meaning more potential for defects.

Developer Experience [14]: By measuring the number of
changes that a developer has made since the beginning of time,
more changes indicate more experience and, therefore, a lower
likelihood of a defect.

Defect-Fixing [14]: If the change is defect-fixing, then it is
unlikely to be a defect.

B. Textual Code Metric Features

These metrics provide context about changes to visual code.
We present each of the textual code metrics below along with
their intuition.

Total Lines of Code Added [14]: The more lines that are
added, the greater the potential for a defect.

Total Lines of Code Deleted [14]: The more lines that are
deleted, the more potential there is for a defect.

Total Lines of Code Before Change [14]: The larger a
textual code file, the greater the potential for a defect.

Code Entropy [14]: To measure the amount of change
across files, we use the same modified lines formula in [14].
The higher the number, the larger the change distributed across
many files, implying more potential for a defect.

C. Visual Code Metric Features

The metrics presented below are used to provide context
about visual code changes in a commit. The visual code
metrics selected are measures that can be used across different
visual programming languages, and is meant to represent
changes about visual code. We use nodes in-place of lines as
visual code is a node and edge based programming language.

Total Number of Nodes Added: The more nodes that are
added, the more potential there is for a defect.



Total Number of Nodes Modified: The more modified nodes,
the greater the potential for a defect.

Total Number of Nodes Deleted: The more deleted nodes,
the greater the potential for a defect.

Number of Nodes Before Change: The larger a visual code
program, the greater the potential for a defect.

Node Modification Entropy: Similar to the Code Entropy
textual code metric, we measure the amount of changes across
files by using the code entropy formula in [14] with nodes
instead of lines. Larger values indicate a larger distribution of
node changes across many files.

V. BUILDING AND EVALUATING DEFECT PREDICTORS

To build defect predictors for the AAA video game, we
choose the classic 80/20 non-random split of data where 80%
of data is used for training and 20% is used for testing. For
the 70 projects of the open source projects dataset, we build
predictors for each project and also choose an 80/20 split.
Since our split is non-random, it is also time-aware, ensuring
that the testing data will never precede any of the training data.

A. Mitigating Collinearity and Multicollinearity
To address collinearity and multicollinearity among fea-

tures, we use AutoSpearman [48] with the correlation thresh-
old of 0.7 and Variance Inflation Factor of 5 to automatically
select our features in the training data.

In the AAA video game project, we find that among the
process metrics only the number of developers and whether
or not if a commit is defect-fixing are non-correlated. Among
the textual code metrics, the number of lines added and the
code entropy are non-correlated. For the visual code metrics,
the number of nodes added and the node entropy are non-
correlated. We use the groups of these features to build our
defect predictors for the AAA video game.

In the open source projects dataset, we also automatically
select features for each project with AutoSpearman and ensure
that there is at least 1 feature in each of the 3 categories
(process metrics, textual code metrics, and visual code metrics)
outlined in Section IV.

B. Addressing Class Imbalance
To address the class imbalance in the training data of the

AAA video game project and open source projects dataset,
we apply SMOTE [49] to the training data after mitigating
collinearity and multicollinearity among features. The optimal
choice for addressing class imbalance is undecided in prior
literature, but SMOTE is a widely used technique [21].

C. Learners
We choose a wide variety of learners including ones with

interpretability: Logistic Regression (LR - Linear Statistical
technique), C5.0 (DT - Decision Tree), and ones that have
been demonstrated to be higher performing learners: Random
Forests (RF - Tree), XGBoost (XGB - Tree), Gradient Boosting
Method (GBM - Tree), Multi-layer Perceptron (NN - Neural
Network). For each of the learners, we use the default pa-
rameters of learners with the scikit-learn version 1.2.2
library [50] and xgboost version 1.7.6 library [51].

D. Evaluating Learners and Features for Defect Prediction

We evaluate the effect of defect prediction features by using
6 learners outlined in Section V on 4 different combinations of
features: (1) process metrics only (Base), (2) process metrics
with textual code metrics (Textual), (3) process metrics with
visual code metrics (Visual), and (4) process metrics with
textual code metrics and visual code metrics (Combined).

