
Characterizing Observability and Controllability
of Software Components

Bruce W. Weide

Stephen H. Edwards

Wayne D. Heym*

Timothy J. Long

William F. Ogden

Department of Computer and Information Science

The Ohio State University

2015 Neil Avenue

Columbus, OH 43210

{weide,edwards,heym,long,ogden}@cis.ohio-state.edu

Technical Report OSU-CISRC-9/95-TR37

September 1995

Copyright © 1995 by the authors. All rights reserved.

* Also with Department of Mathematical Sciences, Otterbein College, Westerville, OH 43081.

Abstract

Two important objectives when designing a specification for a reusable software
component are understandability and utility. For a typical component defining a new
abstract data type, a significant common factor affecting both of these objectives is the
choice of a mathematical model of the (state space of the) ADT, which is used to explain
the behavior of the ADT’s operations to potential clients. There are subtle connections
between the expressiveness of this mathematical model and the functions computable
using the operations provided with the ADT, giving rise to interesting issues involving
the two complementary system-theoretic principles of “observability” and
“controllability”. Previously we recommended a practical way to test compliance of a
proposed design with these informally-defined principles: it should be possible to
construct layered implementations of operations to test equality of and to copy variables
of an ADT. This paper discusses problems associated with formalizing intuitively-stated
observability and controllability principles in accordance with these tests. Although the
example we use for illustration is simple, the analysis has implications for the design of
reusable software components of every scale and conceptual complexity.

Keywords

abstraction, controllability, design for reuse, formal specification, full abstraction, model-
based specification, observability, reuse, software component

1

1. Introduction

Specifying the behavior of a software component — especially one that is meant to be
reused — is a challenging task. Some important “quality” objectives of design in this
area include avoiding implementation bias [Jones 90] and achieving understandability for
potential component clients [Sitaraman 93]. How can the specifier’s design space be
limited so high quality reusable component designs are allowed while low quality ones
are ruled out? And how can proposed design principles be made effectively checkable
and not merely slogans?

Surely no general guidelines can succeed completely, but experience shows that some do
constrain the design space in the right ways. In prior work we surveyed several
specification principles that were intuitively described in the literature and proposed
practical tests for compliance [Weide 91]. In this paper we report on some interesting
problems associated with two of these principles, observability and controllability, which
deal with the relationship between the expressiveness of the mathematics used in a
specification and the computational power of the specified component. Informally, they
(together) provide a test for “minimality” of the specified state space of an ADT.

Our contributions here are:

• We show why it is important to make careful and unambiguous definitions of these
principles, because superficially reasonable interpretations of the informal
definitions can easily lead to compliance tests that admit poor designs.

• We illustrate unexpected difficulties in making careful and unambiguous
definitions.

• We lay out a road map of possible ways to formalize observability and
controllability. At each fork in the road (marked in the text with ψ) this paper
takes a particular branch in concert with folklore about specification design,
leading toward and beyond fairly specific principles proposed in the literature
[Weide 91]. This gives a depth-first view of the landscape of Figure 1. A more
comprehensive paper in preparation will discuss the paths we do not follow here.

1.1. The Principle of Observability

One of the most important design decisions facing a reusable component specifier is the
selection of an appropriate mathematical model (also called “conceptual model” or
“abstract model” or “mental model” [Norman 90]) for the state space of values for
variables (or “objects”) of a new abstract data type (ADT) [Edwards 94, Guttag 93,
Spivey 89, Weide 91, Wing 90]. This model is used to explain the abstract behavior of a
component’s operations, so the choice of model directly influences the understandability
of the concept and the ease of reasoning about its implementations and clients that are

2

layered on top of it [Sitaraman 93, Edwards 95]. Typically, the specification designer
must consider a variety of candidate mathematical models before identifying the “best”
one(s). There are many options because both standard and newly-conceived
mathematical models — and compositions and combinations thereof — are candidates.

: Define “computationally” based on some
implementation of the component, or all?

allsome

: Use “relative” versions of definitions,
absolute versions, or something else?

otherrelative

absolute

this
paper

1
ψ

2
ψ

Figure 1 — Major Decision Points in Formalizing Observability and Controllability

An intuitively pleasing ideal that helps limit the design space in this dimension is the
principle of observability:

O0 A specification S defining the program type ADT is observable iff every two
unequal values in ADT’s state space are “computationally distinguishable” using
some combination of operations of S.

