
Cost Reduction on Testing Evolving Cancer
Registry System

Erblin Isaku∗†, Hassan Sartaj∗, Christoph Laaber∗, Tao Yue∗, Shaukat Ali∗‡, Thomas Schwitalla§, and Jan F. Nygård§¶
∗Simula Research Laboratory, Oslo, Norway

{erblin, hassan, laaber, tao, shaukat}@simula.no
†University of Oslo, Oslo, Norway

‡Oslo Metropolitan University, Oslo, Norway
§Cancer Registry of Norway, Oslo, Norway

{thsc, jfn}@kreftregisteret.no
¶UiT The Arctic University of Norway, Tromsø, Norway

Abstract—The Cancer Registration Support System (CaReSS),
built by the Cancer Registry of Norway (CRN), is a complex real-
world socio-technical software system that undergoes continuous
evolution in its implementation. Consequently, continuous testing
of CaReSS with automated testing tools is needed such that its
dependability is always ensured. Towards automated testing of
a key software subsystem of CaReSS, i.e., GURI, we present a
real-world application of an extension to the open-source tool
EvoMaster, which automatically generates test cases with evo-
lutionary algorithms. We named the extension EvoClass, which
enhances EvoMaster with a machine learning classifier to reduce
the overall testing cost. This is imperative since testing with
EvoMaster involves sending many requests to GURI deployed in
different environments, including the production environment,
whose performance and functionality could potentially be af-
fected by many requests. The machine learning classifier of
EvoClass can predict whether a request generated by EvoMaster
will be executed successfully or not; if not, the classifier filters
out such requests, consequently reducing the number of requests
to be executed on GURI. We evaluated EvoClass on ten GURI
versions over four years in three environments: development,
testing, and production. Results showed that EvoClass can signifi-
cantly reduce the testing cost of evolving GURI without reducing
testing effectiveness (measured as rule coverage) across all three
environments, as compared to the default EvoMaster. Overall,
EvoClass achieved ≈31% of overall cost reduction. Finally, we
report our experiences and lessons learned that are equally
valuable for researchers and practitioners.

Index Terms—Software Evolution, Testing, Machine Learning

I. INTRODUCTION

Mandated by the Norwegian government, the Cancer Reg-
istry of Norway (CRN) gathers data about all cancer types
occurring in the Norwegian population and performs tasks
such as producing statistics for policymakers and supporting
research by providing relevant data to researchers and other
stakeholders. Key functionalities of these tasks are supported
by a socio-technical software system named Cancer Regis-
tration Support System (CaReSS). Naturally, CaReSS experi-
ences continuous evolution due to many reasons, including
software updates, changes in legislation, and new medical
standards emerging related to cancers. As a result, CaReSS

shall be tested continuously with automated testing tools to
ensure that, at any given time, it doesn’t produce incorrect
data and statistics.

To perform cost-effective testing of evolving CaReSS, we
present our real-world application together with experiences
of testing ten different versions of a key component of
CaReSS– called GURI. The GURI software system collects
and aggregates heterogeneous data coming to CaReSS, e.g.,
from hospitals and labs. Next, GURI performs validation and
aggregation on data with implemented rules that constantly
change. Our main objective was to reduce the overall cost
of testing GURI by reducing the number of requests that a
testing tool needs to make to GURI, while at the same time
not compromising the testing effectiveness, measured as rule
coverage in our context.

In this work, we rely on a well-known, open-source, AI-
enabled, and system-level testing tool called EvoMaster [1].
EvoMaster automates testing through Representational State
Transfer (REST) Application Programming Interfaces (APIs)
with search algorithms. Since GURI exposes REST APIs, it is
natural for us to select a tool that can automate testing through
REST APIs. Since EvoMaster generates test cases with many
requests to GURI through REST APIs, significantly increasing
interactions with GURI, which thereby incurs significant costs
on test execution and potentially impacts the performance of
GURI. To reduce the costs incurred by many requests, we train
a machine learning (ML) classifier that can predict whether
a particular request is likely to fail during its execution; if
so, the classifier rejects such requests. As a result, EvoMaster
empowered with the ML classifier can focus on successful
requests. This extension to EvoMaster is named EvoClass.

To assess the cost-effectiveness of EvoClass, we tested
ten GURI versions, which were naturally formed over four
years of its evolution under three environments, i.e., devel-
opment, testing, and production. Results show that EvoClass
can significantly reduce testing cost (≈31%) compared to the
default EvoMaster, while not reducing testing effectiveness in
terms of rule coverage. Based on testing GURI, we provide
a set of lessons learned that are valuable for practitioners

1

ar
X

iv
:2

30
9.

17
03

8v
1 

 [
cs

.S
E

] 
 2

9 
Se

p 
20

23



and researchers focusing on testing similar kinds of software
systems.

We organize the paper as follows. The background is
given in Section II; the proposed approach is described in
Section III; empirical evaluation is presented in Section IV;
experiences and lessons learned are discussed in Section V;
the related work section is described in Section VI; and the
paper concludes in Section VII.

II. BACKGROUND

A. Real-World Context and Challenges

The Cancer Registry of Norway (CRN) is a public organiza-
tion gathering data and statistics about cancer patients, e.g., di-
agnostic details, treatment records, and follow-up information.
Such data are made available to various end users, including
researchers, patients, doctors, and healthcare authorities. CRN
has developed an interactive decision support system named
Cancer Registration Support System (CaReSS) to ensure the
accuracy of the data and statistics being released to end
users [2]. CaReSS, as a rule-based system, undergoes continu-
ous evolution as rules (e.g., a cancer diagnosis date cannot be
before the patient’s birth date) are added, modified, or removed
due to new treatments, improved diagnostics, advances in
medical findings, and updated diagnostic standards [3]. One
component of CaReSS, named GURI, automatically validates
and aggregates collected data against the rules implemented in
it, defined by domain experts. Patients’ data (i.e., cancer mes-
sages) are sent to GURI via a web application through REST
APIs. Specifically, we focus on two REST endpoints: the
validation endpoint, which validates cancer messages against
validation rules, and the aggregation endpoint, responsible for
consolidating cancer messages into cancer cases.

Testing GURI is crucial because incorrect or imprecise
statistics can significantly influence research findings and
decisions made by relevant stakeholders such as healthcare
professionals and authorities [2]. One important goal of CRN
is to enable automated, rigorous, and cost-effective testing of
GURI. However, the continuous evolution of GURI, especially
its implemented rule set, makes its testing very challenging.
Moreover, each addition, deletion, or modification of a rule
in a particular version of GURI is addressed in multiple
environments. Initially, these rules are created in GURI’s
development environment. Next, they are moved to the test
environment for testing them through CaReSS. Finally, after
corrections (if any), these rules are moved to the production
environment as a part of CaReSS. Testing each version of
GURI in the three different environments using an automated
testing technique is costly. Thus, this work aims to reduce
the effort in testing GURI in multiple environments and for
different versions using ML techniques.