Since we train the defect prediction models using the 6
learners for each feature combination, this produces 24 defect
prediction models per project. In total there are 24 defect
prediction models trained for the AAA video game project, and
1,680 defect prediction models for the open source projects
dataset.

We evaluate the performance of each defect prediction
model with 2 lenses on performance: area under the ROC
Curve (AUC) and Matthews correlation coefficient (MCC).
AUC measures the area under the plot of the true positive rate
vs the true negative rate and ranges between 0 and 1, where a 0
indicates that a model is perfectly incorrect, 0.5 indicates that a
model is randomly guessing, while a 1 indicates that a model
is perfectly correct. MCC measures the correlation between
the predicted values and actual values and ranges between -
1 and +1, where -1 indicates no agreement, 0 indicates no
correlation at all, and +1 indicates perfect agreement. AUC is
used for measuring model discriminatory power, while MCC
is used for measuring model correctness.

To rank the defect prediction models, we use the Non-
Parametric ScottKnott ESD (NPSK) test. The NPSK test is a
multiple comparison approach that uses hierarchical clustering
to partition the set of medians of model performance into
statistically distinct ranked groups that are not significantly
different or have an insignificant effect size [52, 53]. We use
the ScottKnottESD R package [54] to perform the test with a
95% significance level. NPSK does not require the assump-
tions of normal distributions, homogeneous distributions, and
the minimum sample size [54].

VI. ANALYSIS

RQ1 motivates the need for incorporating visual code
metrics into defect prediction models. While RQ2 investigates
if visual code metrics can enhance existing code prediction
models, and RQ3 explores if factors other than visual code
metrics can affect the outcomes of defect prediction models.

RQ1. Do defect-inducing commits with visual code occur
more frequently than defect-inducing commits with textual
code in the projects studied?

We refer to textual code as any code with a file extension
that is able to be processed by the Python Lizard library [55]
which contains a subset of the file extensions in Commit
Guru [13]. We refer to visual code as any code that can be
parsed as visual code and contains file extension types related
to the visual programming language at EA for the AAA video
game and Max/MSP for the open source projects dataset.

There are 7 possible file type combinations in commits: (1)
only non-code files, (2) only textual code, (3) only visual code,



All Defect-fixing
0.0

0.2

0.4

0.6

0.8

1.0 Non-Code
Textual
Textual/Non-Code
Textual/Visual
Textual/Visual/Non-Code
Visual
Visual/Non-Code

(a) AAA video game project.

All Defect-fixing
0.0

0.2

0.4

0.6

0.8

1.0 Non-Code
Textual
Textual/Non-Code
Textual/Visual
Textual/Visual/Non-Code
Visual
Visual/Non-Code

(b) Open source projects dataset.

Fig. 3: Percentage of commits containing different file types.

(4) textual code and non-code files, (5) visual code and non-
code files, (6) textual code and visual code, and (7) textual
code, visual code, and non-code files. These are of particular
interest because the previous prediction model for the AAA
video game only considered the textual combinations (1), (2),
(4) meaning that important contextual information about visual
code is missed.

We present a stacked bar chart of the file type combination
distribution for the 26,326 commits of the AAA video game
project in Figure 3a. For all commits, a majority contain only
non-code files (55%). However, with code files, there are more
visual code files present (38%) in commits than textual code
files present (19%) in commits.

To understand what types of defects there are in the AAA
video game project, we use the 5,296 defect-fixing commits
as a proxy for the defects (i.e. a defect-fixing commit will
change at least one defective file, hence it represents at least
one defect by proxy). We visualize the breakdown of the 7
possible file type combinations of defect-fixing commits in
Figure 3a. We can see that there is a larger number of defect-
fixing commits containing visual code (62%) than defect-
fixing commits containing textual code (27%). Therefore,
we can conclude that visual code defects occur more than
textual code defect commits within this project. This motivates
our investigation into incorporating visual code for defect
prediction models.

For the open source projects dataset, we present an aggre-
gated chart of the file type combinations in commits for the
64,246 commits of the 70 projects in Figure 3b. Overall there
are 30% of commits that contain only non-code files, while
51% of commits contain at least one textual code file and 25%
of commits contain at least one visual code file. We also look
at the file types in defect-fixing commits and find that 67%
of commits contain textual code, while only 23% of commits
contain visual code. These ratios are different from those seen
in the AAA video game project.

