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Abstract—In seismic probabilistic risk assessment, fragility 
curves are used to estimate the probability of failure of a 
structure or its critical components at given values of seismic 
intensity measures, e.g. the peak ground acceleration. However, 
the computation of the fragility curves requires a large number 
of time-consuming mechanical simulations with the finite 
element method (FEM). To reduce the computational cost, in 
this paper a statistical metamodel based on artificial neural 
networks (ANNs) is constructed to replace the FEM model. An 
adaptive ANNs learning strategy, aimed at prioritizing the 
data close to the limit state of the structures, is proposed in 
order to improve the design of experiments for the fragility 
analysis. The adaptive learning strategy is developed and 
tested on a nonlinear Takeda oscillator. 

Keywords-seismic probabilistic risk assessment; fragility 
curves; artificial nerual networks; adaptive learning 

I.  INTRODUCTION 
Seismic probabilistic risk assessment (SPRA) is a 

systematic framework to estimate the seismic risk of critical 
structures such as nuclear power plants (NPPs). As a key 
element in SPRA, fragility analysis aims at computing the 
conditional probability of failure of critical components of 
NPPs at given values of seismic intensity measures (IMs). It 
is, then, used to evaluate the core damage frequency, 
combined with hazard analysis, event tree and fault tree 
analysis [1]. 

Fragility analysis can be performed either with numerical 
simulations or with empirical data from post-earthquake 
observations. The increasing availability of computational 
power provides the possibility to conduct large numerical 
simulations for complex structures, to quantify and propagate 
uncertainties in the seismic fragility analysis. Nevertheless, 
the computational time for a complex structural analysis with 
the finite element method (FEM) is still considerable. One 
way to improve the computational efficiency is to resort to 
metamodels for the calibration of the relationship between 
seismic inputs and structural outputs. Such an approach has 
been used in [2] [3] [4] [5] [6] [7] [8], among others, for the 
fragility analysis.  

Another solution to reduce the computational burden is to 
adopt a parametric hypothesis for the shape of the fragility 
curves. The log-normal assumption is widely applied in 
SPRA. Less numerical simulations are required with this 
assumption, because the whole computation of the 
conditional probability of failure is reduced to the 
determination of two parameters, the median capacity ܣ௠ 
and the logarithmic standard deviation ߚ . Within the log-
normal framework, the maximum likelihood estimation 
(MLE) method is proposed in [9] to build fragility curves 
from binary empirical ‘failed’ or ‘survived’ data. This 
method can be also applied to numerical simulation results 
with a pre-defined failure threshold. With this method, the 
data in the neighborhood of the failure threshold are more 
critical to ensure the accuracy of the fragility curves. 

In this paper, an adaptive learning strategy is proposed to 
guide ANNs to learn actively from the data close to the limit 
state of the structures. In fact, a similar strategy has been 
largely used for the construction of metamodels with Kriging 
or support vector machine [10] [11] [12] [13], but it is 
seldom applied to ANNs yet. The main difficulty for the 
application of such a strategy with ANNs lies in two aspects:  

1. Evaluation of the uncertainty linked to the ANN 
predictions. Even though ANNs are widely adopted in the 
metamodel-based structural risk assessment, the topic 
regarding the uncertainty of the ANN predictions is rarely 
discussed.   

2.  The dimensionality reduction of the input parameters 
of ANNs. In fact, in order to avoid overfitting, the number of 
training patterns should be always larger than the number of 
unknown weighting parameters in the ANNs. This increases 
the number of calls to the FEM simulations, particularly in 
the initialization phase of the adaptive learning strategy. 

In this work, the delta method [14] is applied to estimate 
efficiently the ANN prediction uncertainties, whereas the 
principal component analysis (PCA) [15] is utilized for the 
dimensionality reduction of the ANN inputs. The design of 
experiment is improved with the ANN adaptive learning, and 
the predictions of the ANNs are used to compute seismic 
fragility curves. 
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The paper is organized as follows. In Section 2, the basis 
on the simulation-based fragility analysis is recalled. Section 
3 presents briefly the application of the delta method to 
quantify the ANN prediction uncertainty.  The ANN 
adaptive learning for the computation of fragility curves is 
explained in Section 4. The proposed strategy is applied in 
Section 5 to a nonlinear Takeda oscillator for the 
computation of fragility curves. Conclusions are given 
finally in Section 6.

