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Abstract—We address the problem of joint power allocation in
a two-hop MIMO-OFDM link where a source node sends data to
a destination node via an amplify-and-forward relay. Since the
relay operates in the full-duplex mode, it receives and forwards
data simultaneously. Our design objective is to maximize the
end-to-end throughput, subject to either the joint sum-power
constraint of both the source and the relay or the individual sum-
power constraints at the source and the relay. The formulated
problems are large-scale nonconvex optimization problems, for
which efficient and optimal solutions are not available. Using
the successive convex optimization approach, we develop a novel
iterative algorithm of extremely low complexity that is especially
suitable for large-scale computation. In each iteration, a simple
closed-form solution is derived for the approximated convex
program. The proposed algorithm is proved to always converge
to at least a local optimum of the original nonconvex problems.
Numerical results confirm that the devised algorithm converges
quickly, and that our optimal power allocation solutions help re-
alize the potential throughput gain of MIMO-OFDM full-duplex
relaying over the conventional half-duplex relaying strategy.

I. INTRODUCTION

The fifth-generation (5G) wireless networks target a 1, 000-

fold increase in the network capacity to meet the ever growing

user demands for high-speed and ubiquitous network ac-

cess. Multiple-input multiple-output (MIMO) communications

and cooperative orthogonal frequency division multiplexing

(OFDM) relaying techniques play a key role in supporting

such an ambitious objective. MIMO transmission and reception

increase the channel capacity through spatial multiplexing,

modulation and coding. Cooperative relaying provides greater

coverage without deploying costly additional base stations.

OFDM relays are traditionally designed for the half-

duplexing (HD) mode, where signal transmission and reception

take place in different time slots and/or frequency bands. Only

after fully receiving a data packet, the HD relay nodes forward

it to the destination. On the other hand, full-duplexing (FD) has

recently been proposed as one of the key transceiver techniques

for 5G networks with the hope of doubling the spectral effi-

ciency [1], [2]. The end-to-end delay is significantly reduced

with simultaneous signal transmission and reception in the

same time slot and on the same frequency band at the FD relay

node. However, such bidirectional communication on the same

radio resource block was assumed technically impossible,

due to the large self-interference (SI) caused by the transmit

antenna to the receive antenna on the same device. Recent

advances in hardware design have suppressed the SI to a level

potentially suitable for practical FD applications [3]–[5].

Finding efficient power allocations to realize the potential

gains of the MIMO-OFDM FD relaying strategy remains an

open research topic. Such allocations are still under-developed

even for the conventional MIMO-OFDM HD relaying net-

works. In [6], the problem of power allocation for amplify-

and-forward (AF) HD relays is investigated to maximize the

instantaneous sum throughput. Since the objective function is

not jointly but separately concave in the source and relay power

variables, [6] proposes alternating optimization at the source

and at the relay with individual per-node power constraints.

For the joint sum-power constraint at both source and relay,

[6] resorts to a high signal-to-noise ratio (SNR) approximation

for the throughput to become a jointly concave function in the

source and relay power variables [7, Prop. 1 and Appendix

B]. Although a closed-form optimal solution is available for

the convex reformulation, such an approximation at high SNR

regions does not always hold in practice. OFDM subchannels

tend to be assigned with very different transmit power lev-

els. Good subchannels are typically allocated more power to

achieve high SNRs while unfavorable subchannels may even

get zero SNRs. With the high SNR approximation of [6], the

original nonconvex program is transformed to an inequivalent
optimization problem. Upper bound maximization is given by

[6], [7] for the original nonconvex maximization, where lower

bound maximization should always be naturally preferred. In

general, the solutions found by either alternating optimization

or convex relaxation may not even satisfy the Karush-Kuhn-

Tucker (KKT) necessary conditions for optimality.

It is even more challenging to find efficient power alloca-

tions for a MIMO-OFDM two-hop network with FD relaying.