Seeing that the overall ratios of the open source projects
dataset is different from the AAA video game project, we
also see which of the 70 projects are individually similar to
the breakdown of the AAA video game project where there
are more commits with visual code files than textual code files.
We find that 20 open source projects have more visual code
files than textual files in all commits. While we find that 19
open source projects have more visual code files than textual
files in defect-fixing commits.

Defects are occurring in visual code, so they need to
be addressed.

RQ2. Do visual code features significantly improve the
performance of defect prediction models for textual/visual
code projects?

This RQ is concerned with model performance and the
effect of visual features on model performance. To determine
if visual code features can improve the performance of defect
prediction models, we apply NPSK to the AUC and MCC
results of each defect prediction model grouping by the Base,
Textual, Visual, and Combined feature combinations described
in Section V-D.

We can see the results for the AAA video game project
in Figure 4. In Figure 4a, the Combined and Visual feature
combinations are ranked higher than the Base and Textual
feature combinations for AUC meaning that visual code met-
rics contribute to a statistically significant difference in model
prediction ability for the AAA video game project. We also
can conclude that there is a significant difference in MCC, as
we can see in Figure 4b that the Combined and Visual feature
combinations rank higher than the Base and Textual feature
combinations.



Rank−1 Rank−2

Combined Visual Base Textual

0.80

0.85

0.90

Features

A
U

C

(a) AUC

Rank−1 Rank−2 Rank−3

Combined Visual Textual Base

0.475

0.500

0.525

0.550

Features

M
C

C

(b) MCC

Fig. 4: NPSK rankings of feature groups by AUC and MCC in AAA video game project.

Rank−1 Rank−2

Visual Base Combined Textual
0.00

0.25

0.50

0.75

1.00

Features

A
U

C

(a) AUC

Rank−1 Rank−2

Textual Visual Base Combined
−0.5

0.0

0.5

Features

M
C

C

(b) MCC

Fig. 5: NPSK rankings of feature groups by AUC and MCC in open source projects.

The results of NPSK grouping by feature combinations for
the open source projects can be seen in Figure 5. NPSK is
applied across projects and is used to determine if feature
combinations are a significant factor in the group of projects.
In terms of AUC, we can conclude that visual code feature
combinations can help improve model performance as it ranks
higher than the other feature combinations in Figure 5a. In
terms of MCC, we can conclude using Figure 5b that using
only textual code feature combinations or using only visual
code feature combinations can significantly improve model
performance (MCC). However, when combining textual code
and visual code features together, it will perform only as well
as using no textual code and no visual features at all.

Overall, we conclude that the addition of visual code
features can improve AUC in both the AAA video game
project and the open source projects. We also conclude that
using visual code features can improve MCC for both the AAA
video game project and the open source projects.

Contextual features for visual code improve defect
prediction performance.

RQ3. Do the types of files in commits or choice of
learners in projects significantly affect the outcome of
defect prediction models?

In RQ1, we find that the distribution of visual code files
and textual code files in commits of projects can vary.
Therefore, the first factor we consider is if projects have
more commits containing visual code files or more commits
containing textual code files. The second factor we consider
is the choice of learners to train the defect prediction models
for the Base, Textual, Visual, and Combined combination of
features described in Section V-D.

For the first factor, we split the projects into 2 groups where
the first group consists of 17 projects with more commits con-
taining visual code files than textual code files and the second
group consists of 53 projects with more commits containing
textual code files than visual code files. To determine if there
is any significant difference among distributions of the AUC
and MCC in the 2 groups, we perform the Wilcoxon rank-sum
test (WRST). The null hypothesis for the WRST test is that the
distributions are not significantly different among each other.
We reject the null hypothesis if p < 0.05.