II. SIMULATION-BASED FRAGILITY ANALYSIS

A. Computation of the Damage Measure 
The mechanical model that computes the damage 

measure of a structure under the seismic excitation is 
expressed as ݕ = ,(ݐ)ࢇ)݂ (࢓ (1)
where ݕ is the damage measure (DM) of the structure (e.g. 
the maximum displacement), (ݐ)ࢇ  is the seismic ground 
motion time history vector, and ࢓ represents the vector of 
the material properties of the structure, such as Young’s 
modulus. 

A metamodel is built to connect the DM to a set of IMs 
and the material properties: ݕො = መ݂(ߙଵ, ,ଶߙ … , ,௞ߙ (࢓ (2)

where the ‘^’ symbol is used to indicate the results calculated
with metamodels, and ߙ௜  denotes a seismic IM, e.g. the 
pseudo-spectral acceleration (PSa) at the first natural 
frequency of the structure. In Eq. (2), a set of IMs are used to 
represent the ground motion (ݐ)ࢇ  . The difference in the 
inputs between the mechanical model and the metamodel 
leads to the existence of the residual term ݕ:ߝ = ොݕ  + ߝ (3)

In fact, different ground motion time histories with the 
same values of IMs lead to different structural responses, in 
contrast to a deterministic response predicted by the 
metamodel. This is the reason why a nonlinear regression 
model like ANN is preferred, rather than Kriging which is an 
exact interpolation model of the training data. For simplicity, ࢞ is used in the sequel to denote the ensemble of metamodel 
inputs, including the IMs and the material parameters. 

B. Computation of Fragility Curves 
Fragility curves can be computed when the simulation 

data are available. Under the log-normal assumption, the
conditional probability of failure is computed by the 
cumulative distribution function (CDF) of the log-normal 
distribution: 

௙ܲ(ߙ) = Φ(ln ߙ − ln ߚ௠ܣ ) (4)

where ܣ௠ denotes the median capacity of the structure and ߚ
is the uncertainty introduced by the inherent randomness of 
the earthquake and the material properties. The 
determination of these two parameters can be achieved by 
maximizing a likelihood function: ܮ = ෑ[ ௙ܲ(ߙ௜)]௫೔[1 − ௙ܲ(ߙ௜)]ଵି௫೔௜ (5)

where ݔ௜ is the realization of the Bernoulli variable: ௜ݔ = 0
if the structure survives and otherwise ݔ௜ = 1. Therefore, if 
numerical simulation results (either from FEM or from ANN) 
are provided, ܣ௠ and ߚ can be determined by [ܣ௠, [ߚ = argmax ܮ (6)

The maximization of the likelihood function can be 
achieved by applying existing numerical maximization 
algorithms. 

III. QUANTIFICATION OF THE PREDICTION UNCERTAINTY 
OF ANNS

The structure of a three-layer feed-forward ANN is 
illustrated in Figure 1. This ANN consists of neural units, 
layers, connections, activation functions (linear functions, 
and nonlinear tanh functions) and a set of weighting 
parameters ࢝  adjusted to minimize the error ݁  between 
metamodel predictions and mechanical model results. The 
training of the ANN is realized by gradient-based 
optimization methods with gradients ࢍ = డ௘డ࢝  computed 
efficiently by the back-propagation algorithm [16].

Figure 1. Structure of a feed-forward ANN 

In addition to the deterministic ANN prediction ݕො , the 
associated confidence interval of this prediction can be also 
estimated. Possible methods to evaluate the ANN prediction 
uncertainties are the Bayesian method, the bootstrap method 
and the delta method [17]. In this study, the delta method is 
adopted due to its computational efficiency because it does 
not require resamplings of the ANN inputs and repeated 
trainings of ANNs. With this method, the ANN training 
residuals are considered following a normal distribution, and 
the ANN model is linearized with the first order Taylor 
expansion around the determined weights [18]. Therefore,
the Hessian matrix of the ANN model is approximated by 
the product of the Jacobian matrices constructed with first 
order derivative vectors, which can be easily computed by
the back-propagation algorithm. The standard deviation ݏ associated to the ANN prediction is calculated byݏ = ஺ேேඥ1ߪ  + ࢎଵି(ଵିࡶࡶ)்ࢎ (7)

where ࢎ =  డ௬డ࢝ , ܬ = ,ଵࢎ] ,ଶࢎ … , [ேࢎ  is the Jacobian matrix 
with ܰ the number of ANN training examples. The index ܶ
denotes the matrix transpose. The influence of the limited 