Such a highly nonconvex problem is unlikely to be solved

via only one convex relaxation as in [6], [7]. To the best of

our knowledge, there exists no efficient computational solution

that guarantees optimality for this problem. In this paper, we

develop a new iterative algorithm of extremely low computa-

tional complexity to jointly allocate the transmit power at the

source and the relay. We tackle the nonconvex optimization

problem via solving a sequence of convex programs in the

complete set of source and relay power variables. The proposed

approach applies equally well to both joint and separate sum-

power constraints.

Our convex approximations are far from trivial even in the

simplest scenario of MIMO-OFDM HD relaying considered in

[6]. With the new bounding technique, the devised algorithm

is novel even from an optimization-theoretical perspective. As
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Fig. 1. A two-hop network with one source node (S), one full-duplex relay
node (R) and one destination node (D)

each iteration of the algorithm always yields an improved so-

lution, it is guaranteed to converge to at least a local optimum

of the original nonconvex problems. Importantly, unlike [8],

[9] we derive a simple closed-form solution for the convex

program in each iteration, which requires extremely low com-

putational complexity. Our algorithm is therefore particularly

suitable for large-scale computation. Numerical results show

that our efficient power allocation scheme markedly enhances

the throughput of the FD relaying over the HD relaying

strategy in the low SI regions.

Notation. Boldfaced symbols are used for optimization vari-

ables whereas non-boldfaced symbols for deterministic terms,

regardless of whether they are matrix, vector or scalar. The

dimensions of these symbols are interpreted from context, and

should there be any ambiguity they will be explicitly specified.

II. SYSTEM MODEL AND PROBLEM FORMULATIONS

Consider a two-hop relaying network as shown in Fig. 1.

Using K OFDM subcarriers, the NS-antenna source node S
sends data information to the ND-antenna destination node D
with the help of an NR-antenna AF FD relay node R. For

simplicity and without loss of generality, let us assume that

NS = ND = NR = N . Denote the set of OFDM subcarriers

as K � {1, . . . ,K}. We assume there is no direct link between

the two nodes S and D, e.g., building structures prevent signal

penetration. The channel impulse response is assumed to be

time-invariant during the time for exchanging information.

Furthermore, full channel state information is made available

at the nodes by some high-performing channel estimation

mechanism in place. A central processing unit is employed

to collect all the channel state information from the nodes

(via either wireline or wireless links), perform the network

optimization and disseminate the computational solution back

to the nodes.

Data symbol sk ∈ C
N from node S is linearly precoded

before transmitting on subcarrier k ∈ K as s̃k = Ψksk, where

Ψk ∈ C
N×N is the transmit precoding matrix on subcarrier

k by node S. The received vector symbol on subcarrier k at

node R is

yR,k = HS,ks̃k + eLI,k + w̃R,k, (1)

where HS,k ∈ C
N×N is the MIMO channel matrix between

node S and node R on subcarrier k; eLI,k ∈ C
N is the

relay FD loop interference on subcarrier k; and w̃R,k ∈ C
N

is additive zero-mean Gaussian noise with covariance RR

encompassing all OFDM impairments such as intercarrier

power leakage, narrow band interferences, channel estimation

error and baseband noise [10]–[12].

Node R then multiplies yR,k by a matrix Fk and broadcasts

the processed signal vector to node D. The received signal

vector at node D is expressed as:

ỹD,k = HR,kFk (HS,ks̃k + eLI,k + w̃R,k) + w̃D,k

= HR,kFkHS,kΨksk︸ ︷︷ ︸
desired signal

+ HR,kFkeLI,k︸ ︷︷ ︸
amplified FD relay loop interference

+ HR,kFkw̃R,k︸ ︷︷ ︸
amplified relay noise

+w̃D,k, (2)

where HR,k ∈ C
N×N is the MIMO channel matrix between

node R and node D on subcarrier k; and w̃D,k is the zero-mean

Gaussian noise at node D with covariance RD encompassing

all impairments such as intercarrier power leakage, narrow

band interferences, channel estimation error and baseband

noise [10]–[12].