B. System Level Testing with EvoMaster

EvoMaster [1] is an open-source tool that uses evolutionary
algorithms for supporting system-level testing of enterprise-
level web APIs developed using REST and GraphQL. It
has been continuously developed for over six years with

the addition of new functionalities [4]. It takes web APIs’
schema in OpenAPI specification (OAS) or Swagger format
and generates test cases in Java, Kotlin, and C#. EvoMaster
generates test cases considering multiple objectives, such as
fault detection and code coverage (for white-box testing). It
also supports black-box testing that uses random and multi-
objective search algorithms to optimize various objectives,
e.g., success status codes (2XX).

III. APPROACH

We propose EvoClass, an ML-based approach to enhance
EvoMaster for reducing test execution cost in the context of
testing GURI. The underlying idea is to predict the success
or failure of RESTful API requests generated by EvoMaster
during test generation without actually executing them. With
such prediction, our approach discards requests that are highly
likely to lead to a desired status code (success or failure),
which is not of our interest (i.e., failure in the context of this
paper), thereby leading to reduced test execution cost.

Specifically, we trained and integrated Random Forest–an
ML classifier (selected with an empirical evaluation, details
in Section IV), to classify the generated test cases. Using the
trained ML model, EvoClass only executes requests predicted
to be executed successfully (i.e., 200 status codes). This
approach ensures meaningful responses from HTTP requests,
focusing on testing the core functionality, i.e., validating
cancer messages with validation rules and aggregating cancer
messages into cancer cases with aggregation rules in our
healthcare-specific domain rather than just input validation.

Figure 1 shows our approach’s four components: data
collection (Section III-A), data preprocessing (Section III-B),
model training and optimization (Section III-C), and integra-
tion with EvoMaster (Section III-D). In the data collection
phase 1 , we use EvoMaster as a REST API testing tool to
generate test cases automatically. The two API endpoints that
undergo testing are related to the validation and aggregation
of medical rules implemented in GURI and log all the data
related to requests (e.g., generated inputs) and their respective
responses (e.g., status code). The collected data is then re-
fined 2 through the extraction, transformation, and cleaning
steps to prepare it for further analysis and preprocessing.
Data preprocessing 3 involves techniques such as feature
extraction, construction, selection, and encoding to prepare
the dataset for classification. The next step is about model
training and optimization, where we split the dataset, use
the Random Forest classifier as our model, and optimize its
hyperparameters using the Optuna framework. Finally, we
integrate the trained model into EvoMaster 4 , enabling real-
time prediction and selective execution of requests based on
their predicted success 5 .

A. Data Collection

We use EvoMaster to generate test data, i.e., requests, to
train the ML model. For training, we categorize generated
requests based on the response status code retrieved from

2



Fig. 1. Overview of EvoClass

the HTTP calls by following the RFC 9110 standard [5].
Specifically, a request is successful if the status code is 200,
representing an "OK" response from the server. On the other
hand, requests are categorized as failures if the status code
differs from 200. Typically, requests with 4XX status codes
(client-side errors) and 5XX status codes (server-side errors)
are considered failures. However, in our specific case, we
have not encountered any requests resulting in a 4XX status
code. Instead, we have identified cases where a 302 status
code is returned, which we have determined to be related
to the authorization process. Our investigation also revealed
that EvoMaster triggers the 302 status code response when it
executes requests without authorization headers. This is also
categorized as an unsuccessful call, i.e., a failure.

In this specific scenario (i.e., 302 status code outcomes),
manually adjusting some filtering conditions to exclude these
test cases can be effective. However, it is not straightforward
in cases of 4XX and 5XX status codes due to request body
parameters. For example, filtering such cases requires identi-
fying invalid/malformed requests dependent on query, path,
and body parameters/content. Therefore, the complexity of
identifying all possible invalid combinations/patterns leads to
employing ML in our approach.

We used the following two API endpoints of CaReSS that
are relevant for GURI for input generation based on OpenAPI
Specification (OAS), Swagger [6]. The request method of
both endpoints is POST: a). /api/messages/validation, b).
/api/messages/aggregation. EvoMaster automatically generates
valid and/or invalid inputs for the selected endpoints based
on the respective OAS schema. A valid input is defined
based on the expected requirements of each endpoint, such

as data types (e.g., string) and different constraints (e.g.,
date format). After successfully creating the request consisting
of the endpoint, method, and body parameters, EvoMaster
executes the request and returns a response (including the
status code). We aim to retrieve meaningful responses, which
occur in successful requests (with 200 status code responses),
as shown in Figure 2.

Fig. 2. Response snippet of a successful request

We slightly adapted EvoMaster to log each request/response
after each execution to create a training dataset for the ML
model. To obtain raw data, EvoMaster was running for a
continuous duration of 10 hours in the initial stable version
(v1) of GURI. During this runtime, EvoMaster is unaware of
the difference in the environments (i.e., test, development, and
production) in which GURI is deployed. This is important to
ensure that we learn an ML model that can make predictions
in any given environment.

This comprehensive log file is then refined and prepared in a
suitable format for training the model. The dataset refinement

3



and preparation involve three main steps: data extraction,
transformation, and cleaning:
Data extraction. This step parses objects and strings to extract
relevant information, e.g., the API URL and authorization
status.
Transformation. This step organizes the extracted data struc-
turally by converting nested objects into dictionaries.
Cleaning. This step removes irrelevant or redundant informa-
tion. For instance, the raw data included detailed information
that was only accessible after executing a request, such as
fitness scores or covered targets (EvoMaster-related metrics).
Since we aim to predict a request before executing, these
metrics would not be beneficial as they are not present during
the request generation. The final dataset contains 13,985
records (including status codes). Table I shows the distribution
of the records in the dataset in terms of status codes for both
the validation rule and aggregation rule endpoints.

TABLE I
DISTRIBUTION OF THE RECORDS IN THE DATASET ACROSS THREE STATUS

CODE TYPES AND TWO ENDPOINT TYPES

Status Code Rule Endpoint

Aggregation Validation

200 26.73% 33.32%
500 20.51% 14.65%
302 2.31% 2.48%

Total 49.55% 50.45%

B. Data Preprocessing

We applied several preprocessing techniques to ensure the
data’s consistency and suitability for training the ML classifier,
which are described below:

1) Feature extraction: This step selects relevant informa-
tion from the data and represents it in a way that captures
important patterns or characteristics.
Converting the target variable: We convert the original target
variable (i.e., status code), into a binary classification problem.
We assign a value of "1" to successful requests (i.e., a 200
status code) and "0" to all other cases (i.e., 302 and 500 status
codes). As a result, the target variable is in a binary format,
thereby suitable for binary classification.
Decomposing categorical attributes: We decompose cate-
gorical variables into binary features. For example, in our
case, we have a feature related to authentication (Auth). The
"Auth" feature is decomposed into a new binary feature called
"is_no_auth". This new feature takes the value "1" if the
authentication is missing and "0" otherwise. As a result, we
expose more information to the model in a format that is easier
to process.
Decomposing a date-time: Date-time attributes are rich
in structure and have relationships with other attributes.
In this case, the date-time attribute, such as "cancer-
Case.diagnosedato", is decomposed into binary fea-
tures using regular expressions. These binary features indicate
whether the date has a valid format or not. A value of "1"

is assigned if the format is valid, and "0" otherwise. This
decomposition simplifies the attribute and allows the model
to focus on the validity aspect rather than the specific date-
time values.