An appropriate way to view observability is in terms of the connection between the
structure of the state space imposed on it by its mathematical operators and predicates,
and the computational structure imposed on it by the specified programming operations.
Observability dictates that the model should define a state space which makes distinctions
that are just sufficient to specify the intended behavior of the operations — and no more;
i.e., the model does not distinguish values that are indistinguishable by the operations.
One predicate that is available in nearly every useful mathematical state space is equality.
Basing observability on equality makes the principle generally applicable, although it is
possible to refine it to other predicates particular to individual mathematical theories.

A prime motivation for demanding observability is psychological. In trying to
understand a specification, a client naturally assumes that distinctions in the state space
are important. If a specification makes distinctions (two model values are unequal

3

mathematically) without differences (variables with those two distinct values are
computationally indistinguishable), confusion is inevitable. The conceptual model the
specifier is trying to give the client fails to convey the true situation, and the client is
likely to look for another model of the component’s behavior and to translate mentally
between the official specification and this alternate view — a situation virtually certain to
result in miscommunication between the parties [Norman 90].

1.2. The Principle of Controllability

A complementary objective to understandability is utility: a reusable component should
be useful to a variety of clients whose particular needs for variants of a basic functionality
are perforce unknown at component design time. Another way to view this notion of
utility is in terms of “functional completeness”. This suggests that the combination of
operations being specified should be at least powerful enough to construct any value in
the state space defined by the model.

An intuitive statement of this property is the principle of controllability:

C0 A specification S defining the program type ADT is controllable iff every value in
ADT’s state space is “computationally reachable” using some combination of
operations of S.

A prime motivation for seeking controllability is technical, although it might be argued
that observability is technically even more crucial. An example illustrates their combined
importance. Suppose a client programmer using the specified component S wants to
show that a code segment preserves the abstract value of some ADT variable, although
perhaps the value is temporarily modified within the segment. If S is not both observable
and controllable then most likely it is impossible to do this — either because it is
impossible to predictably reconstruct the original value in the first place (e.g., because the
original value resulted from non-deterministic behavior that is not certain to be repeated),
or because it is impossible to know that a proposed reconstructed value is really equal to
the original and not simply computationally indistinguishable from it.

1.3. The Need for Practical Compliance Tests

How are observability and controllability applied in practice? Typically a designer has an
informal notion of what basic functionality is sought. An initial set of operations is
postulated, and the next question is what model to use to explain the state space over
which these operations work. The principles of observability and controllability lead the
designer to seek a state space for the specified behavior without redundant values that
cluster into non-singleton congruence classes of computationally indistinguishable points,
and without values that are not even reachable. A first attempt at specifying the
operations is made using a “natural” model that is thought (hoped) to lead to a
specification which is both observable and controllable. But sometimes it is not, in which

4

case there are two repair strategies: try another model, or modify the behavior of some
operations and perhaps add and/or remove some. In this paper we use an example that
illustrates only the second approach. But in either case the designer checks again for
observability and controllability. With luck, the process eventually terminates with a
design that satisfies both of these design principles (and presumably others of
simultaneous interest).

In order to carry out this iterative process, then, a designer has to have effective practical
tests for whether a specification complies with the two principles. This requires making
clear, unambiguous definitions of the principles, which is the focus of this paper.

We begin in Section 2 by reviewing related work and outlining a working example. In
Section 3 we discuss ambiguities in, and possible formalizations of, O0 and C0; then in
Section 4 we explain how these definitions break down when applied to parameterized
components that typify reusable software components (e.g., Ada generic packages and
C++ class templates). Finally, in Section 5 we draw conclusions and again relate the path
of this paper to the road map in Figure 1.

2. Background and Working Example

The principles of observability and controllability, as defined here, are meaningful only
in the context of model-based specifications where mathematical theory and program
specification are separate, as in Larch [Guttag 93] and RESOLVE [Edwards 94]. The
question addressed by observability and controllability is essentially whether the
mathematical model of an ADT is in some sense “minimal” in size and structure for
specifying a programming concept. This is not a well-formed question for true algebraic
specifications, in which a mathematical theory and a programming component being
specified are treated as inseparable. The closely related taxonomy of mathematical
functions of a theory into “observers” and “constructors” (e.g., [Liskov 86, Guttag 93]) is
clearly related in spirit, but these notions are one level removed as they pertain to the
design of mathematical theories and not to the design of model-based specifications that
use those theories.