With the distributions of MCC in the 2 groups, we reject



Rank−1 Rank−2 Rank−3 Rank−4

GBM LR NN XGB RF DT

0.80

0.85

0.90

Learners

A
U

C

(a) AUC

Rank−1 Rank−2 Rank−3

GBM XGB LR RF DT NN

0.475

0.500

0.525

0.550

Learners

M
C

C

(b) MCC

Fig. 6: NPSK rankings of learners by AUC and MCC in AAA video game project.

Rank−1 Rank−2 Rank−3

RF LR GBM XGB DT NN
0.00

0.25

0.50

0.75

1.00

Learners

A
U

C

(a) AUC

Rank−1

LR RF DT NN GBM XGB
−0.5

0.0

0.5

Learners

M
C

C

(b) MCC

Fig. 7: NPSK rankings of learners by AUC and MCC in open source projects.

the null hypothesis (p = 0.01 < 0.05) meaning that there
is a difference in a model’s MCC performance among the 2
groups. With the distributions of AUC in the 2 groups, we
do not reject the null hypothesis (p = 0.97 > 0.05) implying
that the performance of models produced in each group do not
significantly differ. However, there is no definitive conclusion
about AUC being affected by majority visual code or majority
textual code. Thus, we only conclude how well a model
performs in terms of MCC can be affected by majority visual
code or majority textual code.

For the second factor, we wish to see if the learners affect
the outcomes of prediction models in terms of AUC and MCC.
We apply NPSK to the MCC and AUC evaluation of each
defect prediction model grouping by learner in Figure 6 for
the AAA video game project and in Figure 7 for the open
source projects. We can see that the GBM (Gradient Boosting
Method) learner model performs the best for both AUC and
MCC in the AAA video game project. In the open source
projects, we see that the RF (Random Forest) model performs
the best for AUC, but the learner does not matter for MCC.
From these results, we can conclude that learners do have a
weak effect on the model prediction outcome, borne out only
in AUC, not MCC.

The types of files in commits, and learner choice matter
for model performance, but perhaps not as much as
contextual features do.

VII. THREATS TO VALIDITY

Internal validity concerns the quality of labelled defective
commits and bug reports used, how the features are chosen
and extracted, and how the model is trained and tested which
can affect the outcomes of our evaluation. To these extents,
we may not have identified all potential defect-fixing commits,
especially in our open source projects where we search commit
messages for perfective keywords. Furthermore, SZZ is imper-
fect [24, 25] meaning that not all defect-inducing commits may
have been identified with our implementations of SZZ.

Construct validity is if our conclusions follow from our
assessments. We provide a rationale for our choice of per-
formance measures and explore how file types in commits,
and learners can affect model prediction outcomes with RQ2.
We make careful use of statistical tools, such as NPSK, that
address issues such as multiple hypothesis testing and non-
parametric distributions.

External validity considers the extent to which the visual
code defect prediction models can be applied to other projects



that use visual programming languages, beyond those we
selected for our evaluation. This validity is limited by the lack
of open source projects with labelled defects that are similar
to the AAA video game project. We attempt to address this
by using more open source projects to explore the generality
of our conclusions for the AAA video game project, but we
are limited to just 2 visual programming languages. External
validity is bolstered by the open release of our replication
package for open source projects [46]

VIII. CONCLUSION

In this paper, we present the use of visual code metrics for
defect prediction to predict if a commit is defect-inducing.
This work is motivated by the prevalent use of visual code to
develop video game features at EA. We demonstrate how the
performance of our current defect prediction models, which
only consider process metrics and textual code metrics, could
be improved by also including visual code metrics. We also
conclude that visual code metrics improve the performance of
defect prediction models for many open source projects.

Future work includes investigating contextual visual code
features such as dataflow, complexity measures, and code
embeddings, to improve visual code defect prediction models.

The results of our research outline how incorporating visual
code metrics into defect prediction models can help benefit
JIT defect prediction at EA. To improve the replicability of
our work, we release a replication package [46] with 70
open source projects that contain visual code and textual code
similar to the AAA video game project studied.

REFERENCES

[1] A. J. Ko, R. Abraham, L. Beckwith, A. Black-
well, M. Burnett, M. Erwig, C. Scaffidi, J. Lawrance,
H. Lieberman, B. Myers et al., “The state of the art in
end-user software engineering,” CSUR, vol. 43, no. 3, pp.
1–44, 2011.

