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Abstract 
The packet loss problem seriously affects the quality of service 
in Voice over IP (VoIP) sceneries. In this paper, we investigated 
online receiver-based packet loss concealment which is much 
more portable and applicable. For ensuring the speech 
naturalness, rather than directly processing time-domain 
waveforms or separately reconstructing amplitudes and phases 
in frequency domain, a flow-based neural vocoder is adopted to 
generate the substitution waveform of lost packet from Mel-
spectrogram which is generated from history contents by a well-
designed neural predictor. Furthermore, a waveform similarity-
based smoothing post-process is created to mitigate the 
discontinuity of speech and avoid the artifacts. The 
experimental results show the outstanding performance of the 
proposed method.  
Index Terms: Voice over IP, packet loss concealment, neural 
networks 

1. Introduction 
Nowadays, voice over Internet Protocol (VoIP) has become 
increasingly popular. To address the unreliable delivery of 
packets over the Internet and guarantee the quality of service 
(QoS) [1], many packet loss concealment (PLC) methods have 
been developed and refined.  

This paper is focused on the reformation of receiver-based 
PLC algorism [2]. Since the human hearing has a masking 
effect and the speech signal has short-term self-similarity, the 
receiver-based PLC techniques attempt to partially recover the 
speech signal of a lost packet only from its history or future 
information. 

According to [3], the traditional receiver-based PLC 
schemes are categorized into insertion-based, interpolation-
based, and regeneration-based approaches. Apart from trivial 
methods like silence substitution, the waveform similarity 
overlap-and-add (WSOLA) method [4] and hidden Markov 
model (HMM)-based method [5] are more intelligent. 
Nevertheless, these methods suffer from the artifacts and may 
cause catastrophic clipped-speech distortion, especially when 
dealing with long gaps and transients. 

Recently, deep learning has been introduced to the PLC. 
According to [6], deep learning-based PLC may be classified 
into offline and online systems. The offline PLC system 
estimates lost packets using a large chunk of audio including 
the lost parts as the input, such as generative adversarial 
network (GAN) based frameworks [7,8,9] and auto-encoder 
based frameworks [10,11]. However, the latency introduced by 
these systems is absolutely unacceptable. 

Correspondingly, the online PLC system predicts lost 
packets in real time, which only requires history information of 

speech signal. In [12], two deep neural networks (DNN) were 
separately trained to predict the log-power spectra and phases 
of the lost packets. As a feasible way to get rid of the difficulty 
of phase prediction, recurrent neural network (RNN) was 
adopted for PLC tasks in time domain [6, 13]. In addition, a 
non-autoregressive adversarial auto-encoder was also proposed 
to perform real-time PLC in time domain [14]. In [15], the 
frequency-domain spectrum and time-domain waveform were 
combined as the input of an encoder-based framework. The 
WaveNetEQ [16] using WaveRNN was proposed to recover the 
signal of the last frame from a log-Mel spectrogram of previous 
frame. 

To our best knowledge, the performance of time-domain 
method may be limited, because of the high temporal resolution 
of waveform samples. And phase reconstruction hinders the 
spectra-domain method. The time-domain waveform 
synthesized by most works mentioned above lack naturalness 
and continuity in the listening.  

For improving the naturalness, inspired by the achievement 
in Text-to-Speech Synthesis (TTS), rather than constructing 
candidate phase for the lost speech, a generative model was 
sought to synthesize speech waveform from time-frequency (T-
F) representations. The state-of-the-art WaveNet [17] used in 
Tacotron2 [18] could generate highly naturalness waveform 
from spectrum of frequency-domain, but the time complexity is 
unacceptable. In [19], a flow-based model, named Waveglow, 
is well suited to today’s massively parallel computers and 
simple to train, in which its naturalness has been shown a rival 
of human voice. 

In this paper, we propose a novel deep learning-based 
online framework for PLC. The framework consists of a deep 
neural network (DNN), a flow-based vocoder and a smooth 
catenation process. The effectiveness of the DNN has been 
verified in log-power spectrum prediction in [12], so it is 
adopted in this work to predict Mel-spectrum of the lost packet 
from previous valid packets. The predicted Mel-spectrum is 
transformed into time-domain waveforms by a neural vocoder. 
A smoothing post-process is used to solve the problem of 
waveform discontinuity. In order to demonstrate the superiority 
of the proposed algorithm, we compare it to several neural PLC 
frameworks and classical WSOLA. According to objective tests 
and waveform visualization, it turns out that the proposed PLC 
algorithm outperforms some existing algorithms. 

The remainder of this paper is organized as follows: after 
briefly introducing the packet loss simulator in section 2. 
Section 3 describes the architecture of the proposed PLC 
algorithm. Then, experiments are presented in Section 4. At last, 
Section 5 summarizes our contributions. 