415



size of the training data can be revealed from ݏ : the 
information of the training data is stocked in the Jacobian 
matrix. ݏ shows very high values in the area where the 
training data are sparse. A simple example is shown in 
Figure 2 and Figure 3 to demonstrate the influence of the 
sparseness of data on ݏ . It is worth mentioning that the 
computation of ݏ  with the delta method is straightforward 
once the gradient vector  ݃ is provided in the training of the 
ANNs. If an open-source neural networks package is used to 
perform ANN training and simulation, one needs only to 
extract the gradient vector ࢍ provided by the package. By 
applying the chain rule for the computation of derivatives, it 
is easy to obtain: ࢎ௜ = ො௜ݕࢍ − ௜ݕ (8)

Figure 2. 80 sparse training data for y = sin(x)+z to train an ANN 

Figure 3. The trained ANN is tested on 100 uniformly generated data, with 
a large confidence interval at the location of the paucity of the training data

IV. ADAPTIVE ANN FOR SEISMIC FRAGILITY ANALYSIS

The AK-MCS proposed in [10] is adapted for 
applications with ANNs. With the adaptive strategy, ANNs 
are trained iteratively with the data close to the limit state. 
These data are selected based on the same learning function ܷ used in AK-MCS. The learning function ܷ is defined as ܷ(࢞) = (࢞)ොݕ| − (࢞)ݏ|ୡ୰୧୲ݕ (9)

where ݕୡ୰୧୲ is the limit state (i.e. the failure threshold) of the 
structure. ܷ represents the normalized distance between the 
ANN prediction ݕො  and the limit state (Figure 4). The 
normalization is with respect to the prediction uncertainty ݏ:
with the same prediction value, the larger the uncertainty is, 
the higher the probability that the prediction ݕො  will make 
error in predicting the ‘failed’ or ‘survived’ state of the 
structure. Consequently, the essential idea of the adaptive 
ANN is to select the data with normalized distance ܷ  as 
small as possible. 

Figure 4. Illustration of the learning function U 

The workflow for the application of adaptive ANNs in 
seismic fragility analysis is shown in Figure 5. It consists of 
8 stages. 

Figure 5. Workflow of adaptive ANN for fragility analysis

A. Generation of Inputs and Dimensionality Reduction with 
PCA ܰ (a large number) synthetic seismic ground motions can 

be generated according to the ground motion prediction 
equations (GMPEs). A list of the IMs is extracted from the 
synthetic ground motions. The ܰ௠  material modulus are 
considered independently distributed so that material 
parameters can be sampled directly from their marginal 
distributions. 

PCA is applied on the input parameters for 
dimensionality reduction. In fact, PCA is a statistical tool to 
convert the data into a set of linearly independent variables 
called principal components [15]. The principal components 
are arranged in descending order according to their 
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contributions to the total variability of the data: the first 
component with the largest variance, the second one with the 
second largest variance, and so on. With PCA, the input 
parameters are transformed into the principal components 
space and the first ܮ components are retained to represent the 
whole input data for dimensionality reduction. The selection 
of  can be determined from the cumulative variance ratio of ܮ
the selected principal components: e.g. if the cumulative 
variance of the selected components reaches 95% of the total 
variance, all the remaining components can be considered 
negligible. A total dataset ܵ  of dimension ܰ × ܮ  for the 
reduced input parameters is therefore constructed.  

B. Initialization of the Design of Experiments (DoEs) 
An initial DoE is required to perform the first training of 

the ANN. ଴ܰ  principal components of IMs and uncertain 
material parameters are randomly selected from the total 
dataset to perform FEM analyses. The number of the hidden 
layer units is determined by rule of thumb: ݊௛ = ܮ) + 1)/2.
One should keep in mind that ଴ܰ should be larger than the 
number of unknown weights in the ANN structure to avoid 
overfitting. 