Without loss of generality, we assume that HS,k and HR,k

are nonsingular. They can thus be represented by the singular

value decomposition (SVD) as:

HS,k = VS,kΛS,kUS,k and HR,k = UR,kΛR,kVR,k (3)

with unitary matrices Ut,k and Vt,k, t ∈ {S,R} and diagonal

matrices Λt,k = diag
{√

ht,k,n
}N

n=1
, t ∈ {S,R}. By taking

Fk = V H
R,kΛ̄kV

H
S,k, Λ̄k = diag

{√
βk,n

√
pR,k,n

}N

n=1
;

Ψk = U−1
S,kΛ̌k, Λ̌k = diag

{√
pS,k,n

}N

n=1
,

(4)

one can rewrite (2) as:

yD,k = ΛR,kΛ̄kΛS,kΛ̌ksk︸ ︷︷ ︸
desired signal

+ ΛR,kΛ̄ktLI,k︸ ︷︷ ︸
FD loop interference

+ ΛR,kΛ̄kwR,k︸ ︷︷ ︸
amplified relay noise

+ wD,k, (5)

where

yD,k = U−1
R,kỹD,k, tLI,k = V H

S,keLI,k,

wR,k = V H
S,kw̃R,k, wD,k = U−1

R,kw̃D,k.
(6)

The noises wR,k and wD,k are still zero-mean Gaussian with

covariances

RR,k = V H
S,kRRVS,k and RD,k = U−1

R,kRDU
−H
R,k , (7)

respectively. With (5), we have shown that the FD relay MIMO

channel in each OFDM subcarrier can be diagonalized into N
parallel channels.

In (4), pS,k,n and pR,k,n are respectively the equivalent

transmit power of node S to node R and that of node

R to node D on spatial channel n in subcarrier k. Note

that while the relaying power in Fk is not amplified, the

gain βk,n ensures that the transmit power of each channel

n on subcarrier k is indeed pR,k,n. In regard to the self-

loop interferences in (6), it follows from [4] and [13] that

practically E{||tLI,k||2} ≤ hLI
∑N

n=1 pR,k,n for some instan-

taneous residual self-loop interference power hLI. To have

mathematically tractable formulations for power allocation, we

make the following simplified assumption [7]:

E{|tLI,k(n)|2} ≤ hLI,k,npR,k,n, (8)



where hLI,k,n represents the instantaneous residual self-loop

interference power of spatial channel n on subcarrier k at node

R. It follows that the amplify gain βk,n in (4) is:

βk,n =

√
1

hS,k,npS,k,n + hLI,k,npR,k,n +RR,k(n, n)

=

√
1/RR,k(n, n) (γLI,k,npR,k,n + 1)

h̄S,k,nγk,n(pS,k,n,pR,k,n) + 1
, (9)

where we define γLI,k,n � hLI,k,n/RR,k(n, n), h̄S,k,n �
hS,k,n/RR,k(n, n) and

γk,n(pS,k,n,pR,k,n) �
pS,k,n

γLI,k,npR,k,n + 1
. (10)

The signal-to-noise ratio (SNR) at node D on spatial channel

n of subcarrier k is then expressed as:

SNRk,n =

h̄S,k,nγ(pS,k,n,pR,k,n) (hR,k,n/RD,k(n, n))pR,k,n

1 + h̄S,k,nγ(pS,k,n,pR,k,n) + (hR,k,n/RD,k(n, n))pR,k,n
.