2. Packet Loss Simulator 
To create training and test data for PLC, it is essential to 
simulate realistic scenarios of packet loss. According to [21], 
Both Bernoulli model and two-state Markov model are not 
appropriate for many real-world scenarios. 

In this paper, following the ITU standard [22], the Gilbert-
Elliot model shown in Figure 1 is adopted. As shown in Figure 
1, “G” denotes good channel state and “B” denotes bad channel 
state. The parameters 𝛼𝛼 and β are the transition probabilities 
from state G to stated B and from state B to stated G, 
respectively. PG and PB are the packet loss probabilities in states 
G and B, respectively. 

 
Figure 1: Gilbert-Elliot model 

The mean packet loss rate generated by this model is given by 
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where  𝜆𝜆 = 1 − (𝛼𝛼 + 𝛽𝛽) is an indication of the burst or random 
characteristics of the channel. In this issue, usually 𝜆𝜆 > 0, and 
if 𝜆𝜆 = 0, the model is reduced to the Bernoulli model. Once the 
packet loss rate (PLR) is given, which is reasonable only in the 
range 0 ≤ 𝑃𝑃𝑃𝑃𝑃𝑃 ≤ 0.5 , the transition probabilities could be 
derived as  
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3. Proposed Method 
The flowchart of the proposed PLC algorithm is shown in 
Figure 2. In the inference stage, any packet is considered an 
input whether the packet is lost or not. If a packet is not lost, it 
is directly copied to the output and loaded into a memory buffer. 
Otherwise, the previous packets drawn from the memory buffer 
are used as the inputs of neural PLC framework to predict the 
lost packet.  

 
Figure 2: Flowchart of the proposed PLC algorithm. 

We found that when continuous packets are lost, an 
attenuation factor is unnecessary in many existing PLC 
methods. So, in this paper, the predicted packets are treated as 
the received ones. For clarity, in this paper, one packet includes 
the information of one frame. 

3.1. DNN Predictor 

The receiver-based PLC is usually applied as a post-processing 
step after the decoding operation and does not affect bit-stream 
compatibility. Since the feature parameters in the lost packets 
are unavailable, the predictor of the feature parameters used for 
recovering time gaps become particularly necessary. In this 
work, a fine designed deep neural network (DNN) is applied as 
the predictor. 

First of all, an appropriate feature representation must be 
chosen for successful prediction. Although the log-power 
spectrum in the Short-time Fourier transform (STFT) domain is 
a very suitable feature, its high feature dimension could be 
further reduced by transforming it into Mel-spectrum. And also, 
the Mel-spectrum has been widely employed in many natural 
language processing (NLP) tasks [23, 24]. Based on this, the 
Mel-spectrum is selected as the feature in this paper. 

 
Figure 3: Structure of the proposed DNN predictor 

As shown in Figure 3, in the training stage, the waveform 
sequences 𝐱𝐱𝐿𝐿with the length L in time-domain are segmented 
into the frames by a window overlapped, where the frame 
length is W and frame shift is H. 

In which case, a Mel-spectrum vector of current frame is 
denoted as 𝒎𝒎𝑇𝑇 consisting of F Mel-bands. The input layer with 
𝑃𝑃 × 𝐹𝐹  nodes consists of previous P frames, while 𝒎𝒎𝑇𝑇 and 
𝒎𝒎𝑇𝑇+1 are concatenated to be the target features. The nodes of 
three hidden layers are all set as 2048. A logistic sigmoid 
function is used for the activation function of the hidden units 
and the type of the output layer with 2 × 𝐹𝐹 nodes is linear. Also, 
the features are normalized to zero mean and unit variance. The 
Minimum Mean Square Error (MMSE) between estimated Mel-
spectra and the reference target Mel-spectra is conducted as the 
objective criterion. The inference process is consistent with the 
forward propagation in the training. 

3.2. Flow-based Vocoder 

After obtaining T-F representations, a vocoder is needed to 
transform them into the waveforms. Traditional methods like 
Griffin-Lim algorithm (GLA) [25] and PGHI [26] are not 
suitable for PLC tasks. The flow-based neural generator is first 
introduced in [20]. And later, Waveglow [19] was proved that 
the flow-based model is capable of generating high quality 
speech from Mel-spectrogram. The main purpose of this 
architecture is to use a neural model to realize an invertible 
transformation 𝑓𝑓  between a simple distribution 𝐳𝐳  and the 
desired distribution of speech samples 𝐱𝐱 conditioned on a Mel-
spectrogram, i.e., 
 ( ) ( )1,f f −= =z x x z  (4) 

where 𝑓𝑓(∙)(and likewise, 𝑓𝑓−1(∙)) is composed of a sequence of 
invertible transformations. 
 0 1 1... k kf f f f f−=     (5) 