2) Feature construction: We created "cancerMes-
sagesNr" and "cancerTypesNr" as new features to
quantify the number of cancer messages and their types. By
counting the occurrences of cancer messages and their types,
these new features provide additional information about the
presence or frequency of cancer-related data to assist the model
in recognizing patterns between cancer types and messages
that can lead to faulty requests.

3) Feature selection: To determine the relevance of each
feature in our dataset, we utilized impurity-based feature
importance [7] from scikit-learn [8]. We wanted to evaluate the
importance of the newly created features. Thus, we computed
and examined the feature importance scores during model
training. The feature selection process is performed iteratively
within the training phase, meaning that an irrelevant feature
will be dropped, and model training will continue with the
updated feature set. Interestingly, we found that the "Method
Type" feature had an importance score of 0, indicating that
it is irrelevant to our task. Therefore, the "Method Type"
feature was excluded from the dataset. This step allowed us to
streamline our feature set and focus on the more informative
features of our classifier model.

4) Feature/Data Encoding: In this step, we applied label
encoding from scikit-learn [8] to transform certain qualita-
tive input variables (e.g., user, cancer type, and environment)
into numerical representations. This ensures that our model
can effectively process and interpret the data.

We use label encoding instead of other techniques, e.g., one-
hot encoding, due to the specific characteristic of our dataset,
i.e., the predominance of qualitative variables. Another reason
for using label encoding is the feasibility of model evaluation
since we can avoid the issue of missing features during model
evaluation. For instance, variable "Cancer Type" represents
different types of cancers, such as "Breast Cancer," "Lung
Cancer," "Prostate Cancer," and "Colon Cancer". By using
label encoding, we assign numerical labels to each category
(e.g., 0 for Breast Cancer, 1 for Lung Cancer, 2 for Prostate
Cancer, and 3 for Colon Cancer) instead of creating a new
feature (in the case of one-hot encoding).

C. Training and Optimization

This step trains and optimizes the ML model. The dataset,
represented by the feature matrix X and target variable Y, was
split into training and testing sets of 80% and 20%, respec-
tively. We employed the Random Forest Classifier
as our model, selected based on a pilot experiment (results
shown in Figure 4 and Table IV), and used the scikit-learn
library to fit the model to the training data.

To optimize the hyperparameters, we used the Optuna
framework. We defined a set of parameters to search
over, including the number of estimators, maximum depth,
minimum samples split, minimum samples leaf, and

4



maximum features. Optuna systematically searched these
parameter combinations to find the configuration that achieved
the highest accuracy. The optimal parameters determined
by Optuna were as follows: n_estimators=100,
max_features=None, min_samples_split=2,
min_samples_leaf=10, and max_depth=10. These
optimized parameters were used to train the model.

D. Integration into EvoMaster

The trained ML was serialized and stored using the pickle
library [9] followed by integrating it into EvoMaster with
the following method. The method communicates with the
ML model by sending data requests (e.g., the generated data
body) and awaiting the model’s prediction. The corresponding
request would be executed if the prediction indicated a suc-
cessful status code. Otherwise, the request is removed from
further processing. An example of such requests (i.e., test
cases) is shown in Figure 3. The method involves iterating over
the actions of an individual request generated by EvoMaster.
Each action is formatted into a JSON object and passed as
input to a Python script through a subprocess. The subprocess
is executed using the ProcessBuilder class, facilitating
the interaction between the Java and Python scripts. With
this integration, we used the trained model for real-time
prediction and decision-making, ensuring the execution of only
successful requests, as predicted by the model.

Fig. 3. A test case generated by EvoMaster leading to a 500 status code

IV. EVALUATION

We describe research questions, subject application, evalu-
ation setup, execution, metrics, and discussion.

A. Research Questions

• RQ0: Which ML model performs the best for the classifi-
cation task of EvoClass? We aim to find the most suitable
ML model to be integrated into EvoClass. We experimented
with four commonly used classifiers that can be efficiently

trained without requiring a large amount of data: Ran-
dom Forest, Logistic Regression, KNeighborsClassifier, and
GaussianNB.

• RQ1: How effectively does EvoClass reduce the testing
cost? We study whether the ML model effectively filters out
possibly failing requests. Since we have ten GURI versions
deployed on three different environments, we also check
whether EvoClass can obtain consistent performance across
the versions and environments.

• RQ2: How much rule coverage is achieved by EvoClass
compared to the baseline? We aim to know whether Evo-
Class can achieve comparable rule coverage as the default
EvoMaster.

B. Subject Application

GURI is the subject application provided by our collaborator
CRN (Section II-A). We selected 10 GURI versions running
in the development, test, and production environments. GURI
has a total of 32 REST APIs corresponding to different func-
tionalities. Only two REST APIs are related to validation and
aggregation rules, which we used. This setting is in line with
our previous work [10]. Table II shows each GURI version’s
time stamp and the number of validation and aggregation rules.
The first version v1 contains 30 validation and 32 aggregation
rules. After the evolution of the rule set over four years, the
recent version v10 has, in total, 70 validation rules and 43
aggregation rules.

TABLE II
DESCRIPTIVE STATISTICS OF THE RULE SET’S 10 VERSIONS [10]

Version Date Validation Aggregation

v1 12/2017 30 32
v2 05/2018 31 33
v3 02/2019 48 35
v4 08/2019 49 35
v5 11/2019 53 37
v6 09/2020 56 37
v7 11/2020 66 38
v8 04/2021 69 43
v9 01/2022 69 43
v10 01/2022 70 43

The rule evolution occurs in both versions and environ-
ments. It includes creating and refining rules in the de-
velopment environment, testing and modifying them in the
test environment, and deploying the validated rules in the
production environment. While most modifications are partial
(e.g., additional constraints), there are cases where rules are
fully deleted or newly introduced. These iterative processes
ensure continuous improvement and accuracy of the rule
set in GURI. Table III illustrates that rules commonly un-
dergo various change types (i.e., deletion, modification, and
insertion). For rule R03, which applies to validate cancer
messages related to breast cancer, a new condition such as
Ekstalokalisasjon != ’7777’ is introduced to the
test environment. However, for the same rule, in the production
environment, this constraint is removed, implying that any

5



TABLE III
EXAMPLES OF THE RULE EVOLUTION ACROSS ENVIRONMENTS

Environment Rule Nr. Cancer Type Validation Rule Modification Type

(Topografi ->startswith (’50’) and Ekstralokalisasjon!= ’7777’)
Test R03 Breast

implies Metastase in [’0’, ’A’, ’B’, ’C’, ’D’, ’9’]
Topografi ->startswith (’50’)

Prod R03 Breast
implies Metastase in [’0’, ’A’, ’B’, ’C’, ’D’, ’9’]

Delete

(Meldingstype = ’K’ and Topografi notIn [’481’,’482’,’570’, ’579’]
Dev R40 All

and Topografi->substring(1,2) notIn[’51’, ’52’,’53’, ’54’, ’55’, ’56’, ’61’]) implies Metastase != ’5’
(Meldingstype = ’K’ and Topografi notIn [’481’, ’482’, ’488’, ’570’, ’569’, ’579’, ’619’]

Prod R40 All
and Topografi->substring(1,2) notIn[’51’, ’52’, ’53’, ’54’, ’55’]) implies Metastase != ’5’

Modify

value for variable Ekstalokalisasjon received from cancer mes-
sages is acceptable (i.e., being validated to be true). Similarly,
for the other example (R40), which applies to all cancer types,
we can observe modifications across the environments.