A related issue that received much attention in the late 1970’s in the algebraic
specification community is when two mathematical values should be considered equal.
Some authors [Liskov 75, Goguen 78] considered two values to be different unless
demonstrably equal based on the axioms. Others [Guttag 78] considered two values to be
equal unless provably different. While the first group took a traditional view and insisted
that the smallest congruence relation defined by the axioms be used, the latter group
allowed any congruence relations (including the smallest) consistent with the axioms. In
general, for well-defined theories that are typically used as models (e.g., the Larch set
trait [Guttag 93]) the two notions converge. Our consideration of observability and
controllability is independent of this question, because we simply assume equality in the
mathematical spaces as a given predicate with the requisite properties.

5

To our knowledge, the model-based specification community has not systematically
considered the problem of choosing an appropriate mathematical model for specifying an
ADT. There is the notion of an “unbiased” or “sufficiently abstract” or “fully abstract”
model [Jones 90], which is similar to observability in the sense that it is defined almost
exactly like O0. But this informal definition leaves open the possibility of various
interpretations, along the lines suggested in Sections 3 and 4, which is precisely the
confusion we wish to clear up.

To illustrate these difficulties we use the example in Figure 2 of a possible specification
for a Set ADT. Here the appropriate mathematical model seems clear. The question is
what operations need to be provided in order to achieve observability and controllability.
The specification language is RESOLVE [Bucci 94, Edwards 94, Ogden 94], but the
issues involved arise in any model-based specification language [Wing 90].

In RESOLVE, the mathematical model of an ADT is defined explicitly, as with finite set;
or by reference to a program type, as with math[Item], which denotes the mathematical
model type of the program type Item. Every program type in RESOLVE carries with it
initialization and finalization operations (invoked in a client program through
automatically-generated calls at the beginning and end of a variable’s scope,
respectively), and a swap operation (invoked in a client program using the infix “:=:”
operator). The effect of initialization is specified in the initialization ensures clause.
The effect of finalization usually is not specified because it has no abstract effect; in any
event this aspect is unimportant here. The effect of swapping is to exchange the values of
its two arguments.

Operation specifications are simplified by using abstract parameter modes alters,
produces, consumes, and preserves. An alters-mode parameter potentially is changed
by executing the operation; the ensures clause says how. A produces-mode parameter
gets a new value that is specified by the ensures clause, which may not involve the
parameter’s old value (denoted using a prefix “#”) because it is irrelevant to the
operation’s effect. A consumes-mode parameter gets a new value that is an initial value
for its type, but its old value is relevant to the operation’s effect. A preserves-mode
parameter suffers no net change in value between the beginning of the operation and its
return, although its value might be changed temporarily while the operation is executing.

The example is simple but it helps to illustrate the nature of the problems facing a
specification designer. Is the specification in Figure 2 observable and controllable?
What does it mean for two Set values to be “computationally distinguishable”, or for a
Set value to be “computationally reachable”?

6

concept Set_Template

 context

 global context

 facility Standard_Boolean_Facility
 facility Standard_Integer_Facility

 parametric context

 type Item

 interface

 type Set is modeled by finite set of math[Item]
 exemplar s
 initialization
 ensures s = empty_set

 operation Insert
 (
 alters s: Set
 consumes x: Item
)
 requires x is not in s
 ensures s = #s union {#x}

 operation Remove
 (
 alters s: Set
 preserves x: Item
)
 requires x is in s
 ensures s = #s - {x}

 operation Is_Member
 (
 preserves s: Set
 preserves x: Item
): Boolean
 ensures Is_Member iff (x is in s)

 operation Size
 (
 preserves s: Set
): Integer
 ensures Size = |s|

end Set_Template

Figure 2 — Possible Model-Based Specification of a Set ADT

7

3. Formalizing the Principles

In this section we consider possible interpretations of O0 and C0, especially hoping to pin
down the phrases “computationally distinguishable” and “computationally reachable”.

3.1. Stating the Principles More Precisely

A big problem with the informal definitions O0 and C0 has to do with the possibility of
relationally-specified behavior. Although every operation in Figure 1 has functional
behavior — the results of each operation are uniquely determined by its inputs — there
are many situations where it is appropriate to define an operation so its post-condition can
be satisfied in more than one possible way [Weide 94]. A correct implementation might
exhibit functional behavior, but a client of the specification cannot count on any
particular function being computed — only on the results of each operation satisfying the
relation specified in the post-condition.

The practical difficulty this causes in applying O0 and C0 is that code layered on top of
such a component appears to be non-deterministic, in the sense that it might do something
with one implementation of the component but quite another with a different
implementation. This is so even when the layered operation is specified to have
functional behavior; among other things, the code implementing the layered operation
might always terminate with some implementations of the underlying component, but not
with others.