(11)

Upon defining

a(k−1)N+n � h̄S,k,n, b(k−1)N+n � hR,k,n/RD,k(n, n),

γLI,(k−1)N+n � γLI,k,n,

x(k−1)N+n � pS,k,n, y(k−1)N+n � pR,k,n,

γ(k−1)N+n(x(k−1)N+n,y(k−1)N+n) � γk,n(pS,k,n,pR,k,n),

x � (x1, . . . ,xKN )
T
, y � (y1, . . . ,yKN )

T
, M � KN,

we are concerned with the problem of maximizing the instanta-

neous end-to-end throughput under transmit power constraints.

Such an optimization problem is formulated as:

max
(x,y)

M∑
i=1

ln

(
1 +

aiγ(xi,yi)biyi

1 + aiγ(xi,yi) + biyi

)
(12)

subject to the joint sum-power constraint

M∑
i=1

(xi + yi) ≤ P, (13)

or the separate sum-power constraints

M∑
i=1

xi ≤ P1,

M∑
i=1

yi ≤ P2. (14)

Here, P, P1, P2 ≥ 0 are predefined power budgets. In prac-

tice, the users and the relay have separate power supplies

constrained by (14) and the power allocation is performed at

individual nodes. However, it is also important to consider the

joint power allocation with the joint sum-power constraint (13)

to gain meaningful insights into the power utilization of the

system, and thereby realizing its full capacity.

III. PROPOSED JOINTLY OPTIMAL POWER ALLOCATION

For the ease of reference, we present below the mathematical

properties that are frequently used in our solution development.

• (P1): ln (x1 + x2) ≤ ln
(
x
(0)
1 + x

(0)
2

)
+

1

x
(0)
1 +x

(0)
2

[(
x1 − x

(0)
1

)
+

(
x2 − x

(0)
2

)]
for all

x1 > 0, x2 ≥ 0, x
(0)
1 > 0, x

(0)
2 ≥ 0.

• (P2): ln (x1 + x2) ≥ ln
(
x
(0)
1 + x

(0)
2

)
+

1

x
(0)
1 +x

(0)
2

[
x
(0)
1

(
lnx1 − lnx

(0)
1

)
+ x

(0)
2

(
lnx2 − lnx

(0)
2

)]
for all x1 > 0, x2 > 0, x

(0)
1 > 0, x

(0)
2 > 0.

Property (P1) follows from the concavity of function

h(x1, x2) � ln(x1 + x2) while Property (P2) from the

convexity of function h̃(x̃1, x̃2) � ln
(
ex̃1 + ex̃2

)
is convex in

(x̃1, x̃2). The latter is the key for the success of the SCALE

algorithm in the multiuser OFDM spectrum balancing problem

[14].

For our problems of interest (12) s.t. (13)/(14), the cross

term γ(xi,yi)yi in the objective function contributes greatly

to their computational difficulty. Fortunately, we can separate

these variables without any loss of accuracy. Let us define:

fi(xi,yi) � ln(1 + aixi + γLI,iyi) + ln(1 + biyi),

gi(xi,yi) � ln
(
1 + aixi + (bi + γLI,i)yi + γLI,ibiy

2
i

)
for i = 1, . . . ,M . We then rewrite (12) as:

F (x,y) =

M∑
i=1

[ln(1 + aiγ(xi,yi)) + ln(1 + biyi)

− ln(1 + aiγ(xi,yi) + biyi)]

=
M∑
i=1

[ln (1 + aixi + γLI,iyi) + ln(1 + biyi)

− ln
(
1 + aixi + (bi + γLI,i)yi + γLI,ibiy

2
i

)
]

� f(x,y)− g(x,y), (15)

where

f(x,y) �
M∑
i=1

fi(xi,yi) (16)

is concave, and

g(x,y) �
M∑
i=1

gi(xi,yi) (17)

is neither concave nor convex. Problems (12) s.t. (13)/(14) now

become:

max
(x,y)

F (x,y) = f(x,y)− g(x,y) s.t. (13)/(14). (18)

Following the iterative d.c. (difference of two convex func-

tions) optimization method [8], [15], [16], we seek a global

convex upper bound for g(x,y), which agrees with g(·) at a

given point
(
x(κ), y(κ)

)
.

