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Abstract—Technical debt, specifically Self-Admitted Technical
Debt (SATD), remains a significant challenge for software de-
velopers and managers due to its potential to adversely affect
long-term software maintainability. Although various approaches
exist to identify SATD, tools for its comprehensive management
are notably lacking. This paper presents DebtViz, an innovative
SATD tool designed to automatically detect, classify, visualize
and monitor various types of SATD in source code comments
and issue tracking systems. DebtViz employs a Convolutional
Neural Network-based approach for detection and a deconvo-
lution technique for keyword extraction. The tool is structured
into a back-end service for data collection and pre-processing, a
SATD classifier for data categorization, and a front-end module
for user interaction. DebtViz not only makes the management
of SATD more efficient but also provides in-depth insights into
the state of SATD within software systems, fostering informed
decision-making on managing it. The scalability and deployability
of DebtViz also make it a practical tool for both developers and
managers in diverse software development environments. The
source code of DebtViz is available at https://github.com/yikun-li/
visdom-satd-management-system and the demo of DebtViz is at
https://youtu.be/QXH6Bj0HQew.

Index Terms—self-admitted technical debt, technical debt man-
agement, technical debt visualization

I. INTRODUCTION

Technical debt, a prevalent concept in software develop-
ment, expresses the trade-offs often made between ideal devel-
opment practices and short-term project needs [1]. These trade-
offs may involve hasty decisions, shortcuts, or less-than-ideal
solutions geared toward expediting feature implementation or
reducing development time. While these quick-fixes may serve
immediate needs, they can negatively impact long-term soft-
ware maintenance. In certain situations, consciously incurring
technical debt can offer short-term advantages, provided it is
managed effectively [2]. However, un-controlled accumulation
of such debt often evolves into formidable maintenance chal-
lenges over time. Thus, adept management of both intentional
and unintentional technical debt is pivotal to maintain software
quality and restrict the increasing cost of change [3].

Self-Admitted Technical Debt (SATD) is a specific variant
of technical debt, where developers voluntarily document
technical debt within various software artifacts like source
code comments, commit messages, issue tracking systems,
or pull requests [4], [5]. For example, a developer might
mention pending tasks within a code comment like “we

need to remove the dead code”, or acknowledge a method’s
complexity with “this method is hard to understand and needs
to be simplified”. Systematically detecting SATD helps to
make such items explicit to developers and managers, assists in
formulating plans for their resolution and thereby contributes
to enhancement of maintainability and evolvability.

Existing research in this field, primarily focuses on identify-
ing SATD using source code comments [6], [7]. More recent
studies also explore SATD detection from other software
artifacts [8]–[10], such as issue tracking systems. Despite these
advances, practical tools to assist developers in detecting and
managing different types of SATD are markedly absent. While
research studies present several machine learning models,
there is only one Eclipse plugin proposed for identifying and
presenting SATD in code comments [11]; even this tool is
constrained to handling SATD in code comments and lacks a
comprehensive dashboard for system-wide SATD monitoring.
Thus, there is no comprehensive tool, capable of gathering,
analyzing, visualizing and monitoring SATD from multiple
software artifacts.

This paper introduces DebtViz, a SATD management tool
capable of automatically detecting various types of SATD in
source code comments and issue tracking systems using a
Convolutional Neural Network-based approach. In addition to
identifying SATD, DebtViz generates and visualizes statistics
on SATD items within software repositories. Finally, the tool
also serves as a real-time monitor for SATD: it constantly
scans the software artifacts of a repository, updates the statis-
tics, and visualizes the current state of SATD. The four
aforementioned functionalities map to four of the technical
debt management activities as defined by Li et al. [12]: TD
identification, measurement, representation and monitoring.

The architecture of DebtViz is comprised of three main
components: a back-end service, an SATD classifier, and a
front-end module. The back-end service collects data from Git
repositories and issue tracking systems, and subsequently pre-
processes the data and populates it into a dedicated database.
The SATD classifier, the core part of the tool, employs
a pre-trained machine learning model [10] to classify the
types of SATD (i.e., code/design, test, documentation, and
requirement debt), following the classifications suggested in
prior work [10]. Upon identification of SATD items, the
classifier applies the deconvolution technique [7] to extract
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Fig. 1. The dashboard for SATD in code comments

keywords that indicate the SATD classification. The front-end
module of DebtViz serves as the interface between the user
and the tool, communicating with the back-end service to offer
comprehensive SATD dashboards to the tool users. It also pro-
vides a specialized browser for both issue trackers and source
code. DebtViz is designed for ease of deployment, scalability,
and user-friendly interaction. It supports the management of
SATD, helping developers and managers gain a thorough
understanding of SATD within their software systems.