C. ANN Training According to the DoE and Prediction 
with ANN 
Start the iterative training. For iteration ݇ (݇ ≥ 0), ANN 

is trained based on the DoE, and predictions ݕො௞௜  and the 
associated prediction uncertainties ݏ௞௜  can be obtained. So, 
the ܷ value, denoted by ܷ௞௜  (1 ≤ ݅ ≤ ܰ), can be computed 
for every input data ࢞௜  in ܵ , with the ANN trained at the 
current iteration. 

D. Identification of Next ଶܰ Best Points to Enrich the DoE 
Instead of adding one best point to the DoE at every 

iteration in AK-MCS, ܯ)ܯ > 1) best points ܾ௞௝ (1 ≤ ݆ ≤ M)
are selected to take advantage of parallel computing. The 
spatial distance between the ܯ points to be selected should 
also be taken into consideration: if these points are 
concentrated at the same position in the input space, their 
contribution to the improvement of the ANN performance is 
very limited. In fact, only one point at such a position should 
be enough to obtain an ANN with equivalent accuracy.  
Consequently, the ܯ points to be selected not only should 
have small ܷ values, but also should be distributed uniformly 
in the input space. For this purpose, a search zone has to be 
defined, and data in the search zone are divided into ܯ
clusters. One point in each cluster is selected by the learning 
function with the smallest ܷ value. The critical distance to 
define the search zone is given byቐ ݀଴ = 2݀௞ = min( ܯ1 ෍ ܷ௞(ܾ௞ିଵ௝ )௝ , ݀௞ିଵ) , ݇ > 1 (10)

In Eq. (10), ܾ௞ିଵ௝  are the best points selected in the last 
iteration (i.e. iteration ݇ − 1 ), so their ܷ  values are 
approximately 0 for the ANN model trained at the iteration ݇ − 1 : ܷ௞ିଵ(ܾ௞ିଵ௝ ) ≈ 0 . This leads to the fact that 1ெ ∑ ܷ݇−1(ܾ݇−1݆ )݆ ≈ 0 . The expression ଵெ ∑ ܷ௞(ܾ௞ିଵ௝ )௝

computes the averaged normalized distance of ܾ௞ିଵ௝  to the 
limit state with the current ANN model. With this 
interpretation, ݀௞ estimates the normalized distance between 
two ANN models trained respectively at the iterations ݇ − 1
and ݇ : a small ݀௞  indicates a convergence of the ANN 
metamodel. 

At every iteration, data with ܷ௞ < ݀௞ are regrouped into ܯ clusters with K-Means clustering [11]. In each cluster, the 
point with the smallest ܷ value is selected to be the next best 
point and is added to the DoE to train the ANN. 

E. Update of DoE with the M Selected Best Points 
FEM simulations are performed with the ܯ selected best 

points to update the DoE. After the enrichment with ܯ FEM 
simulation results, the total number of the available data to 
train the ANN at the iteration ݇ + 1 is: ௞ܰାଵ = ௞ܰ +  .ܯ

F. Stopping Condition Verification 
The best points selected with the learning criteria 

described in Step D are used to compare to a stopping 
condition. The stopping condition is very simple: if the 
number of data in the search zone defined by ܷ௞ < ݀௞  is 
smaller than ܯ, we consider that the ANN models trained at 
the iteration ݇ − 1  and ݇  are close enough, and that the 
convergence of the learning algorithm is obtained. If the 
stopping condition is satisfied, the learning algorithm is 
stopped. Otherwise, one should return to Step C to retrain the 
ANN until the stopping condition is fulfilled. 

When the adaptive learning of the ANN is stopped, one 
can obtain two results: 1) A set of IMs and material 
properties, and their corresponding DMs computed from 
FEM simulation results. 2) An ANN trained with the reduced 
PCA components and the DMs. However, as the 
dimensionality reduction is conducted in an unsupervised 
way, i.e. only the correlation between IMs are considered for 
the dimensionality reduction, the correlation between inputs 
and outputs are not accounted for: there may exist a principal 
component closely correlated to the DM, but it is neglected 
in the PCA-based dimensionality reduction. In addition, the 
number of hidden layer units is determined from an 
empirical rule of thumb, so that ݊௛  used in the adaptive 
learning may not be optimal for the number of hidden layer 
neurons. 