ψ1 When we say “computationally distinguishable” or “computationally reachable”,
do we mean for some implementation of the specified component, or for all?

A strong version of observability is that it should be possible to write a client program
that can decide equality of two variables for every implementation of the underlying
component specification; similarly for controllability. We can formalize this by
stipulating the total correctness of certain code layered on top of the specified concept.
An implementation of specified behavior is totally correct if it is partially correct (i.e.,
correct if terminating) and terminating, for any totally correct implementations of the
components it uses.

We select this path because it leads to the specific principles identified in earlier work
[Weide 91], and thereby come to the following possible formalization of observability:

O1 A specification S defining the program type ADT is observable iff there is a totally
correct layered implementation of:

 operation Are_Equal
 (
 preserves x1: ADT
 preserves x2: ADT
): Boolean

8

 ensures Are_Equal iff (x1 = x2)

Controllability is slightly different in flavor, since as expressed in C0 it seems to say
something about an entire family of operations. It might be formalized as follows:

C1 A specification S defining the program type ADT is controllable iff for every
constant c: math[ADT], there is a totally correct layered implementation of:

 operation Construct_c
 (
 produces x: ADT
)
 ensures x = c

3.2. Making the Principles Symmetric: Relative Observability and Controllability

A hint that something lurks below the surface here is the disturbing asymmetry between
the definitions O1 and C1, the first involving a two-argument program operation and the
second a quantified mathematical variable and a one-argument program operation.

ψ2 Should observability and controllability be defined in terms of relationships
between two program variables, or in terms of a program variable and a universally
quantified mathematical variable, or perhaps in some other way?

Here we choose the first path, which we took in deriving the principles published earlier
[Weide 91] and which a priori seems as reasonable as any other. The revision needed for
controllability, however, makes it clear that the definition is contingent, or relative, in the
following sense. “Computationally reachable” does not mean (as in C1) that every value
in the state space can be constructed from scratch, i.e., starting from an initial value of the
ADT. It means that every value in the state space can be reached from every other
— even if the given starting point could not itself have been constructed from scratch.
Because the meaning of C2 is now apparently quite different from that of C1, we add the
modifier “relatively” in defining both principles this way:

O2 A specification S defining the program type ADT is relatively observable iff there
is a totally correct layered implementation of:

 operation Are_Equal
 (
 preserves x1: ADT
 preserves x2: ADT
): Boolean
 ensures Are_Equal iff (x1 = x2)

C2 A specification S defining the program type ADT is relatively controllable iff there
is a totally correct layered implementation of:

 operation Get_Replica

9

 (
 preserves x1: ADT
 produces x2: ADT
)
 ensures x2 = x1

These definitions match practical compliance tests of prior work [Weide 91]. But they
still have some technical problems.

3.3. Making the Principles More Independent

By definitions O2 and C2, relative observability is not entirely independent of relative
controllability, since it demands that the arguments to Are_Equal should be preserved and
this apparently requires some degree of controllability. Similarly, the first argument to
Get_Replica must be preserved and proving this seemingly requires observability, as
noted in Section 1.2. Is it possible to define the principles so they are not so evidently
connected? The heart of the problem is that both definitions O2 and C2 involve
preservation of operation arguments. We are, therefore, led to consider this variation:

O3 A specification S defining the program type ADT is relatively observable iff there
is a totally correct layered implementation of:

 operation Were_Equal
 (
 alters x1: ADT
 alters x2: ADT
): Boolean
 ensures Were_Equal iff (#x1 = #x2)

This definition is a bit curious because, technically in RESOLVE, a function operation
may have only preserves-mode parameters; but a violation here seems justifiable for ease
of explanation. The parallel definition for relative controllability is:

C3 A specification S defining the program type ADT is relatively controllable iff there
is a totally correct layered implementation of:

 operation Move
 (
 alters x1: ADT
 produces x2: ADT
)
 ensures x2 = #x1

3.4. Relationships Among the Above Definitions

Definitions O3 and C3 make the principles no stronger than with definitions O2 and C2, in
the sense that any specification that is relatively observable (controllable) by O2
(respectively, C2) is equally so by O3 (respectively, C3); it is trivial to layer an