[2] Epic Games, Inc., “Blueprints visual
scripting in unreal engine,” 2023.
[Online]. Available: https://web.archive.org/web/
20230316091606/https://docs.unrealengine.com/5.0/
en-US/blueprints-visual-scripting-in-unreal-engine/

[3] Unity, “Unity visual scripting,” 2021. [Online].
Available: https://web.archive.org/web/20230329001942/
https://unity.com/features/unity-visual-scripting

[4] C. Tantithamthavorn and J. Jiarpakdee, Explainable
AI for Software Engineering. Monash University,
2021, retrieved 2021-05-17. [Online]. Available: http:
//xai4se.github.io/

[5] Y. Kamei, S. Matsumoto, A. Monden, K.-i. Matsumoto,
B. Adams, and A. E. Hassan, “Revisiting common bug
prediction findings using effort-aware models,” in IC-
SME. IEEE, 2010, pp. 1–10.

[6] P. Thongtanunam, S. McIntosh, A. E. Hassan, and
H. Iida, “Revisiting code ownership and its relationship
with software quality in the scope of modern code
review,” in ICSE, 2016, pp. 1039–1050.

[7] Y. Kamei, A. Monden, S. Matsumoto, T. Kakimoto,
and K.-i. Matsumoto, “The effects of over and under
sampling on fault-prone module detection,” in ESEM.
IEEE, 2007, pp. 196–204.

[8] T. Mende and R. Koschke, “Effort-aware defect predic-
tion models,” in CSMR. IEEE, 2010, pp. 107–116.

[9] H. Hata, O. Mizuno, and T. Kikuno, “Bug prediction
based on fine-grained module histories,” in ICSE 2012.
IEEE, 2012, pp. 200–210.

[10] L. Pascarella, F. Palomba, and A. Bacchelli, “On the
performance of method-level bug prediction: A negative
result,” JSS, vol. 161, p. 110493, 2020.

[11] ——, “Fine-grained just-in-time defect prediction,” JSS,
vol. 150, pp. 22–36, 2019.

[12] M. Nayrolles and A. Hamou-Lhadj, “Clever: Combining
code metrics with clone detection for just-in-time fault
prevention and resolution in large industrial projects,” in
MSR, 2018, pp. 153–164.

[13] C. Rosen, B. Grawi, and E. Shihab, “Commit guru:
analytics and risk prediction of software commits,” in
ESEC/FSE, 2015, pp. 966–969.

[14] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan,
A. Mockus, A. Sinha, and N. Ubayashi, “A large-scale
empirical study of just-in-time quality assurance,” TSE,
vol. 39, no. 6, pp. 757–773, 2012.

[15] A. Senchenko, J. Patterson, H. Samuel, and D. Ispir, “Su-
pernova: Automating test selection and defect prevention
in aaa video games using risk based testing and machine
learning,” in ICST. IEEE, 2022, pp. 345–354.

[16] S. Majumder, P. Mody, and T. Menzies, “Revisiting
process versus product metrics: a large scale analysis,”
EMSE, vol. 27, no. 3, p. 60, 2022.

[17] L. Madeyski and M. Jureczko, “Which process metrics
can significantly improve defect prediction models? an
empirical study,” SQJ, vol. 23, pp. 393–422, 2015.

[18] T. Gyimóthy, R. Ferenc, and I. Siket, “Empirical valida-
tion of object-oriented metrics on open source software
for fault prediction,” TSE, vol. 31, no. 10, pp. 897–910,
2005.

[19] L. Kumar, R. Jetley, and A. Sureka, “Source code metrics
for programmable logic controller (plc) ladder diagram
(ld) visual programming language,” in WETSoM. IEEE,
2016, pp. 15–21.

[20] J. Fischer, B. Vogel-Heuser, H. Schneider, N. Langer,
M. Felger, and M. Bengel, “Measuring the overall com-
plexity of graphical and textual iec 61131-3 control
software,” RA-L, vol. 6, no. 3, pp. 5784–5791, 2021.

[21] Y. Zhao, K. Damevski, and H. Chen, “A systematic
survey of just-in-time software defect prediction,” CSUR,
vol. 55, no. 10, pp. 1–35, 2023.