C. Evaluation Setup, Execution, and Metrics

Setup. We trained the ML model using a dataset collected
by running EvoMaster on the first version of GURI for ten
hours to collect training data (Section III-A). We use 80% data
for training and 20% for validation/testing according to the
commonly adapted 80-20 split. We select the Random Forest
classifier for training the ML model based on the results of a
pilot experiment (see details in Section IV-D1).

We compare our approach to EvoMaster in black-box
mode [11] as the baseline, as Laaber et al. [10] showed
that, in the context of the CRN and GURI, EvoMaster in
black-box mode performs on-par in terms of coverage and
fault detection and is superior regarding rule coverage when
compared to EvoMaster in white-box mode. We configure
GURI’s ten versions in three different environments, i.e.,
development, test, and production environment. We repeat
each configuration of our experiment 30 times which is recom-
mended for experiments with inherent randomness [12]. We
specified one hour time bound for each repetition, which is a
common practice [13]. The overall computation time required
for our experiment is 2 (approaches) * 3 (environments) * 10
(versions) * 30 (repetitions) * 1 (hour) = 1800 hours (75 days)
if run sequentially.

Execution. We executed experiments on a high-
performance computing cluster named Experimental
Infrastructure for Exploration of Exascale Computing1

(eX3) provided by Simula Research Laboratory. Our
experiment utilized eight nodes of the eX3 cluster running on
the Ubuntu operating system. All nodes have 2 GB of RAM,
4 TB GB local NVMe scratch storage, and four different
types of processors, including 32-core AMD EPYC™ 7601,
64-core AMD EPYC™ 7763, 24-core AMD EPYC™ 7413,
and 24-core Intel® Xeon® Platinum 8168. The eX3 cluster
uses Slurm2 for resources management.

Metrics and Statistical Tests. For RQ0, in addition to using
Receiver Operating Characteristics (ROC) curve and Area

1https://www.ex3.simula.no/
2https://slurm.schedmd.com/

Under Curve (AUC), we measure accuracy, precision, recall,
and F1-score, which are commonly used metrics for evaluating
ML model performance. To analyze results for RQ1, we also
calculate accuracy, precision, recall, and F1-score. In addition,
we introduce the metric of cost reduction, which is with the
formula below:

CostReduction = ((TotalRequests− ExecutedRequests)

/TotalRequests) ∗ 100

For RQ2, we measure the total rule hits (TotalHits), applied or
not applied rules (Applied or NotApplied), and their percentage
rule coverages. A rule hit refers to a rule execution, which
can be either applied or not applied. An applied rule refers
to a fully executed (at least one time) rule. A not-applied
rule relates to the partial execution of a rule which means
a particular input (e.g., diagnose date), related to cancer
messages, cannot be validated. A typical rule message, in this
case, would be "This rule is not used because of diagnose
date". This is a common case with validation rules (Figure 2).
The applied and not applied rule coverages are calculated as:

Coverage(Applied) = (Applied/TotalHits) ∗ 100

Coverage(NotApplied) = (NotApplied/TotalHits) ∗ 100

The rule coverage calculations reflect our perspective on the
importance of rule execution. Specifically, we intend to empha-
size the effectiveness of the generated test cases, where both
applied and not applied rules are considered. The coverage
metrics capture the proportion of applied (or not applied) rules
relative to all rule hits (i.e., executed rules), but they do not
account for never executed rules.

To reduce the effect of the randomness of the ML model
of our approach and EvoMaster on the results, we repeated
each experiment 30 times and performed statistical testing
to check the significance of each difference between our
approach and the default EvoMaster. We used the Mann-
Whitney test as recommended in [12]. In addition, we relied
on Vargha-Delaney’s Â12 to estimate the effect size (values
of which range from 0 to 1) of the difference between the
two approaches. A higher Â12 value (> 0.5) indicates our
approach has a higher chance of yielding better results than
the default EvoMaster, and vice versa.

6



D. Results and Discussion

In the following section, we present the results and analyses
of our evaluation corresponding to each RQ.

1) RQ0 Results: Figure 4 shows the performance results of
the four classifiers as ROC and AUC. As shown in the figure,
Random Forest performs better than Logistic Regression, K-
Nearest Neighbors (KNN), and Gaussian Naive Bayes, as
Random Forest achieves the highest AUC value, i.e., 97.86%.
Table IV summarizes each classifier’s performance in terms of
accuracy, precision, recall, and F1-score. Table IV shows that
Random Forest achieved the highest accuracy, i.e., 95.40%,
which is at least 10% higher than all the other three classi-
fiers. Similarly, Random Forest outperforms the other three
classifiers regarding precision, recall, and F1-score.

Fig. 4. Performance comparison of the classifiers in ROC and AUC scores

Notably, KNN demonstrates the weakest performance,
which is due to the curse of dimensionality affecting its
performance in high-dimensional spaces [14]. Based on these
results, we opted for Random Forest and integrated it into
EvoClass for conducting other experiments for answering RQ1
and RQ2.

TABLE IV
PERFORMANCE COMPARISON OF THE CLASSIFIERS IN ACCURACY,

PRECISION, RECALL, AND F1-SCORE

Classifier Accuracy Precision Recall F1-Score

Random Forest 95.40% 96.38% 94.20% 95.05%
Logistic Regression 84.20% 85.39% 81.71% 82.77%
KNeighborsClassifier 53.40% 49.78% 49.80% 48.46%
GaussianNB 75.20% 78.24% 78.32% 75.22%

RQ0 Summary: Random Forest demonstrated superior
performance across all metrics as compared to the other
three classifiers. Notably, it achieved the highest AUC
(97.86%) in the ROC analysis.

2) RQ1 Results: Table V summarizes the results for each
rule version under each environment. These results include
the total number of generated requests (column Total Req.),
the total number of actually executed requests that are also
predicted by our ML model to be successfully executed
(Column Pred. Success), the number of non-executed requests
that have been filtered out by approach (column Pred. Failure),
and the number of executed requests that resulted in failures
but predicted being successful (i.e., false positives, see column
Pred. Success (F)). In addition, we report results of accuracy,
precision, recall, F1-score, and cost reduction.

It can be observed that the overall cost reduction for all
three environments and for all 10 versions is ≈31%. This
result implies that EvoClass performs consistently well across
the rule versions and across the different environments. In
addition, a 31% cost reduction is significant. For instance, for
v1, EvoClass managed to save cost by avoiding the execution
of 14807 requests. The accuracy of EvoClass (≈91%) is
stable across the environments and versions, implying that the
performance of EvoClass does not degrade with the evolving
versions in each environment. The overall precision and F1-
score values are close to 87% and 93%, respectively. The recall
values are 100% in all cases, telling us that EvoClass did not
produce any false negatives, which is important to our context
as a false negative implies not executing a request which
might lead to the successful execution of a request. The result
also indicates that EvoClass’s performance is stable despite
rule changes across the rule versions. This is because their
fundamental characteristics (e.g., data models and variables)
remain relatively the same throughout the evolution of the rule
set, often with only minor modifications.