10

implementation of Were_Equal (Move) on top of Are_Equal (respectively, Get_Replica).
Furthermore, if a specification is relatively observable by definition O3 and relatively
controllable by definition C2, then it is relatively observable by definition O2 because we
can layer Are_Equal on top of Get_Replica and Were_Equal:

 operation Are_Equal
 (
 preserves x1: ADT
 preserves x2: ADT
): Boolean
 local context
 variables copy1, copy2: ADT
 begin
 Get_Replica (x1, copy1)
 Get_Replica (x2, copy2)
 return Were_Equal (copy1, copy2)
 end Are_Equal

Also note that every RESOLVE specification is relatively controllable by definition C3,
since every type comes with swapping. Here is a universal implementation of Move in
RESOLVE:

 operation Move
 (
 alters x1: ADT
 produces x2: ADT
)
 begin
 x1 :=: x2
 end Move

In effect, a move is half a swap. This is one reason we previously suggested the guideline
of testing the stronger criteria O2 and C2 [Weide 91]. For components in other
languages, however, C3 is a non-trivial criterion. For example, consider an Ada package
defining a Stack ADT as a limited private type (no assignment operator), along with
operations Push, Pop, and Is_Empty having the usual meanings. This is relatively
controllable by C3 — but not because a primitive data movement operator for Stacks is
trivially assumed. Without any one of the three operations it would not be relatively
controllable by C3.

The relationships among the definitions in this section are depicted in the Venn diagram
of Figure 3, where we take the liberty of labeling sets of specifications with the labels of
the definitions under which their member specifications qualify.

11

O

C

3

3

C
2

(Were_Equal)

(Move)

(Get_Replica)

O
2 (Are_Equal)

Legend

Figure 3 — Relationships Among Some Definitions

4. Difficulties with Parameterized Components

At first the above definitions seem clear and unambiguous. But suppose we try to apply
those definitions to the Set_Template specification of Figure 2. It seems the specification
in Figure 2 should be deemed not observable by O0 because there is no practical way to
enumerate the elements of a Set, and this should be crucial in computationally
distinguishing between two unequal Sets. It seems the specification should be deemed
controllable by C0, however, because starting from an empty set it is easy to construct
any finite set by repeated Inserts. Does this intuition match what the proposed definitions
say? We discuss in detail only O3, considerations for the other definitions being similar.

4.1. Type Parameters and Modular Proofs

There is a reasonable way to interpret O3 that makes the Set_Template specification
observable. The key features that permit this view are that O3 defines relative
observability in terms of the existence, not the practicality, of an implementation of
Were_Equal; and that there is no restriction on the assumptions an implementer of
Were_Equal may make about the available operations on Items.

We start by noting that the mandated existence of “a totally correct layered
implementation” of the Were_Equal operation for Set_Template means, in RESOLVE
terms, the existence of a totally correct implementation of the following concept:

12

concept Set_Were_Equal_Capability

 context

 global context

 facility Standard_Boolean_Facility
 concept Set_Template

 parametric context

 type Item

 facility Set_Facility is Set_Template (Item)

 interface

 operation Were_Equal
 (
 alters s1: Set
 alters s2: Set
): Boolean
 ensures Were_Equal iff (#s1 = #s2)

end Set_Were_Equal_Capability

This formulation makes clear that the implementation of Were_Equal must be layered,
since an instance of Set_Template is a parameter to the concept. Moreover, it makes
clear that the implementation must work for any type Item for the Set elements, since
Item also is a parameter. What it does not make clear, however, is what other
components and services an implementation might use and depend on.

In the absence of restrictions, presumably any such services may be assumed — a rather
liberal interpretation of O3. But now what prevents an implementer of Were_Equal from
simply assuming the existence of a (possibly thinly disguised) operation that tests
equality of Sets of Items, and layering on top of that? Nothing.

So we might wish to use a less liberal interpretation of O3. For example, suppose we
insist that an allowable implementation of Were_Equal may not use any operations with
Set parameters other than those from Set_Template itself. Unfortunately, this does not
solve the problem either. For example, below is a possible algorithm for Were_Equal,
which is built on top of Set_Template and an “enumerator” concept for Items. In
RESOLVE’s modular proof system, total correctness is defined in such a way that the
following code is a totally correct implementation of Were_Equal, because we assume
there is a totally correct implementation of the enumerator interface and the total
correctness of the Set_Template implementation — and because all Sets are finite. As a
result we claim that Set_Template is relatively observable even by this less liberal
interpretation of O3.