By property (P1), we have that

gi(xi,yi)

≤ gi(x
(κ)
i , y

(κ)
i ) + c

(κ)
i

[(
aixi + (bi + γLI,i)yi + γLI,ibiy

2
i

)
−

(
aix

(κ)
i + (bi + γLI,i)y

(κ)
i + γLI,ibi(y

(κ)
i )2

)]
,

for all xi ≥ 0,yi ≥ 0, x
(κ)
i ≥ 0, y

(κ)
i ≥ 0 and where

c
(κ)
i =

1

1 + aix
(κ)
i + (bi + γLI,i)y

(κ)
i + γLI,ibi(y

(κ)
i )2

. (19)



Then, the convex quadratic function g(κ)(x,y) defined by

g(κ)(x,y)

� g(x(κ), y(κ)) +

M∑
i=1

c
(κ)
i

(
aixi + (bi + γLI,i)yi + γLI,ibiy

2
i

)

−
M∑
i=1

c
(κ)
i

(
aix

(κ)
i + (bi + γLI,i)y

(κ)
i + γLI,ibi(y

(κ)
i )2

)
(20)

provides a global upper bound g(x,y) that agrees with g(·) at(
x(κ), y(κ)

)
, i.e.,

g
(
x(κ), y(κ)

)
= g(κ)

(
x(κ), y(κ)

)
, (21)

g(x,y) ≤ g(κ)(x,y), ∀(x,y). (22)

Next, we use the following concave lower bound for the

concave function f(x,y). By property (P2), we have that

ln (1 + aixi + γLI,iyi) ≥ ln
(
1 + aix

(κ)
i + γLI,iy

(κ)
i

)
+ p

(κ)
i

(
ln (1 + aixi)− ln

(
1 + aix

(κ)
i

))
+ q

(κ)
i

(
lnyi − ln y

(κ)
i

)
,

ln(1 + biyi) ≥ ln(1 + biy
(κ)
i ) + r

(κ)
i

(
lnyi − ln y

(κ)
i

)
,

where

p
(κ)
i � 1 + aix

(κ)
i

1 + aix
(κ)
i + γLI,iy

(κ)
i

; q
(κ)
i � γLI,iy

(κ)
i

1 + aix
(κ)
i + γLI,iy

(κ)
i

;

r
(κ)
i � biy

(κ)
i

1 + biy
(κ)
i

.

As such, f(x,y) ≥ f (κ)(x,y) for

f (κ)(x,y) �

f
(
x(κ), y(κ)

)
+

M∑
i=1

[
p
(κ)
i

(
ln (1 + aixi)− ln(1 + aix

(κ)
i )

)
+q

(κ)
i

(
lnyi − ln y

(κ)
i

)
+ r

(κ)
i

(
lnyi − ln y

(κ)
i

)]
. (23)

Initialized by a feasible solution
(
x(0), y(0)

)
to problem (18),

we generate a feasible solution
(
x(κ+1), y(κ+1)

)
at κ-iteration

for κ = 0, 1, . . . , as the optimal solution of the following

convex program:

max
(x,y)

F (κ)(x,y) �
[
f (κ)(x,y)− g(κ)(x,y)

]
(24)

s.t. (13)/(14).

The concave function F (κ)(·) in problem (24) possesses the

following two crucial properties:

• It agrees with the nonconcave objective function F (·) at(
x(κ), y(κ)

)
, i.e.,

F (κ)
(
x(κ), y(κ)

)
= F

(
x(κ), y(κ)

)
. (25)

• It is a global lower bound of the nonconcave objective

function F (·), i.e.,

F (κ)(x,y) ≤ F (x,y), ∀(x,y). (26)

These two properties guarantee that F (κ)(·) is both a local

and a global concave approximation of F (·) at
(
x(κ), y(κ)

)
. A

proximity control is therefore not necessary.