RQ1 Summary: EvoClass has shown consistent and
significant cost reduction across different GURI ver-
sions and environments. The average cost reduction
achieved is approximately 31%.

3) RQ2 Results: Table VI presents the results of the com-
parison between EvoClass and the default EvoMaster (EM),
in terms of the number of generated and executed requests,
the total number of rule hits, the number of applied/not
applied rules, and the coverage of applied/not applied rules.
First, when looking at the total number of generated and
executed requests, as already reported in RQ1, with EvoClass,
fewer requests were executed for each version under each
environment when compared with the default EvoMaster;
consequently, the overall cost is reduced. In terms of rule
hits (i.e., the number of rules invoked in each request),
which are positively correlated with the number of executed
requests (with Pearson’s correlation coefficients being 0.15 for
the default EvoMaster and 0.30 for EvoClass, respectively),
obviously, the default EvoMaster achieved high numbers of
rule hits for all the versions and under all the environments
as it generated and executed more requests. Considering that
the number of rules increases from v1 to v10 (Table II), as

7



expected, the number of rule hits also increases. For instance,
rule hits increase from 533998 (v1) to 742003 (v10) under the
development environment.

Based on the execution results of the requests, we count
the number of rules that are applied at least once and also
fully executed (i.e., Rule Applied), the number of validation
rules that are partially executed as the condition part of such a
rule is checked to be false (i.e., Rule NotApplied). Notice that
aggregation rules do not involve the Rule NotApplied case. As
shown in Table VI, due to more requests leading to more rule
hits, the default EvoMaster achieved higher numbers of Rule
Applied and Rule NotApplied instances for all the versions
and across all the environments. However, when looking at the
coverages of the Rule Applied and Rule NotApplied instances,
EvoClass performed very similarly to the default EvoMaster.
This shows that our approach with a reduced number of
requests can achieve the same level of coverage as EvoMaster.
Interestingly, one can also observe that when evolving from
v1 to v10, the coverage of Rule Applied decreases, and the
coverage of Rule NotApplied increases. This is because the
number and complexity of rules, especially validation rules,
increased during the evolution from v1 to v10, as shown in
Table II.

We also performed the Wilcoxon signed-rank test to check
whether there exists a statistically significant difference be-
tween the default EvoMaster and EvoClass in terms of the
rule coverage. Results showed that the p-values are greater
than 0.05, and Â12 are around 0.5 for all cases. This indicates
that there is insufficient evidence to conclude that there is a
significant difference between the two approaches in terms of
rule coverage.

RQ2 Summary: In terms of rule hits, the default Evo-
Master outperformed EvoClass due to generating and
executing a higher number of requests. However, results
show that EvoClass can achieve the same rule coverage
as the default EvoMaster with fewer executions.

E. Threats to Validity

Following, we discuss threats to the validity commonly
reported in software engineering experiments [15]. To reduce
threats to the external validity, we used a real-world software
application with ten versions that naturally evolved over four
years of the operation of GURI, and deployed them under three
environments. However, similar to many empirical software
engineering studies, our results may not be generalizable to
other application contexts, a common threat to the external
validity [16]. To minimize threats to the internal validity,
we set up our experiment by following standard practices
and recommended guidelines. Initially, we performed a pilot
experiment to select a suitable ML classifier. We used a
popular framework Optuna for hyperparameter tuning [17]. We
used the default/recommended parameters settings of EvoMas-
ter [1]. For the experiment setting, we set the number of repeti-
tions to 30 and a one-hour fixed time budget for each run [12],

[13]. To handle threats to the construct validity, we repeated
our experiment 30 times to lower the effect of randomness.
We analyzed experiment results using commonly used metrics
(e.g., accuracy, precision). We compared EvoClass with the
default EvoMaster with the same set of metrics. In addition,
we used the Mann-Whitney test and Vargha-Delaney’s Â12

effect size when comparing the two approaches, by following
recommended guidelines [12], which reduces threats to the
conclusion validity.

V. EXPERIENCES AND LESSONS LEARNED

Generalizability: Even though we extended EvoMas-
ter with an ML classifier, such a classifier can be inte-
grated into other REST API-based tools (e.g., RESTest [18],
RESTler [19], and RestTestGen [20]). As a result, testing
cost reduction can be achieved together with testing strategies
implemented by these tools, such as Adaptive Random Test-
ing and Constraint-based Testing. Moreover, in our context,
Random Forest showed the best results. Other classifiers may
be better in other contexts, which can be integrated into
EvoMaster and other classifiers in the future.

For now, we experimented with one sub-system of CaReSS,
i.e., GURI. Our experiment results show that we save around
30% of the testing cost by simply introducing an ML clas-
sifier. This result is very encouraging. Therefore, as the next
step, we will perform additional experiments with other sub-
systems of CaReSS and also CaReSS as a whole. Naturally,
the implementation of EvoClass can be reused for extended
experiments. Based on the encouraging results of the current
experiments, we expect that at least a similar testing effort can
be saved. Furthermore, a large-scale empirical study will be
needed to see whether Random Forrest performs best when
testing other sub-systems. Additionally, this empirical study
could provide valuable insights into the impact of various
factors such as dataset size, preprocessing steps, and hyper-
parameter tuning that would most likely change alongside the
selected classifier.

EvoClass also holds the potential for broader applicability,
extending beyond its current application domain; while our
experiments were centered on GURI within the CaReSS
system, the method’s core principles can be utilized in testing
REST APIs in other domains, e.g., healthcare IoT [21]. The
applicability of our method requires configuring application-
specific details, such as OAS schema and data pre-processing.

Test case and dataset quality: Many studies emphasize the
importance of collecting high-quality and diverse datasets to
train machine learning models effectively [22]–[24]. A com-
prehensive dataset in terms of API requests and responses from
various scenarios (i.e., test cases) ensures better performance
of the ML model. However, this becomes a challenge when we
look at existing testing tools’ limitations (e.g., generation of
pseudo-random inputs and inter-parameter dependencies) [11],
[25]. These tools lack the capability to generate domain-
specific data, e.g., medical data, which limits the availability of
diverse and representative test cases. In our work, we address
this challenge by leveraging synthetic data, which, though

8



TABLE V
RESULTS OF COST REDUCTION OF OUR APPROACH AND ITS’ CLASSIFIER’S PERFORMANCE ACROSS THE VERSIONS AND ENVIRONMENTS

Environment V(i) Total Req. Pred. Succes Pred. Failure Pred. Succ (Failure) Accuracy Precision Recall F1-Score Cost Reduction (%)

Dev

v1 47,471 32,664 14,807 4,137 91.28% 87.33% 100% 93.23% 31.19%
v2 48,323 33,432 14,891 4,295 91.11% 87.15% 100% 93.13% 30.82%
v3 47,508 32,753 14,755 4,395 90.75% 86.58% 100% 92.80% 31.06%
v4 47,020 32,533 14,487 43 14 90.83% 86.73% 100% 92.90% 30.81%
v5 37,078 25,577 11,501 3,307 91.08% 87.07% 100% 93.08% 31.02%
v6 39,953 27,378 12,575 3,614 90.95% 86.79% 100% 92.93% 31.47%
v7 32,031 21,983 10,048 2,917 90.89% 86.73% 100% 92.90% 31.37%
v8 32,108 22,255 9,853 2,806 91.26% 87.39% 100% 93.27% 30.69%
v9 33,866 23,303 10,563 3,078 90.91% 86.79% 100% 92.92% 31.19%
v10 35,138 24,217 10,921 3,105 91.16% 87.17% 100% 93.15% 31.08%