The paper’s structure is as follows: Section II discusses
related work. Section III offers an expansive overview of
our DebtViz tool, while Section IV outlines its architecture.
Section V shows the results of a preliminary evaluation.
Conclusions and future directions are presented in Section VI.

II. RELATED WORK

The first work exploring SATD was conducted by Potdar
and Shihab [4] in source code comments. They analyzed
four open-source projects and found that SATD comments
were present in 2.4% to 31% of source files. Interestingly,
they found that only a portion of SATD comments, ranging
from 26.3% to 63.5%, were resolved after being documented.
Maldonado and Shihab [13] extended this foundational work
by refining the classification of SATD into five distinctive
categories, namely design, requirement, defect, documenta-
tion, and test debt. This classification was achieved by metic-
ulously examining 33,000 code comments from five open-
source projects. Their results highlighted design debt as the

most pervasive form of SATD, contributing to 42% to 84% of
the categorized cases.

Subsequent to these initial explorations in the sphere of
SATD, a considerable body of research has pivoted towards
devising methods for automating SATD detection. Several
machine learning methodologies [7], [9], [10], [14] have been
utilized to detect diverse types of SATD instances from various
sources. Ren et al. [7] proposed a Convolutional Neural
Network-based method to improve SATD detection’s accuracy
and explainability, particularly enhancing cross-project predic-
tion. Similarly, Li et al. [9] generated a dataset of 4,200 issues
from seven open-source projects and proposed a machine
learning approach to detect SATD in issue tracking systems,
outperforming baseline methods, benefiting from knowledge
transfer, and extracting intuitive SATD keywords. Li et al. [10]
also proposed an automated SATD identification approach that
leveraged a multitask learning technique to analyze multiple
sources, including source code comments, commit messages,
pull requests, and issue tracking systems. Finally, Guo et al.
[15] introduced a straightforward heuristic approach for SATD
identification, proving it to perform similarly or even better
than existing methods.

Further research efforts have focused on creating tools to
facilitate SATD management. Liu et al. [11] introduced a
tool called SATD detector, capable of automatically detecting
SATD comments using text mining techniques, and highlight-
ing, listing, and managing detected comments in an integrated
development environment. This tool was designed with a back-
end Java library and an Eclipse plug-in as its front-end. Further



expanding the toolbox for SATD management, Phaithoon et
al. [16] presented a GitHub bot specifically designed to handle
issue-related On-hold SATD, a situation in which developers
delay proper implementation due to issues in the project
issue tracker that are pending. This bot leverages machine
learning techniques to automatically detect On-hold SATD
comments in source code and identify the referenced issues.
Upon resolution of the referenced issues, the bot notifies the
developers accordingly. In contrast to these earlier works, our
research proposes a tool that: 1) focuses on identifying SATD
from multiple sources, 2) offers a web-based dashboard to
monitor SATD status in software systems, and 3) presents new
visualizations of SATD data, such as heatmaps and SATD line
charts.

III. AN OVERVIEW OF THE DEBTVIZ TOOL

This section explains the main functionalities of the DebtViz
tool through UI screenshots. Utilizing the pre-trained SATD
detection model [10], DebtViz can automatically determine
the types of SATD within code comments and issues in issue
trackers. Upon completion of data collection and analysis
from a specific software repository, the tool generates two
distinct dashboards: one presents details of SATD within code
comments (subfigure A in Fig. 1), while the other elaborates on
SATD occurrences within issue tickets (subfigure B in Fig. 1).

The dashboard depicted in subfigure A in Fig. 1 displays the
variety of SATD types (i.e., code/design, test, requirement, and
documentation debt) in code comments in the form of a pie
chart, providing developers with a broad perspective of SATD
categories prevalent in the software system. A secondary pie
chart illustrates the distribution of SATD instances across
different types of code comments, namely, inline, multi-line,
block, and documentation block comments. Additionally, a
line chart tracks the evolution of SATD in the system by
representing the count of SATD items over time.