The convex program (24) provides an iterative minorant
maximization for nonconvex program (18). Since (x(κ), y(κ))
is feasible to problem (24) itself, it follows that

F
(
x(κ), y(κ)

)
= F (κ)

(
x(κ), y(κ)

)
< F (κ)

(
x(κ+1), y(κ+1)

)
≤ F

(
x(κ+1), y(κ+1)

)
(27)

as long as
(
x(κ+1), y(κ+1)

) �= (
x(κ), y(κ)

)
. In other words,(

x(κ+1), y(κ+1)
)

is a better solution of the nonconvex program

(18) than
(
x(κ), y(κ)

)
. Moreover, the necessary optimality

condition for
(
x(κ), y(κ)

)
is

(
x(κ+1), y(κ+1)

)
=

(
x(κ), y(κ)

)
.

That is, for
(
x(κ), y(κ)

)
to be an optimal solution of the

nonconvex program (18), it is necessary that
(
x(κ), y(κ)

)
is

a globally optimal solution of the convex program (24).

Proposition 1 ( [8], [15], [16]): For any function F (κ)(·)
satisfying the agreement condition (25) and the lower bounding

condition (26),
{(
x(κ), y(κ)

)}
is a sequence of improved

points, which converges to at least a locally optimal solution

of problem (18). Given a tolerance ε, the above iterations are

finite under the stopping criterion

F
(
x(κ+1), y(κ+1)

)
− F

(
x(κ), y(κ)

)
< ε. (28)

The computational efficiency is therefore hinges upon the

computational tractability of the convex program (24), which

boils down to the following convex program:

max
(x,y)

M∑
i=1

[
p
(κ)
i ln(1 + aixi) +

(
q
(κ)
i + r

(κ)
i

)
lnyi

−c(κ)i

(
aixi + (bi + γLI,i)yi + γLI,ibiy

2
i

)]
(29)

s.t. (13)/(14).

In the case of power constraint (13), the KKT conditions for

necessary and sufficient optimality are:

aip
(κ)
i

1 + aixi
− c

(κ)
i ai + λ1i = λ, (30)

λ

(
M∑
i=1

(xi + yi)− P

)
= 0, (31)

q
(κ)
i + r

(κ)
i

yi
− c

(κ)
i [(bi + γLI,i) + 2γLI,ibiyi] + λ2i = λ, (32)

λ1ixi = 0, λ2iyi = 0, λ1i ≥ 0, λ2i ≥ 0, λ ≥ 0 (33)

for i = 1, . . . ,M . The optimal solution
(
x(κ+1), y(κ+1)

)
of

problem (24) s.t. (13) is then derived as:

x
(κ+1)
i = max

{
p
(κ)
i

c
(κ)
i ai + λ

− 1

ai
, 0

}
, (34)

y
(κ+1)
i = 2

(
q
(κ)
i + r

(κ)
i

)
×

(
c
(κ)
i (bi + γLI,i) + λ

+

√(
c
(κ)
i (bi + γLI,i) + λ

)2

+ 8
(
q
(κ)
i + r

(κ)
i

)
c
(κ)
i γLI,ibi

)−1

,

(35)



where λ > 0 is chosen such that
(
x(κ+1), y(κ+1)

)
meets the

power constraint (13) with equality. A bisection search can be

used to find λ where the initial values are set as λlo = 0 and

λhi = max
i=1,...,M

{
p
(κ)
i

P/(3M) + 1/ai
− c

(κ)
i ai,

6M

P

(
q
(κ)
i + r

(κ)
i

)
− c

(κ)
i (bi + γLI,i)

}
.