G. Sensitivity Analysis to Select the Optimal Subset of IMs 
and to Determine the Best Neurons Number in the 
Hidden Layer 
Considering the aspects described above, a sensitivity 

analysis is conducted for the IMs and DMs from the final 
DoE obtained from the ANN adaptive learning. The 
dimensionality reduction is achieved by finding the optimal 
subset of IMs which is most correlated to the structural 
output DMs. Both wrapper feature selection and filter feature 
selection can be applied to find such a subset. A wrapper 
approach based on genetic algorithm is proposed in [2] and a 
filter forward selection approach driven by the semi-partial 
correlation coefficients is used in [19] to select the best 
subset. In this study, the filter approach is utilized for its 
computational efficiency. One can refer to [19] for more 
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details. On the other hand, the optimal number of hidden 
layer units can be easily determined with cross-validation for 
different ݊௛  values. The ݊௛  with the smallest cross-
validation error is selected to be the optimal number. The 
ANN with the optimal ݊௛ hidden layer units is trained based 
on the best IM subset from sensitivity analysis and the 
uncertain material parameters. 

H. Computaton of Seismic Fragility Curves 
With the ANN trained in Step G, one can perform ANN 

simulations for all ܰ inputs. The ANN simulation results are 
used to calculate the conditional probability of failure with 
the MLE method (Eq. (6)).  

V. APPLICATION OF ADAPTIVE ANN
The proposed adaptive ANN approach is applied to a 

nonlinear Takeda oscillator for the fragility analysis. Takeda 
oscillator is a simplified model considering the nonlinear 
constitutive law of reinforced concrete [20]. The 
displacement-force relation under cyclic load of the Takeda 
model is illustrated in Figure 6:

Figure 6. Displacement-force relation for the Takeda model 

A. Mechanical Simulation of the Takeda Model 
1000 synthetic seismic ground motions are generated 

with Cambell&Bozorgnia GMPEs [21], with seismic 
magnitude ܯ௪ = 6.6, source-to-site distance ܴ = 30km and 
rock soil condition ௦ܸଷ଴ = 720 m/s, where the ௦ܸଷ଴  is the 
averaged shear wave velocity in the first 30 meters of the soil. 
The 1000 generated ground motions are injected into the 
Takeda model. The maximum displacement of the Takeda 
model is defined as the damage measure. The hypothetical 
material properties of the Takeda model are listed in TABLE 
I. 

TABLE I. MATERIAL PROPERTIES OF THE TAKEDA MODEL

Parameters Mean Uncertainty Coefficient of 
Variationࢌ૙ 2 Hz LogN ܛ܉ܔ܍0.15࢟ 0.014 m LogN 0.12

Damping 0.05 No ܜܑܚ܋࢟- 0.027 m No -

  

where ଴݂  is the natural frequency of the Takeda oscillator, ୣݕ୪ୟୱ is the elasticity limit of the Takeda model: the material 
behavior of the Takeda oscillator is plastic if ݕ > ୪ୟୱୣݕ .  ଴݂ and ୣݕ୪ୟୱ are considered independently distributed, so that 
1000  ଴݂ and ୣݕ୪ୟୱ can be sampled from their marginal log-
normal distributions. 

10 seismic IMs are used to characterize the ground 
motions. The definition of the 10 IMs is reported in TABLE 
II: 

TABLE II. DEFINITION OF SEISMIC INTENSITY MEASURES

PGA Peak Ground Acceleration 
PGV Peak Ground Velocity 
PGD Peak Ground Displacement 
PSa Pseudo Spectral Acceleration 

ASA40 Average Spectral Acceleration 
Tp Predominant Period 

CAV Cumulative Absolute Velocity 
IA Arias Intensity 

ASI Acceleration Spectrum Intensity 
Housner Housner Intensity 

B. Adaptive Training of ANN and Fragility Curve 
Computation 
PCA is applied on the 12 input parameters (10 IMs + 2

uncertain material parameters) for dimensionality reduction. 
The variance ratio (VR) and the cumulative variance ratio 
(CVR) can be used to determine the number of principal 
components to be selected. VR and CVR are defined by 
  ܸܴ௞ = ௞ܸ∑ ௜ܸ௜ (11)

௞ܴܸܥ = ∑ ௞ܸ௞௜ୀଵ∑ ௜ܸ௜ (12)

The values of VR and CVR for the first six principal 
components are shown in TABLE III. 