Similarly, the dashboard depicted in subfigure B in Fig. 1
serves to portray the variety of SATD categories prevalent
within issue tracking systems. As can be seen, the first two
pie charts show the number of different types of SATD (i.e.,
code/design, test, requirement, and documentation debt) in the
issue summary and issue description. Moreover, it enumerates
the instances of SATD occurring in different types of issues,
such as tasks or bugs. This detailed view allows developers
to discern patterns of SATD accumulation within specific
issue types, thereby aiding in strategic response planning.
Furthermore, the dashboard visualizes SATD items based on
their status, for instance, distinguishing between open and
closed issues.

To augment the understanding of SATD distribution across
diverse modules, DebtViz generates comprehensive heatmaps,
as exemplified in subfigure C in Fig. 1. For example, we
observe that the /src/test/ directory contains 15 SATD items
out of a total of 59 detected within the entire system. This
functionality extends to various types of SATD, thereby offer-
ing developers and managers a visual representation of SATD
dispersion throughout their software systems.

An additional key feature of DebtViz is a file browser
functionality (subfigure D in Fig. 1). For example, we discern
that LoadTestCase.java contains SATD within a total of 20
comments, with code/design debt slightly outweighing test
debt. Conversely, there are no SATD items found within
logTestCase.java. This enables a thorough enumeration of
distinct SATD types across individual files and folders, thereby
visualizing the distribution of varied SATD types across the
software system.

Fig. 2. The code viewer presenting the classification of different types of
SATD or non-SATD for each code comment

Upon selection of a specific source code file, DebtViz
reveals the source code accompanied by a classification of
SATD types for each code comment, as depicted in Fig. 2.
The tool distinctly highlights code comments classified as
SATD, with the associated classifications such as code/design
debt clearly marked. This feature facilitates developers in
pinpointing the exact location of SATD within the source code.

Fig. 3. Upon clicking the identified SATD code comments, the corresponding
keywords highlighting the presence of SATD are displayed

Finally, DebtViz enables developers to dig deeper into the
SATD code comments: when they select a code comment
classified as SATD, DebtViz underscores the corresponding
keywords that signal the presence of SATD, as demonstrated
in Fig. 3. By drawing attention to these keywords, developers
are given insight into the potential root causes of the technical
debt item.

IV. SYSTEM ARCHITECTURE

The DebtViz tool architecture, as depicted in Fig. 4, com-
prises three primary components that will be elaborated in the
following sub-sections: the back-end, the front-end, and the
classifier.
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Fig. 4. The overview architecture of DebtViz

A. Back-end service

This is the backbone of the DebtViz tool, and was developed
utilizing the Spring framework. This module is entrusted with
scanning Git repositories for code comments and JIRA boards
for issue tickets. Upon extraction, the data is systematically
stored in a PostgreSQL database.

The back-end service effectively leverages the JGit project, a
Java implementation of the Git version control system, to store
and manage files along with their associated revisions. For the
extraction of comments from source code files, we employed
ANTLR (ANother Tool for Language Recognition). ANTLR’s
grammar parsing capabilities facilitate the creation of simple
grammars customized to the diverse types of comments we
encounter in the code.

The process of scanning a JIRA project requires interfacing
with the JIRA server’s REST API, a well-documented API
with numerous open-source clients available. In this project,
we opted for the Jira REST Java Client (JRJC).

B. Front-end service

The front-end module of DebtViz is assigned with pre-
senting an interactive and responsive user interface. This
module communicates with the back-end service, primarily
by transmitting HTTP requests. To create an engaging, high-
performance UI, the front-end module was constructed using
the versatile React library along with the Next.JS framework.
The functionalities and UI of this module were discussed and
presented more extensively in Section III.