13

operation Were_Equal
 (
 alters s1: Set
 alters s2: Set
): Boolean
 local context
 variables x: Item
 begin
 if (Size (s1) = 0 and Size (s2) = 0)
 then return true
 else
 let x = any Item value not previously enumerated during
 the top-level call of Were_Equal
 if Is_Member (s1, x)
 then
 if Is_Member (s2, x)
 then
 Remove (s1, x)
 Remove (s2, x)
 return Were_Equal (s1, s2)
 else return false
 end if
 else
 if Is_Member (s2, x)
 then return false
 else return Were_Equal (s1, s2)
 end if
 end if
 end if
 end Were_Equal

This illustrates the power of a modular proof system [Ernst 94]. There might be Items for
which it is impossible to implement the enumerator interface, but this does not influence
the total correctness of Were_Equal. At the mathematical level, if the state space
math[Item] is effectively enumerable then in principle there exists an implementation of
the enumerator interface. But only if the specification of the actual program type Item is
at least controllable, by any reasonable definition, should we expect to be able to
implement the enumerator interface for it.

So perhaps we should insist that the underlying components actually should be
implementable. But then should the mere possibility of instantiating Set_Were_Equal_-
Capability with an Item for which the enumerator cannot be implemented be enough to
render the Set_Template specification not observable? And does “possibility” here mean
the library of components actually contains such a type, or that in principle it might
contain such a type? Suppose, for example, that in the specification language it is simply
impossible to specify a program type whose state space is not enumerable. Should this
situation — which might be reasonably attributed to inexpressiveness of the specification
language and not to a problem with the design of Set_Template — be the deciding factor
as we attempt to apply the observability test to Set_Template?

14

If we use an interpretation in which the above implementation of Were_Equal is
acceptable, so Set_Template is deemed relatively observable, then it is interesting to see
where variants of Set_Template lie in Figure 3. In Figure 4, we have placed some of
them to illustrate the limited discriminating power of the definitions. For example,
Get_Replica for Sets can be layered on top of Are_Equal for Sets using only Swap and
Insert: systematically generate candidate Sets by enumerating Items and inserting them
into empty Sets — first one Set with one Item, then two Sets with one Item and two Sets
with two Items, and so forth — stopping when the Set to be copied and the current
candidate Are_Equal. There is no need for Remove, Is_Member, or Size.

It should be clear that these definitions are not really “right”, in the sense that even if they
do capture some sense of observability and controllability they do not rule out patently
poor specifications. For example, Set_Template itself (even without Swap) is both
relatively observable and relatively controllable by the strong definitions O2 and C2,
despite providing no practical way to enumerate the elements of a Set. Even
Set_Template without Remove is both relatively observable and relatively controllable,
as is Set_Template with just Swap, Insert, and Are_Equal.

1
2
3
4
5

Set_Template as in Figure 2

without Insert
without Remove

without Size6

without Swap

without Is_Member

O

C

3

3

C
2

(Were_Equal)

(Move)

(Get_Replica)

O
2 (Are_Equal)

Legend

1 2

4

3 5 6

with just Swap, Insert, Are_Equal7

7

Figure 4 — Variants of Set_Template Assuming math[Item] is Enumerable

15

4.2. Refining the Definitions to Handle Parameterized Components

The difficulties in Section 4.1 are traceable to the prospect of having specifications that
are parameterized by another type Item, and to the absence of restrictions on the
assumptions an implementation may make about the actual Item type. Even allowing an
implementation of Were_Equal to rely only on the assumption that the state space of Item
is enumerable weakens the definitions so much that they are practically worthless.

Some features of RESOLVE permit us to easily clarify and strengthen the previous
definitions to deal with parameterized modules, so the observability of a parameterized
type is unaffected by properties of the arbitrary type by which it is parameterized. Each
realization (implementation) of a concept may require additional parameters beyond
those of the concept, and these appear in the realization “header” [Bucci 94]. This
mechanism lets us require that the implementation of an operation Were_Equal for type
Set may only count on the always-present initialization, finalization, and swapping for
Items, and on a similarly-defined Items_Were_Equal operation. Any allowable
realization of the concept exporting Were_Equal should have a realization header in
which this additional operation is the only realization parameter.