Analogously, in the case of the power constraints (14), the

optimal solution of problem (24) s.t. (14) is derived as:

x
(κ+1)
i = max

{
p
(κ)
i

c
(κ)
i ai + λ1

− 1

ai
, 0

}
, (36)

y
(κ+1)
i = 2

(
q
(κ)
i + r

(κ)
i

)
×

(
c
(κ)
i (bi + γLI,i) + λ2

+

√(
c
(κ)
i (bi + γLI,i) + λ2

)2

+ 8(q
(κ)
i + r

(κ)
i )c

(κ)
i γLI,ibi

)−1

,

(37)

where λ1 > 0 is chosen such that
∑M

i=1 x
(κ+1)
i = P1, and

λ2 = 0 if
∑M

i=1 y
(κ+1)
i ≤ P2 at λ2 = 0, otherwise λ2 > 0 is

chosen such that
∑M

i=1 y
(κ+1)
i = P2. A bisection search can

be used where the initial values are set as λ1,lo = λ2,lo = 0,

λ1,hi = max
i=1,...,M

{
p
(κ)
i

P1/M + 1/ai
− c

(κ)
i ai

}
,

λ2,hi = max
i=1,...,M

{
2M

P2

(
q
(κ)
i + r

(κ)
i

)
− c

(κ)
i (bi + γLI,i)

}
.

Finally, the proposed iterative water filling algorithm that

solves problems (12) s.t. (13)/(14) is summarized as follows.

ALGORITHM 1. Initialized by a feasible solution
(
x(0), y(0)

)
to problems (12) s.t. (13)/(14), we generate a feasible solution(
x(κ+1), y(κ+1)

)
at κ-iteration for κ = 0, 1, . . . , according to

formulae (34)-(35)/(36)-(37).
Proposition 2: Initialized from a feasible solution(
x(0), y(0)

)
to problems (12) s.t. (13)/(14), the sequence of

improved solutions
{(
x(κ), y(κ)

)}
generated by Algorithm

1 converges to an optimal solution of problems (12) s.t.

(13)/(14).

Remark 1: If the HD relaying strategy is used, γLI,i = 0 and

thus γ(xi,yi) = xi. We then have the following instantaneous

sum-rate maximization per time slot:

max
(x,y)

1

2

M∑
i=1

ln

(
1 +

aixibiyi

1 + aixi + biyi

)
(38)

subject to constraint (13) or (14). Here, the pre-log factor of

1/2 accounts for the two time slots needed to transmit one data

packet. Algorithm 1 can solve problem (38) by letting γLI,i =
0 and using (38) to compute the achieved throughput. Such

HD throughput can be used as a benchmark for performance

comparison with the FD relaying strategy.

IV. NUMERICAL RESULTS

We consider a two-hop relaying network in Fig. 1. Since

the two users and the relay are collocated on a line, dS,D =

(a) Joint sum-power constraint

20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

Maximum power constraint P1=P2 (dB)

Av
er

ag
e 

sp
ec

tra
l e

ffi
ci

en
cy

 (b
ps

/H
z)

Alg
Alternating optimization by [6]

(b) Separate sum-power constraints

Fig. 2. Throughput comparison with [6] for the HD relaying case

dS,R + dR,D. We set the number of antennas as N = 4. For

each spatial channel, the following pathloss model is used [17]:

PLdB = 38 + 30 log10(d) + ψ, (39)

where d (in meters) is the transmitter-receiver distance and ψ
(in dB) is a correction factor (e.g., to model the outdoor wall

penetration loss). We model the shadowing effect by a log-

normal random variable with mean of zero and standard devi-

ation of 6dB. To simulate the effect of frequency selectivity in

each spatial channel, we assume an exponential power delay

profile (PDP) with a root-mean-square (RMS) delay spread of

σRMS = 3Ts where Ts is a constant. The spatial correlation

among the MIMO channels is taken from Case B of the 3GPP

I-METRA MIMO channel model [18, p.94].