This model is directly trained to minimize the negative log-
likelihood of the data, which is formed by (6), where J in (6) 
denotes Jacobian matrix. 
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The structure of our vocoder is similar to the Waveglow. 
The invertibility is achieved by a series of affine coupling layers 
described by the following equations (7) ~ (10) and invertible 
1 × 1 convolution layers described by equation (11) [19, 27].  
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The 𝑊𝑊𝑊𝑊(∙) in (9) represents a residual network which is 
similar to WaveNet [17] that is no causal convolution. Finally, 
the negative likelihood is given by  
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In this work, to further improve the speed of speech 
synthesis, the affine coupling layers and invertible convolutions 
are truncated to 10 from 12. While training, the speech samples 
and corresponding Mel-spectrograms are used as the model 
input. The frame length, shift length and the length of speech 
samples in each iteration are adjusted to satisfy the PLC tasks. 
Figure 4 illustrates the inference process of time-domain speech 
generation. The model mentioned above is inversed to be a 
vocoder to generate the speech waveforms. To better address 
the correlation of speech signal, rather than only use two 
predicted frames, the Mel-spectrograms of previous P frames 
are catenated with the two predicted Mel-spectrograms. Thus, 
totally, the Mel-spectrograms of (P+2) frames are feed into the 
vocoder as condition constraints. The length of waveform 
corresponding to (P+2) frames is set as L. Then, by randomly 
collecting data 𝐳𝐳𝐿𝐿  from Gaussian distribution until the length of 
the data reaches to L, speech waveform 𝐱𝐱�𝐿𝐿 with the length L 
would be generated by simply running Mel-spectrogram and 𝐳𝐳𝐿𝐿 
through the vocoder. 

3.3. Smooth Connection 

Because the flow-based vocoder pursues statistical similarity of 
real speech simples, if the substitution of the lost frame is 
directly chosen from the corresponding frame in the generated 
waveform 𝐱𝐱�𝑳𝑳 , the discontinuity of the waveform will occur 
after overlapping and adding. This seriously degrades the 
naturalness of speech in the listening. 

The way to solve this problem is to find a frame that is most 
close to the adjacent one. A method based on waveform 
similarity is proposed in this paper for finding the proper 
substitution.  Figure 5 and Figure 6 show an example of this 
operation. 

In Figure 5, there is an overlapped part between the frames.  
The part of most currently previous frame which is overlapped 

with the lost frame is selected as a pattern A(n), where n  
denotes discrete time index. Then, the last three frames of 
waveform B(n) generated by the vocoder are sent to calculate 
the cross-correlation with pattern 𝐴𝐴(𝑛𝑛). The discrete time index 
corresponding to the maximum cross-correlation is set as a start 
point for truncating a segment with the length W as the 
substitution of the lost frame, as depicted in Figure 6. Finally, 
this frame is outputted and sent into the history buffer. 

 
Figure 4. Inference flowchart of the flow-based vocoder. 

 
Figure 5. Selection of the overlapped part  

 
Figure 6. Determination of substitution of the lost frame 

4. Experiments 

4.1. Settings 

For all experiments, the LJ speech corpus sampled at 16 kHz 
[28] in a home environment is adopted. This corpus consists of 
13100 short audio clips of a single speaker and the length of 
each clip varies from 1 to 10 seconds. The total length of this 
corpus is about 24 hours.  

The Mel-spectrogram is obtained by a 512-points FFT on 
each frame with the length W = 320 samples (20ms), shift 
length H of the frame is 160 samples (10ms). The number of 
Mel filters are 80 (F=80). For DNN predictor, the input contains 
11 previous frames (120ms), i.e., P = 11. For packet loss 
simulator, 𝜆𝜆 = 0.5, 𝑃𝑃𝐺𝐺 = 0, which means error free in state “G”, 
and 𝑃𝑃𝐵𝐵 = 0.5  in state “B”. Thus, a totally uncertain loss 
happens in state “B”. And one packet is assumed to contain only 
one speech frame. Four kinds of packet loss rate ( PLRs vary 
from 10% to 50%) are simulated and tested. The DNN predictor 
and flow-based vocoder are trained separately at first, and then 
they are trained together. 

4.2. Evaluation 

The perceptual evaluation of speech quality (PESQ) [29], short-
time objective intelligibility (STOI) [30] and log-spectrum 



distortion (LSD) [31] are conducted as the objective measures 
to evaluate the speech quality with the PLC. Because there are 
not enough experts to accomplish formal subjective listening 
tests, we uploaded some demos at website: 
https://github.com/AugggRush/PLC-demos.  