[22] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do
changes induce fixes?” SEN, vol. 30, no. 4, pp. 1–5, 2005.

[23] K. Eng, A. Hindle, and A. Senchenko, “Identifying
defect-inducing changes in visual code,” in ICSME.
IEEE, 2023.

[24] S. Quach, M. Lamothe, B. Adams, Y. Kamei, and

https://web.archive.org/web/20230316091606/https://docs.unrealengine.com/5.0/en-US/blueprints-visual-scripting-in-unreal-engine/
https://web.archive.org/web/20230316091606/https://docs.unrealengine.com/5.0/en-US/blueprints-visual-scripting-in-unreal-engine/
https://web.archive.org/web/20230316091606/https://docs.unrealengine.com/5.0/en-US/blueprints-visual-scripting-in-unreal-engine/
https://web.archive.org/web/20230329001942/https://unity.com/features/unity-visual-scripting
https://web.archive.org/web/20230329001942/https://unity.com/features/unity-visual-scripting
http://xai4se.github.io/
http://xai4se.github.io/


W. Shang, “Evaluating the impact of falsely detected
performance bug-inducing changes in jit models,” EMSE,
vol. 26, pp. 1–32, 2021.

[25] Y. Fan, X. Xia, D. A. Da Costa, D. Lo, A. E. Hassan,
and S. Li, “The impact of mislabeled changes by szz on
just-in-time defect prediction,” TSE, vol. 47, no. 8, pp.
1559–1586, 2019.

[26] Z. Wan, X. Xia, A. E. Hassan, D. Lo, J. Yin, and
X. Yang, “Perceptions, expectations, and challenges in
defect prediction,” TSE, vol. 46, no. 11, pp. 1241–1266,
2018.

[27] Y. Kamei and E. Shihab, “Defect prediction: Accom-
plishments and future challenges,” in SANER, vol. 5.
IEEE, 2016, pp. 33–45.

[28] B. Ghotra, S. McIntosh, and A. E. Hassan, “Revisiting
the impact of classification techniques on the perfor-
mance of defect prediction models,” in ICSE, vol. 1.
IEEE, 2015, pp. 789–800.

[29] S. McIntosh and Y. Kamei, “Are fix-inducing changes a
moving target? a longitudinal case study of just-in-time
defect prediction,” in ICSE, 2018, pp. 560–560.

[30] G. G. Cabral, L. L. Minku, E. Shihab, and S. Mujahid,
“Class imbalance evolution and verification latency in
just-in-time software defect prediction,” in ICSE. IEEE,
2019, pp. 666–676.

[31] G. Rodriguez-Perez, M. Nagappan, and G. Robles,
“Watch out for extrinsic bugs! a case study of their
impact in just-in-time bug prediction models on the
openstack project,” TSE, vol. 48, no. 4, pp. 1400–1416,
2020.

[32] T. Jiang, L. Tan, and S. Kim, “Personalized defect
prediction,” in ASE. IEEE, 2013, pp. 279–289.

[33] X. Yang, H. Yu, G. Fan, K. Shi, and L. Chen, “Local
versus global models for just-in-time software defect
prediction,” Scientific Programming, vol. 2019, 2019.

[34] A. A. Bangash, H. Sahar, A. Hindle, and K. Ali, “On
the time-based conclusion stability of cross-project defect
prediction models,” EMSE, vol. 25, no. 6, pp. 5047–5083,
2020.

[35] J. Yao and M. Shepperd, “Assessing software defection
prediction performance: Why using the matthews corre-
lation coefficient matters,” in EASE, 2020, pp. 120–129.

[36] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell,
“A systematic literature review on fault prediction perfor-
mance in software engineering,” TSE, vol. 38, no. 6, pp.
1276–1304, 2011.

[37] M. T. Ribeiro, S. Singh, and C. Guestrin, “” why should
i trust you?” explaining the predictions of any classifier,”
in KDD. ACM, 2016, pp. 1135–1144.

[38] S. M. Lundberg and S.-I. Lee, “A unified approach to
interpreting model predictions,” NeurIPS, vol. 30, 2017.