Test

v1 48,290 33,173 15,117 4,338 91.02% 86.92% 100% 93.02% 31.30%
v2 47,854 32,932 14,922 4,255 91.11% 87.11% 100% 92.96% 31.18%
v3 44,010 30,239 13,771 3,945 91.03% 86.96% 100% 93.38% 31.29%
v4 41,231 28,382 12,849 3,635 91.18% 87.19% 100% 92.29% 31.17%
v5 55,488 38,164 17,324 4,940 91.09% 87.19% 100% 92.29% 31.22%
v6 45,569 31,551 14,018 4,080 91.04% 87.01% 100% 93.22% 30.76%
v7 55,287 37,914 17,373 4,936 91.07% 87.12% 100% 92.40% 31.42%
v8 54,149 37,302 16,847 4,896 91.78% 86.51% 100% 93.07% 31.11%
v9 43,884 30,228 13,655 4,004 91.87% 86.78% 100% 93.37% 31.12%
v10 53,261 36,693 16,568 4,801 90.98% 86.92% 100% 93.35% 31.10%

Prod

v1 41,211 28,411 12,800 3,730 90.95% 86.87% 100% 92.97% 31.05%
v2 33,584 23,169 10,415 3,021 91.00% 86.96% 100% 93.02% 31.00%
v3 43,137 29,870 13,267 3,797 91.20% 87.29% 100% 93.21% 30.75%
v4 33,370 22,930 10,440 2,989 91.05% 86.96% 100% 93.02% 31.28%
v5 38,077 26,192 11,885 3,444 90.95% 86.85% 100% 92.96% 31.21%
v6 37,938 26,184 11,754 3,469 90.85% 86.75% 100% 92.90% 30.98%
v7 35,500 24,545 10,955 3,151 91.12% 87.16% 100% 93.14% 30.85%
v8 32,412 22,330 10,082 2,989 90.77% 86.61% 100% 92.82% 31.11%
v9 36,148 24,946 11,202 3,255 91.00% 86.95% 100% 93.02% 30.98%
v10 39,047 26,913 12,134 3,462 91.13% 87.13% 100% 93.12% 31.07%

not reflecting real-world scenarios, provides an alternative for
training ML models when domain-specific data is unavailable.
In our case, it was impossible to get real data due to the
legislation of the General Data Protection Regulation (GDPR)
from the European Union; therefore, we had to generate data
for ML training ourselves. As a result, how to train ML models
when real datasets contain personal data and are restricted by
GDPR is an interesting area of research.

Balancing testing cost and effectiveness: ML-based ap-
proaches can provide significant savings in testing costs, but
it is as much of important to strike a balance between cost
reduction and maintaining the effectiveness of the testing
process. In our case, the effectiveness is measured by the
rule coverage, and the results show that we are maintaining
similar effectiveness as default EvoMaster while reducing
costs. In this regard, finding and optimizing the trade-off
between false positives and false negatives are valuable lessons
learned in this study. False positives occur when the model
incorrectly predicts a successful API request as positive, while
false negatives happen when the model wrongly predicts an
unsuccessful request as negative. These occurrences affect
precision and recall scores, as shown in Table V.

Maintainability: There are several dimensions of maintain-
ability. First, EvoClass can be adapted and integrated into
other existing REST API-based testing tools. However, it

is important to acknowledge that these tools are prone to
continuous updates and changes which would require careful
consideration in terms of compatibility and usability. Second,
for the subject application, specifically, REST APIs under
test, if changes in the respective OAS schema are of major
importance, they need to be addressed accordingly in the
approach, following each phase as shown in Figure 1. Finally,
after a certain period of time, the trained ML model would
need an update. To this end, approaches such as transfer
learning can be considered to update the ML model [26].

VI. RELATED WORK

With the widespread deployment and usage of web APIs
based applications, testing them to ensure their quality thor-
oughly is crucial. As a result, numerous automated techniques
and tools have emerged in recent years for testing REST APIs
such as EvoMaster [1], [4], [27], RESTest [18], RESTler [19],
RestTestGen [20], [28], bBOXRT [29], Schemathesis [30],
Dredd3, Tcases4, and APIFuzzer5. Several empirical studies
have also been performed, providing deeper insights (e.g., cov-
erage, performance, and fault detection) into the strengths and
limitations of the aforementioned automated testing tools [13],

3https://github.com/apiaryio/dredd/
4https://github.com/Cornutum/tcases/tree/master/tcases-openapi/
5https://github.com/KissPeter/APIFuzzer/

9



TABLE VI
APPROACH COMPARISON BASED ON RULE HITS AND COVERAGE ACROSS VERSIONS AND ENVIRONMENTS

Env. V(i) Requests Rule Hits Rule Applied Rule Not Applied Coverage Applied Coverage Not Applied

Our App. EM Our App. EM Our App. EM Our App. EM Our App. EM Our App. EM

Dev

v1 32,664 93,558 533,998 1,053,641 77,259 158,134 456,739 895,507 14.47% 15.01% 85.53% 84.99%
v2 33,432 78,773 561,721 894,402 82,266 118,778 479,455 775,624 14.65% 13.28% 85.35% 86.72%
v3 32,753 63,159 741,482 995,216 85,075 110,074 656,407 885,142 11.47% 11.06% 88.53% 88.94%
v4 32,533 72,354 738,539 1,150,109 82,132 129,862 656,407 1,020,247 11.12% 11.29% 88.88% 88.71%
v5 25,577 44,874 637,463 773,199 64,888 81,775 572,575 691,424 10.18% 10.58% 89.82% 89.42%
v6 27,378 79,899 687,797 1,397,483 69,933 141,945 617,864 1,255,538 10.17% 10.16% 89.83% 89.84%
v7 21,983 84,855 648,377 1,748,928 55,051 154,161 593,326 1,594,767 8.49% 8.81% 91.51% 91.19%
v8 22,255 49,498 679,334 1,012,832 55,650 86,739 623,684 926,093 8.19% 8.56% 91.81% 91.44%
v9 23,303 51,187 716,937 1,050,210 58,092 89,670 658,845 960,540 8.10% 8.54% 91.90% 91.46%
v10 24,217 43,823 742,003 933,208 61,241 73,042 680,762 860,166 8.25% 7.83% 91.75% 92.17%