This leads to a refined definition of relative observability (the others being similar):

O3' A specification S, parameterized by the program type Item and defining the
program type ADT, is relatively observable iff there is a totally correct
implementation of:

concept S_Were_Equal_Capability

 context

 global context

 facility Standard_Boolean_Facility
 concept S

 parametric context

 type Item

 facility S_Facility is S (Item)

 interface

 operation Were_Equal
 (
 alters x1: ADT
 alters x2: ADT
): Boolean
 ensures Were_Equal iff (#x1 = #x2)

end S_Were_Equal_Capability

16

whose realization context makes only the following additional mention of Item:

realization header Allowed for S_Were_Equal_Capability

 context

 parametric context

 operation Items_Were_Equal
 (
 alters x1: Item
 alters x2: Item
): Boolean
 ensures Were_Equal iff (#x1 = #x2)

end Allowed

In applying this definition to Set_Template, we find there is no way for the realization
body of Set_Were_Equal_Capability to use any externally-provided operations involving
Items, other than Items_Were_Equal. This rules out impractical but technically correct
implementations like the one in Section 4.1.

Figure 5 is the counterpart of Figure 4, with the refined definitions. Now Set_Template is
not relatively observable by O2' or by O3', nor relatively controllable by C2'. However,
by adding the following operation (or something similar) it becomes relatively observable
and relatively controllable even by O2' and C2':

 operation Remove_Any
 (
 alters s: Set
 produces x: Item
)
 requires s /= empty_set
 ensures (x is in #s) and (s = #s - {x})

Remove_Any (s, x) removes an arbitrary element of the original s and returns it in x.
Now there is a practical way to enumerate the elements of a Set, leading to obvious
implementations of the required layered operations that assume no more than the ability
to do with Items what the layered operation is doing to Sets.

Figure 5 shows what happens to the variants of Set_Template previously displayed in
Figure 4 (circles 1-7). Two new variants help to illustrate the discrimination power of the
new definitions. Set_Template with Remove_Any (circle 8) — a good design — passes
both of the stronger compliance tests O2' and C2'. Set_Template with Remove_Any but
without Insert (circle 9) — plainly not a good design — still passes both weaker tests O3'
and C3' but neither stronger one. So the definitions used for Figure 5 seem better than
those used for Figure 4. But again even O2' and C2' clearly are not “right” in that they
still do not rule out patently bad specifications. It is easy to circumvent their intent by
attacking the symptoms and not the disease: just add Are_Equal and Get_Replica as
primary operations. In fact, Set_Template with just Are_Equal and Get_Replica and no

17

other operations whatsoever sits in precisely the same place in Figure 5 as Set_Template
with Remove_Any, despite clearly not satisfying C1. Fixing these problems apparently
requires taking a different path altogether, as we discuss in the conclusions below.

1
2
3
4
5

Set_Template as in Figure 2

without Insert
without Remove

without Size6

without Swap

7

without Is_Member

with Remove_Any8
with Remove_Any, without Insert9

1

2

4
3

5
6

9

O

C

3'

3'

C
2'

(Were_Equal)

(Move)

(Get_Replica)

O
2' (Are_Equal)

Legend

with just Swap, Insert, Are_Equal

8

7

Figure 5 — Variants of Set_Template With Section 4 Definitions

5. Conclusions

A fundamental question facing the designer of a model-based specification of an ADT is
the appropriateness of the chosen conceptual model. We have discussed some of the
technical problems in carefully defining two principles that provide the specifier with
criteria for appropriateness: Does the chosen model interact with the specified operations
in a way that makes the specification observable and controllable? A negative answer on
either count suggests that the specifier needs to look harder, or be prepared to justify non-
compliance on the basis of other requirements. A positive answer on both counts gives a
certain confidence, though among satisfactory specifications some may be “better” than
others (e.g., more understandable or more flexible). However, it hardly guarantees that
the specification is “good”.

18

We mentioned alternate paths that might be followed in formalizing observability and
controllability. Here are some conclusions from preliminary exploration of other paths;
these conclusions are not justified in the body of this paper.

ψ1 When we say “computationally distinguishable” or “computationally reachable”,
do we mean for some implementation of the specified component, or for all?

Defining the principles using an existential quantifier over implementations is
largely unexplored territory. However, there is reason to believe it might be
attractive. Consider, for example, the specification of an ADT called
Computational_Real modeled as a real number. The operations have relationally-
defined behavior. The Add operation, for example, ensures that the result of
adding two Computational_Reals is a Computational_Real whose model lies
within some small interval around the sum of the models of the addends. Based on
a cardinality argument, it is clear there is no way the specification can be deemed
controllable if we insist that every implementation of it must support reaching
every real number. However, it is not hard to imagine Computational_Real
operations powerful enough to allow that every real number might be reachable in
some implementation; basically, the union of the allowed intervals over all
computations just has to cover the reals. The power of relationally-specified
behavior is evident here, but the full implications of defining observability and
controllability as suggested are not.