In this evaluation, the silence substitution scheme is 
regarded as the baseline. The widely used WSOLA [4] method 
is chosen as a traditional comparation. The DNN [12] integrated 
with GLA method (DNN&GLA) and recent encoder-based 
framework (Encoder) [15] are selected as neural comparation.  

Table 1: Test results of PESQ, STOI and LSD 

 PLR 10% 20% 30% 50% 

PESQ 

Silence 2.62 2.24 1.80 1.07 
DNN&GLA 2.66 2.31 1.84 1.51 

WSOLA 3.02 2.58 2.28 1.69 
Encoder 3.20 2.77 2.48 1.92 
Proposed 3.32 2.89 2.60 2.07 

STOI 

Silence 0.942 0.890 0.834 0.715 
DNN&GLA 0.946 0.908 0.870 0.795 

WSOLA 0.948 0.911 0.869 0.790 
Encoder 0.974 0.948 0.918 0.842 
Proposed 0.980 0.958 0.935 0.873 

LSD 

Silence 1.28 2.69 4.78 9.14 
DNN&GLA 0.77 1.46 2.09 3.05 

WSOLA 0.62 1.14 2.57 3.56 
Encoder 0.48 1.02 1.79 3.54 
Proposed 0.35 0.72 1.11 2.06 

Table 1 describes the wide-band PESQ, STOI and LSD 
scores in various packet loss rates, respectively. Compared with 
the baseline, DNN method integrated with GLA performs much 
worse than satisfactorily, there is only slight improvement at 
high PLR. This confirms that GLA is not a good vocoder for 
PLC tasks. The WSOLA method derives better PESQ than 
DNN&GLA, but its STOI is lower at 30% and 50% loss rates. 
This might because long gaps at high loss rates contain new 
phonemes, that is, it stretches the waveform too long to restore 
the correct phonemes and results in a loss of intelligibility. 
Encoder method performs much higher than DNN&GLA on 
PESQ and STOI. Besides, it should be noticed that both 
WSOLA and Encoder are worse than DNN&GLA in LSD 
scores, because DNN only deal with the power spectrum which 
is more structural, while the other two methods consider 
amplitude and phase spectra together.   

Furthermore, in all objective tests, the proposed method is 
far better than all reference methods in various PLRs. 
Compared to the baseline, our method averagely increases the 
PESQ and STOI remarkably by 46% and 11.5%. With the 
increase of the PLR, the quality improvement is also increased, 
because more fragments need to be repaired while the loss 
becomes large. It is notable that our method almost increases 1 
PESQ score at 50% loss rate, and except for 50%, the proposed 
method obtains nearly transparent LSD scores. 

Figure 7 shows some examples of waveform transition 
between unvoiced and voiced speech. In the first grey box, it is 
obvious that the proposed vocoder method recovers transition 
from the voiced to unvoiced waveform far better than other 
methods. For the transition from the unvoiced to voiced 
waveforms in second and third box, all methods fail to recover 
the energy of the voiced speech from the low-energy unvoiced 
speech. 

Figure 8 shows an example of the voiced waveforms. The 
first box contains a single frame loss (10ms), meanwhile, the 

second box contains a consecutive loss of five frames (50ms). 
The waveform recovered by DNN&GLA is the worst that is 
away from the origin one. The WSOLA method can recover the 
pitch, but it suffers from severe energy loss. And both Encoder 
and proposed methods track the pitch trajectory very well, but 
as the continuous packet loss increases, the energy of recovered 
waveforms become smaller and smaller. In comparation, the 
proposed method obtains a result closer to origin one and 
enriches much more waveform details, which makes the speech 
sound more real and natural. This might be caused by the 
difference between the training targets of two neural models. 
The flow-based vocoder tries to learn probability distribution of 
the speech, and then generates waveforms by sampling from the 
learned distribution, which means that any value has a greater 
or lesser probability of being taken. However, the Encoder 
method trains a CNN model to minimize the mean square error 
(MSE) between the generation and target, which makes the 
generation like a linear approximation of real waveform.   

 
Figure 7. Comparison of waveform transition  

 
Figure 8. Voiced waveform comparison 

5. Conclusions 
In this work, we proposed to use a neural architecture to 
accomplish an online PLC task. A DNN is designed to predict 
the Mel-spectrograms of the lost packets from the history 
contexts only. A flow-based vocoder was used to transform the 
Mel-spectrograms into natural speech waveform. Waveform 
similarity-based smoothing post-process was utilized to find the 
most similar substitution to mitigate the discontinuity. 
Compared with reference methods, the proposed method 
absolutely has a better performance. In the further work, a 
formal subjective test can be conducted to further verify the 
advantage of our system. For more accurately predicting Mel-
spectrograms, a more effective predictor could be exploited, 
and also it is necessary to find a way to solve the energy decay 
problem in consecutive packet loss. 
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