Test

v1 33,173 89,896 336,318 628,806 74,133 135,978 262,185 492,828 22.04% 21.62% 77.96% 78.38%
v2 32,932 95,042 348,270 694,370 75,678 151,389 272,589 544,981 21.73% 21.81% 78.27% 78.19%
v3 30,239 88,576 472,119 928,909 70,034 145,070 402,085 783,839 14.83% 15.97% 85.17% 84.03%
v4 28,382 80,103 438,736 841,575 66,337 130,867 372,399 710,708 15.15% 15.55% 84.85% 84.45%
v5 38,164 78,392 639,976 889,586 89,512 130,082 550,464 759,504 13.98% 14.62% 86.02% 85.38%
v6 31,551 91,252 550,913 1,088,872 76,208 151,298 474,705 937,574 13.83% 13.89% 86.17% 86.11%
v7 37,914 78,168 812,660 1,135,834 86,802 128,884 725,858 1,006,950 10.68% 11.34% 89.32% 88.66%
v8 37,302 76,436 805,472 1,150,039 92,333 124,791 713,139 1,025,248 11.46% 10.85% 88.54% 89.15%
v9 30,228 93,807 662,471 1,411,984 73,626 152,027 588,845 1,259,957 11.11% 10.76% 88.89% 89.24%
v10 36,693 91,002 814,143 1,378,728 88,676 145,903 725,467 1,232,825 10.89% 10.58% 89.11% 89.42%

Prod

v1 28,411 93,972 285,966 661,030 64,118 145,123 221,848 515,907 22.42% 21.95% 77.58% 78.05%
v2 23,169 85,055 250,632 623,840 53,848 134,858 196,784 488,982 21.48% 21.62% 78.52% 78.38%
v3 29,870 86,166 443,170 902,315 71,304 138,218 371,866 764,097 16.09% 15.32% 83.91% 84.68%
v4 22,930 96,528 340,201 1,019,712 51,914 154,461 288,287 865,251 15.26% 15.15% 84.74% 84.85%
v5 26,192 81,454 437,591 930,347 61,894 131,708 375,697 798,639 14.14% 14.16% 85.86% 85.84%
v6 26,184 92,862 468,305 1,126,310 62,771 153,969 405,534 972,341 13.40% 13.67% 86.60% 86.33%
v7 24,545 94,657 527,147 1,363,694 60,764 154,658 466,383 1,209,036 11.53% 11.34% 88.47% 88.66%
v8 22,330 66,891 508,787 985,497 53,359 110,392 455,428 875,105 10.49% 11.20% 89.51% 88.80%
v9 24,946 90,913 551,355 1,372,616 59,557 149,276 491,798 1,223,340 10.80% 10.88% 89.20% 89.12%
v10 26,913 69,905 608,506 1,060,819 62,900 113,411 545,606 947,408 10.34% 10.69% 89.66% 89.31%

[30], [31]. Despite of these insights, EvoClass, even though
presented as an extension of EvoMaster, can seamlessly be
integrated with any other REST API-based tool.

Automated testing techniques for RESTful APIs primarily
rely on black-box testing, generating test inputs randomly
from the API specification. However, these approaches often
generate considerable "invalid" inputs, leading to unsuccessful
HTTP calls. Consequently, these randomly generated inputs
fail to simulate real-world scenarios accurately. Additionally,
the existing literature overlooks the testing of REST API
functionalities beyond input validity, neglecting the evaluation
of meaningful responses, i.e., successful requests [32]–[34].
Hence, there is a clear need to enhance these testing techniques
to overcome these limitations and ensure more comprehensive
and realistic testing of RESTful APIs. Notably, our proposed
approach (EvoClass) focuses on reducing the costs associated
with unsuccessful HTTP calls, further optimizing the testing
process.

One of the most relevant works is the study conducted by
Mirabella et al. [35]. While their work shares a common goal
of leveraging ML techniques for API testing, there are notable
differences between their approach and ours. Mirabella et al.
focused on predicting the validity of test inputs by employing
a deep learning-based approach to predict whether test inputs

satisfy all input constraints. In contrast, we focus on predicting
the success or failure of API requests generated by testing
tools, considering test inputs as a whole, and encompassing
the entire request-response cycle. By predicting the status
codes associated with API responses, our approach reduces
the number of requests to be executed while maintaining the
same effectiveness of the API functionality under test.

VII. CONCLUSION

This work focused on devising a solution for testing a
real-world evolving application, i.e., GURI from the Cancer
Registry of Norway (CRN). We presented the EvoMaster
extension EvoClass, which utilizes machine learning to reduce
the cost of testing GURI. We evaluated the cost-effectiveness
of EvoClass using GURI’s ten versions under three environ-
ments. The results show that EvoClass can significantly reduce
testing cost (i.e., ≈31%), meanwhile achieving rule coverage
similar to the default EvoMaster. In the future, we plan to
propose domain-specific test generation methods such as rule
coverage to improve the effectiveness further. In addition, we
plan to integrate our solution with testing tools other than
EvoMaster. Finally, we want to test other software systems
from CRN.

10



ACKNOWLEDGMENT

This work is supported by the "AI-Powered Testing Infras-
tructure for Cancer Registry System" project (No. #309642)
funded by the Research Council of Norway. The Norwegian
Ministry of Education and Research supports Erblin Isaku’s
Ph.D. The experiment was conducted on the Experimental
Infrastructure for Exploration of Exascale Computing (eX3),
which is financially supported by RCN under contract 270053.

REFERENCES

[1] A. Arcuri, “RESTful API automated test case generation with Evo-
Master,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 28, no. 1, pp. 1–37, 2019.

[2] C. Laaber, T. Yue, S. Ali, T. Schwitalla, and J. F. Nygård,
“Challenges of testing an evolving cancer registration support system
in practice,” in Proceedings of the 45th IEEE/ACM International
Conference on Software Engineering: Companion Proceedings, ser.
ICSE-Companion 2023. IEEE, May 2023, pp. 355–359. [Online].
Available: https://doi.org/10.1109/ICSE-Companion58688.2023.00102

[3] S. Wang, T. Schwitalla, T. Yue, S. Ali, and J. F. Nygård, “RCIA:
automated change impact analysis to facilitate a practical cancer registry
system,” in 2017 IEEE International Conference on Software Mainte-
nance and Evolution (ICSME). IEEE, 2017, pp. 603–612.

[4] A. Arcuri, M. Zhang, A. Belhadi, B. Marculescu, A. Golmohammadi,
J. P. Galeotti, and S. Seran, “Building an open-source system test
generation tool: lessons learned and empirical analyses with EvoMaster,”
Software Quality Journal, pp. 1–44, 2023.

[5] R. T. Fielding, M. Nottingham, and J. Reschke, “HTTP Semantics,”
RFC 9110, Jun. 2022. [Online]. Available: https://www.rfc-editor.org/
info/rfc9110

[6] Swagger, “Swagger,” [n.d.]. [Online]. Available: https://swagger.io/
[7] L. Breiman, “Random forests,” Machine learning, vol. 45, pp. 5–32,

2001.
[8] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine Learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[9] G. Van Rossum, The Python Library Reference, release 3.8.2. Python
Software Foundation, 2020.

[10] C. Laaber, T. Yue, S. Ali, T. Schwitalla, and J. F. Nygård, “Automated
test generation for medical rules web services: A case study at the
Cancer Registry of Norway,” in Proceedings of the 31st ACM Joint
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2023. ACM, Dec.
2023. [Online]. Available: https://doi.org/10.1145/3611643.3613882

[11] A. Martin-Lopez, A. Arcuri, S. Segura, and A. Ruiz-Cortés, “Black-
box and white-box test case generation for RESTful APIs: Enemies
or allies?” in 2021 IEEE 32nd International Symposium on Software
Reliability Engineering (ISSRE). IEEE, 2021, pp. 231–241.