The time-domain channels are converted to the frequency

domain by the Fast Fourier transform (FFT) for the computa-

tion of the OFDM throughput. We use K = 1, 024 OFDM sub-

carriers, each of which occupies a bandwidth of Δf = 15kHz.

Since we take Ts = 1/(KΔf), Δf is much smaller than the

channel coherence bandwidth of 0.02/σRMS [19, p.85]. The

OFDM subchannels are frequency-flat while there is correla-

tion among the adjacent subchannels. In each subchannel, the
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Fig. 3. Throughput comparison between FD and HD relaying strategies by
Algorithm 1

power spectral density of additive white Gaussian background

noise at each antenna is −174dBm/Hz, and the correlation

between noise samples from different antennas is 0.2. The

effect of all other impairments (including inter-carrier power

leakage) is modelled as additive Gaussian noise whose power

is twice that of the background noise. For simplicity, we set the

self-loop gain as hLI,k,n = hLI, ∀i = 1, . . . ,M . The presented

value of hLI is not normalized with respect to noise power

and hLI = 0 in the HD relaying. We assume P = P1 + P2

and initialize Algorithm 1 by xi = P1/M and yi = P2/M
for i = 1, . . . ,M . We set the error tolerance as ε = 10−4,

repeat the simulation for 100 independent runs and average

the results to get the final figures for spectral efficiency.

First, we compare Algorithm 1 with the two approaches

of [6], namely, joint optimization with the high SNR as-

sumption (for the joint sum-power constraint) and alternating

optimization (for the separate sum-power constraints). Because

the latter solutions only apply to the HD relaying case, we

set γLI = 0 in Algorithm 1 for comparison. Here, we set

dS,R = dR,D = 1, 000m, ψ = 20dB and assume that each

tap of the PDP follows the Rayleigh distribution. Fig. 2(a)
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Fig. 4. Convergence of Algorithm 1 for the FD relaying case

verifies that the high SNR approximation is not effective in the

low-to-medium SNR scenario that we have simulated. This is

demonstrated by the performance gap between the solution of

[6] and our proposed solution. Fig. 2(b) shows that Algorithm

1 performs as well as the alternating optimization of [6] for

separate sum-power constraints. However, it should be recalled

that the alternating optimization approach cannot be used for

the joint sum-power constraint case.

To compare FD relaying with HD relaying, we now set

dS,R = dR,D = 500m, ψ = 0dB, P1 = 20dBm and

P2 = 40dBm. We assume that each tap of the corresponding

channel PDP follows the Rayleigh distribution. From Fig. 3,

the achieved throughput by FD almost doubles that by HD at

low values of hLI. However, the throughput declines as hLI in-

creases, confirming the intuition that the self-loop interference

at the FD relay is the limiting parameter for FD transmissions

to be beneficial. Particularly, the gain provided by FD vanishes

beyond hLI = −120dB, i.e., it benefits more to stay with the

HD transmission beyond this point.

Fig. 4 illustrates the convergence of Algorithm 1 for a

random channel realization in the above FD relaying scenario

with hLI = −140dB. It is observed that convergence occurs

within six iterations at a rather strict error tolerance ε = 10−4.

Note that each iteration corresponds to evaluating a simple

closed-form expression for the solution of a convex program,

thus requiring a very little computational effort. Together

with the small number of iterations, the total computational

complexity is low even for our large-scale numerical examples

with 4, 096 subchannels.

V. CONCLUSIONS

This paper proposes a large-scale low-complexity algorithm

for joint optimal power allocation in a two-hop FD relaying

MIMO-OFDM network. The total network throughput is max-

imized, subject to either the joint sum-power constraint or the

separate sum-power constraints at source and relay nodes. To

solve the nonconvex formulated problems, the successive con-

vex optimization approach is employed. A simple closed-form

solution is available for the approximated convex program in

each iteration. The proposed algorithm is shown to always



converge to at least a local optimum. The advantages of our

novel solutions have been confirmed by numerical examples.
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