[39] C. Pornprasit, C. Tantithamthavorn, J. Jiarpakdee, M. Fu,
and P. Thongtanunam, “Pyexplainer: Explaining the pre-
dictions of just-in-time defect models,” in ASE. IEEE,
2021, pp. 407–418.

[40] S. Kim, T. Zimmermann, K. Pan, E. James Jr et al.,

“Automatic identification of bug-introducing changes,” in
ASE. IEEE, 2006, pp. 81–90.

[41] G. Burlet and A. Hindle, “An empirical study of end-
user programmers in the computer music community,”
in MSR. IEEE, 2015, pp. 292–302.

[42] Y. Ma, C. Bogart, S. Amreen, R. Zaretzki, and
A. Mockus, “World of Code: An Infrastructure for Min-
ing the Universe of Open Source VCS Data,” in MSR.
IEEE, 2019, pp. 143–154.

[43] A. Mockus, D. Spinellis, Z. Kotti, and G. J. Dusing,
“A Complete Set of Related Git Repositories Identified
via Community Detection Approaches Based on Shared
Commits,” MSR, Jun 2020.

[44] N. Shrikanth and T. Menzies, “Assessing the early bird
heuristic (for predicting project quality),” TOSEM, 2023.

[45] D. Spadini, M. Aniche, and A. Bacchelli, PyDriller:
Python Framework for Mining Software Repositories.
ACM, 2018.

[46] K. Eng, A. Hindle, and A. Senchenko, “Replication
Package of ”Predicting Defective Visual Code Changes
in a Multi-Language AAA Video Game Project”,”
Aug. 2023. [Online]. Available: https://doi.org/10.5281/
zenodo.8286531

[47] C. Ni, X. Xia, D. Lo, X. Yang, and A. E. Hassan,
“Just-in-time defect prediction on javascript projects: A
replication study,” TOSEM, vol. 31, no. 4, 2022.

[48] J. Jiarpakdee, C. Tantithamthavorn, and C. Treude, “Au-
tospearman: Automatically mitigating correlated soft-
ware metrics for interpreting defect models,” in ICSME.
IEEE Computer Society, 2018, pp. 92–103.

[49] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P.
Kegelmeyer, “Smote: synthetic minority over-sampling
technique,” JAIR, vol. 16, pp. 321–357, 2002.

[50] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay,
“Scikit-learn: Machine learning in Python,” JMLR,
vol. 12, pp. 2825–2830, 2011.

[51] T. Chen and C. Guestrin, “XGBoost: A scalable
tree boosting system,” in KDD16. New York, NY,
USA: ACM, 2016, pp. 785–794. [Online]. Available:
http://doi.acm.org/10.1145/2939672.2939785

[52] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and
K. Matsumoto, “An empirical comparison of model val-
idation techniques for defect prediction models,” TSE,
vol. 43, no. 1, 2017.

[53] ——, “The impact of automated parameter optimization
for defect prediction models,” TSE, 2018.

[54] ——, “The scottknott effect size difference (esd)
test (version 3.0, the development branch),”
2023. [Online]. Available: https://github.com/klainfo/
ScottKnottESD/tree/development

[55] T. Yin et al., “Lizard,” 2023. [Online]. Available:
https://github.com/terryyin/lizard

https://doi.org/10.5281/zenodo.8286531
https://doi.org/10.5281/zenodo.8286531
http://doi.acm.org/10.1145/2939672.2939785
https://github.com/klainfo/ScottKnottESD/tree/development
https://github.com/klainfo/ScottKnottESD/tree/development
https://github.com/terryyin/lizard

	Introduction
	Background
	Choices in JIT Defect Prediction
	Investigating Visual Code Defect Prediction

	Datasets
	AAA Video Game
	Open Source Max/MSP Visual Code Projects

	Defect Prediction Features
	Process Metric Features
	Textual Code Metric Features
	Visual Code Metric Features

	Building and Evaluating Defect Predictors
	Mitigating Collinearity and Multicollinearity
	Addressing Class Imbalance
	Learners
	Evaluating Learners and Features for Defect Prediction

	Analysis
	Threats to Validity
	Conclusion