[12] A. Arcuri and L. Briand, “A practical guide for using statistical tests to
assess randomized algorithms in software engineering,” in Proceedings
of the 33rd international conference on software engineering, 2011, pp.
1–10.

[13] M. Kim, Q. Xin, S. Sinha, and A. Orso, “Automated Test Generation
for REST APIs: No Time to Rest Yet,” in Proceedings of the
31st ACM SIGSOFT International Symposium on Software Testing
and Analysis, ser. ISSTA 2022. New York, NY, USA: Association
for Computing Machinery, 2022, p. 289–301. [Online]. Available:
https://doi.org/10.1145/3533767.3534401

[14] V. Pestov, “Is the k-NN classifier in high dimensions affected by the
curse of dimensionality?” Computers & Mathematics with Applications,
vol. 65, no. 10, pp. 1427–1437, 2013.

[15] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer Science
& Business Media, 2012.

[16] J. Siegmund, N. Siegmund, and S. Apel, “Views on internal and external
validity in empirical software engineering,” in 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering, vol. 1. IEEE,
2015, pp. 9–19.

[17] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A
Next-generation Hyperparameter Optimization Framework,” in Proceed-
ings of the 25rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2019.

[18] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés, “RESTest: Black-box
constraint-based testing of RESTful web APIs,” in Service-Oriented
Computing: 18th International Conference, ICSOC 2020, Dubai, United
Arab Emirates, December 14–17, 2020, Proceedings 18. Springer,
2020, pp. 459–475.

[19] V. Atlidakis, P. Godefroid, and M. Polishchuk, “RESTler: Stateful REST
API Fuzzing,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE), 2019, pp. 748–758.

[20] D. Corradini, A. Zampieri, M. Pasqua, E. Viglianisi, M. Dallago, and
M. Ceccato, “Automated black-box testing of nominal and error sce-
narios in RESTful APIs,” Software Testing, Verification and Reliability,
vol. 32, no. 5, p. e1808, 2022.

[21] H. Sartaj, S. Ali, T. Yue, and K. Moberg, “Testing Real-World Healthcare
IoT Application: Experiences and Lessons Learned,” in Proceedings of
the 31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ser. ESEC/FSE
2023. ACM, 2023, DOI: 10.1145/3611643.3613888, To Appear.

[22] A. Jain, H. Patel, L. Nagalapatti, N. Gupta, S. Mehta, S. Guttula,
S. Mujumdar, S. Afzal, R. Sharma Mittal, and V. Munigala, “Overview
and importance of data quality for machine learning tasks,” in Proceed-
ings of the 26th ACM SIGKDD international conference on knowledge
discovery & data mining, 2020, pp. 3561–3562.

[23] C. Cortes, L. D. Jackel, and W.-P. Chiang, “Limits on learning machine
accuracy imposed by data quality,” Advances in Neural Information
Processing Systems, vol. 7, 1994.

[24] Y. Lu, H. Wang, and W. Wei, “Machine Learning for Synthetic Data
Generation: a Review,” arXiv preprint arXiv:2302.04062, 2023.

[25] J. Lin, T. Li, Y. Chen, G. Wei, J. Lin, S. Zhang, and H. Xu, “foREST:
A Tree-based Approach for Fuzzing RESTful APIs,” arXiv preprint
arXiv:2203.02906, 2022.

[26] C. Lu, Q. Xu, T. Yue, S. Ali, T. Schwitalla, and J. F. Nygård,
“EvoCLINICAL: Evolving Cyber-cyber Digital Twin with Active
Transfer Learning for Automated Cancer Registry System,” in
Proceedings of the 31th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2023. New York, NY, USA: Association for Computing
Machinery, 2023. [Online]. Available: https://doi.org/10.1145/3611643.
3613897

[27] A. Arcuri, “EvoMaster: Evolutionary Multi-context Automated System
Test Generation,” 04 2018, pp. 394–397.

[28] D. Corradini, A. Zampieri, M. Pasqua, and M. Ceccato, “RestTestGen:
An Extensible Framework for Automated Black-box Testing of RESTful
APIs,” in 2022 IEEE International Conference on Software Maintenance
and Evolution (ICSME). IEEE, 2022, pp. 504–508.

[29] N. Laranjeiro, J. Agnelo, and J. Bernardino, “A black box tool for
robustness testing of REST services,” IEEE Access, vol. 9, pp. 24 738–
24 754, 2021.

[30] Z. Hatfield-Dodds and D. Dygalo, “Deriving Semantics-Aware Fuzzers
from Web API Schemas,” in 2022 IEEE/ACM 44th International
Conference on Software Engineering: Companion Proceedings (ICSE-
Companion), 2022, pp. 345–346.

[31] D. Corradini, A. Zampieri, M. Pasqua, and M. Ceccato, “Empirical
comparison of black-box test case generation tools for RESTful APIs,”
in 2021 IEEE 21st International Working Conference on Source Code
Analysis and Manipulation (SCAM). IEEE, 2021, pp. 226–236.

[32] H. Ed-Douibi, J. L. C. Izquierdo, and J. Cabot, “Automatic generation
of test cases for REST APIs: A specification-based approach,” in
2018 IEEE 22nd international enterprise distributed object computing
conference (EDOC). IEEE, 2018, pp. 181–190.

[33] A. Golmohammadi, M. Zhang, and A. Arcuri, “Testing RESTful APIs:
A Survey,” arXiv preprint arXiv:2212.14604, 2022.

[34] E. Viglianisi, M. Dallago, and M. Ceccato, “RESTTESTGEN: Auto-
mated Black-Box Testing of RESTful APIs,” in 2020 IEEE 13th In-
ternational Conference on Software Testing, Validation and Verification
(ICST), 2020, pp. 142–152.

[35] A. G. Mirabella Galvin, A. Martín López, S. Segura Rueda, L. Valen-
cia Cabrera, and A. Ruiz Cortés, “Deep Learning-Based Prediction of
Test Input Validity for RESTful APIs,” in DeepTest 2021: International
Workshop on Testing for Deep Learning and Deep Learning for Testing
(2021)., 2021.

11

https://doi.org/10.1109/ICSE-Companion58688.2023.00102
https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9110
https://swagger.io/
https://doi.org/10.1145/3611643.3613882
https://doi.org/10.1145/3533767.3534401
https://doi.org/10.1145/3611643.3613897
https://doi.org/10.1145/3611643.3613897

	Introduction
	Background
	Real-World Context and Challenges
	System Level Testing with EvoMaster

	Approach
	Data Collection
	Data Preprocessing
	Feature extraction
	Feature construction
	Feature selection
	Feature/Data Encoding

	Training and Optimization
	Integration into EvoMaster

	Evaluation
	Research Questions
	Subject Application
	Evaluation Setup, Execution, and Metrics
	Results and Discussion
	RQ0 Results
	RQ1 Results
	RQ2 Results

	Threats to Validity

	Experiences and Lessons Learned
	Related Work
	Conclusion
	References