C. SATD classifier

The SATD classifier module scans the database for un-
classified issues and comments, retrieving each entry for
classification. Using a pre-trained machine learning model
[10], it predicts the type of SATD (i.e., code/design, test,
requirement, and documentation debt) for each unclassified
entry. Specifically, the pre-trained machine learning model
leverages the multitask learning technique [17] in combination
with Text-CNN [18]. This model is capable of detecting SATD
from multiple sources, namely code comments, commit mes-
sages, issue trackers, and pull requests. We note that DebtViz
currently uses only code comments and issues, as these are the
two most popular sources; commit messages and pull requests
will be covered in the tool’s next version. In cases where

the data is classified as SATD, the deconvolution technique
[7] is employed to extract the likely causative keywords. For
instance, given a comment such as “todo: we need to remove
the dead code”, the extracted keywords could be “todo” and
“dead code”. Once the extraction is complete, the prediction
is saved back into the database. The SATD classifier module
incorporates a straightforward Flask server, for communication
with the back-end service. This setup ensures real-time data
processing and classification, keeping SATD data up to date.

V. PRELIMINARY EVALUATION

A. Evaluation setup

In order to obtain some preliminary evidence on the use-
fulness of the DebtViz tool, we designed a small-scale study
involving six developers. Specifically, we acquired their feed-
back on the use of DebtViz via a targeted survey (see the
replication package 1). The survey revolved around three main
focal points: accuracy pertains to the correctness of SATD
detection by the tool; awareness focuses on how well the
tool helps users understand the state and distribution of SATD
in the system; and effectiveness assesses how much the tool
assists users in managing SATD. The questions were designed
to not only provide individual feedback on each source (code
comments or issue trackers) but also on using both sources.

We analyzed the results by first studying each focal point
and then comparing the individual and combined scores of the
two data sources (code comments and issue trackers). This
comparative analysis served to identify the efficacy of these
data sources both independently and in tandem, offering in-
sight into their individual strengths and the synergistic effects
when used together.

B. Results

In Fig. 5, we provide a graphical representation of the
average scores for each focal point. Regarding accuracy, we
found that the visualization of SATD in source code comments
achieved a high score of 4.25 out of 5. Participants reported
only a few instances of inaccurate classification, primarily
attributed to misleading keywords in comments. Meanwhile,
the visualization of JIRA issues garnered a good average score
of 4 out of 5. Participants reported occasional discrepancies

1https://github.com/yikun-li/visdom-satd-management-system
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Fig. 5. Evaluation results

between the classification of the summary and description,
once again tracing the errors back to certain keywords. The
combined accuracy, however, was rated even higher at 4.33
out of 5, reflecting the tool’s robust capacity to detect SATD
in software projects.

Turning our attention to the awareness generated by the
tool, participants noted that they discovered forgotten areas of
interest within source code comments. The SATD visualization
in comments scored an impressive average of 4.55 out of 5,
with participants recognizing the potential value of tracking
SATD over a longer period. Visualization of SATD in issues
received a lower score of 3.33, as participants felt that issues
were already well-sorted and organized within JIRA. Overall,
the tool scored highest in enhancing awareness, reaching 4.61
out of 5.

The final focus point, effectiveness, received a lower rating
from participants, with an average score of 2.58 out of 5
for comments and 1.66 out of 5 for issues, culminating in
a combined average of 2.5. The participants argued that the
visualized SATD had already existed in their work for a longer
time, thus it did not have a high priority for refactoring. They
also stated that they already prioritized SATD items using their
issue tracker, so using our tool would not effectively assist in
this task.

Finally, when evaluating the combined total rating of both
sources, the average score rose to 3.81, indicating a slight
advantage when utilizing both sources concurrently, compared
to the separate scores of 3.80 and 3.00 for the comments and
issues respectively.

VI. CONCLUSION

This paper presented DebtViz, a tool designed specifically
to detect, classify, monitor and visualize various types of
SATD in source code comments and issue tracking systems.
The system comprises a back-end service, a SATD classifier,
and a front-end module for interactive visual exploration.
DebtViz aids in the management of SATD by providing
an overview of the current state of SATD within software
systems, which in turn supports informed decision-making
regarding technical debt management. Potential areas for fu-

ture enhancement include expanding the range of software
artifacts (e.g., pull requests and commit messages) considered
in SATD detection and refining the machine learning models
for improved classification accuracy. As a contribution to the
field of SATD management, DebtViz offers an integrated,
multifaceted approach to identifying and visualizing SATD
across multiple sources.
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