ψ2 Should observability and controllability be defined in terms of relationships
between two program variables (“relatively”), or in terms of a program variable
and a universally quantified mathematical variable, or perhaps in some other way?

Defining both principles the second way leads to interesting phenomena and to
other interesting questions involving the expressiveness of the mathematics and the
relationships between those definitions and the ones in this paper. Observability
basically becomes a test of whether, for every point in the state space, it is possible
to tell whether a program variable Was_Equal to it. Controllability is more
properly termed “constructability”, using something like definition C1. These
alternate definitions cut through diagrams like Figures 3-5 in a surprising way,
since there are specifications that are observable and/or controllable by the
alternate definitions but not by O2' and/or C2', and vice versa. So such definitions
might offer distinct useful tests which should be applied in tandem with the ones
described here, when evaluating a proposed specification.

6. Acknowledgment

We thank Murali Sitaraman and Stu Zweben for insightful comments on a draft of this
paper, and gratefully acknowledge financial support for our research from the National
Science Foundation under grant CCR-9311702, and from the Advanced Research

19

Projects Agency of the Department of Defense under ARPA contract number F30602-93-
C-0243, monitored by the USAF Materiel Command, Rome Laboratories, ARPA order
number A714.

7. References

[Bucci 94] Bucci, P., Hollingsworth, J.E., Krone, J., and Weide, B.W.,
“Implementing Components in RESOLVE,” Software Engineering
Notes 19, 4, October 1994, 40-52.

[Edwards 94] Edwards, S.H., Heym, W.D., Long, T.J., Sitaraman, M., and Weide,
B.W., “Specifying Components in RESOLVE,” Software Engineering
Notes 19, 4, October 1994, 29-39.

[Edwards 95] Edwards, S.H., A Formal Model of Software Subsystems, Ph.D.
dissertation, Dept. of Computer and Information Science, The Ohio
State Univ., Columbus, March 1995.

[Ernst 94] Ernst, G.W., Hookway, R.J., and Ogden, W.F., “Modular Verification
of Data Abstractions with Shared Realizations,” IEEE Transactions
on Software Engineering 20, 4, April 1994, 288-307.

[Goguen 78] Goguen, J.A., Thatcher, J.W., and Wagner, E.G., “An Initial Algebra
Approach to the Specification, Correctness, and Implementation of
Abstract Data Types,” in Current Trends in Programing Methodology
4, R. T. Yeh, ed., Prentice-Hall, 1978, 80-149.

[Guttag 78] Guttag, J.V., Horowitz, E., and Musser, D.R., “Abstract Data Types
and Software Validation,” Communications of the ACM 21, 12,
December 1978, 1048-1064.

[Guttag 93] Guttag, J.V., and Horning J.J., Larch: Languages and Tools for
Formal Specification, Springer-Verlag, 1993.

[Jones 90] Jones, C.B., Systematic Software Development Using VDM, 2nd ed.,
Prentice-Hall, 1990.

[Liskov 75] Liskov, B.H., and Zilles, S.N., “Specification Techniques for Data
Abstractions,” IEEE Transactions on Software Engineering SE-1, 1,
March 1975, 7-19.

[Liskov 86] Liskov, B., and Guttag, J., Abstraction and Specification in Program
Development, McGraw-Hill, 1986.

[Norman 90] Norman, D.A., The Design of Everyday Things, Doubleday/Currency,
1990.

20

[Ogden 94] Ogden, W.F., Sitaraman, M., Weide, B.W., and Zweben, S.H., “The
RESOLVE Framework and Discipline — A Research Synopsis,”
Software Engineering Notes 19, 4, October 1994, 23-28.

[Sitaraman 93] Sitaraman, M., Harms, D.E., and Welch, L.W., “On Specification of
Reusable Software Components,” International Journal of Software
Engineering and Knowledge Engineering 3, 2, June 1993, 207-229.

[Spivey 89] Spivey, J.M., The Z Notation: A Reference Manual, Prentice-Hall,
1989.

[Weide 91] Weide, B.W., Ogden, W.F., and Zweben, S.H., “Reusable Software
Components”, in Advances in Computers, vol. 33, M.C. Yovits, ed.,
Academic Press, 1991, 1-65.

[Weide 94] Weide, B.W., Ogden, W.F., and Sitaraman, M., “Recasting
Algorithms to Encourage Reuse,” IEEE Software 11, 5, September
1994, 80-88.

[Wing 90] Wing, J.M., “A Specifier’s Introduction to Formal Methods”,
Computer 23, 9, September 1990, 8-24.