TABLE III. VR AND CVR VALUES FOR THE FIRST 6 PRINCIPAL 
COMPONENTS OF THE 10 IMS

Nr. 1 2 3 4 5 6 
VR 0.614 0.117 0.084 0.083 0.056 0.029 

CVR 0.614 0.721 0.805 0.888 0.944 0.973 

From TABLE it can be observed that the CVR reaches 
97.3% with the first 6 components, so the first 6 components 
can be considered sufficient to represent the whole input data. 
By rule of thumb, the adaptive ANN architecture is 
determined: 6 input parameters, 3 hidden layer units and 1 
output. The DoE is initialized with 30 FEM simulations and 
6 best points are added at every iteration into the DoE to 
perform FEM simulations. The training of the adaptive ANN 
is stopped with 77 calls to the FEM simulations. The point 
cloud of the 77 DMs determined with the adaptive ANN is 
plotted with respect to ASA40 in Figure 7. To show the
advantage of the adaptive ANN, 77 ground motions are 
randomly selected from the 1000 generated synthetic signals 
and they are applied to the Takeda model to compute the DM 
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values. The point cloud of ASA40-DM with the random
selection is shown in Figure 8. 

Figure 7. Data selected by adaptive ANN from 1000 seismic accelerations 

Figure 8. Data selected by random selection from 1000 seismic 
accelerations 

From Figure 7 and Figure 8, it can be clearly seen that 
the quality of the point cloud chosen by the adaptive ANN is 
much better than that obtained by random selection. First, the 
data are better distributed in the design space. Too many data 
in Figure 8 are concentrated in the low ASA level, which is 
not very valuable for the MLE estimation. In fact, ݏ shows a 
very high value when the ANN is extrapolated. The effects 
of ݏ and the K-means clustering control the quality of the 
data to be selected:  they are uniformly distributed in the 
design space. Second, more data close to the limit state have 
been selected. This is due to the inherent property of the 
learning function ܷ. 

After performing the sensitivity analysis with data plotted 
in Figure 7 and Figure 8, the optimal ANN architectures for 
the 2 sets of data are determined (shown in TABLE IV).
ANNs are trained, and fragility curves are computed with the 
MLE method. The ANN trained with the data selected by the 
adaptive ANN is named ‘ANN-Adaptive’, while the ANN 
trained with the randomly selected data is called ‘ANN-

Ordinary’. Simulations are conducted for both ANNs with 
the 1000 generated inputs (IMs + material parameters). 

TABLE IV. CONFIGURATIONS FOR 'ANN-ADAPTIVE' AND ‘ANN-
ORDINARY’

ANN Inputs ݊௛ 
ANN-Adaptive ASA40, ASI, Tp, ଴݂, ୣݕ୪ୟୱ 4 
ANN-Ordinary PSa, ASA40, ASI, ଴݂, ୣݕ୪ୟୱ 3 

Fragility curves computed with both ANN simulation 
results are shown in Figure 9. For comparison, 1000 FEM 
simulations are performed with the 1000 generated inputs 
and MLE is applied to 1000 FEM results to compute the 
reference fragility curve ‘FEM’. From Figure 9, it can be 
observed that the fragility curve computed with ‘ANN-
Adaptive’ shows more accuracy than the ‘ANN-Ordinary’. 
This is because the quality of the training data for ‘ANN-
Adaptive’ is better than ‘ANN-Ordinary’: more ‘ANN-
Adaptive’ data are closer to the failure threshold, which 
brings more accuracy for the MLE method, and they are 
better distributed in the design space.  

Figure 9. Fragility curves for the Takeda model 

VI. CONCLUSIONS

An adaptive training for ANNs is proposed in this paper 
to optimize the design of experiments with damage measures 
closer to the limit state. These data are more critical to ensure 
the accuracy of fragility curves computed with the maximum 
likelihood estimation method.  

The adaptive training of ANNs is based on the K-Means 
clustering and the learning function ܷ, which represents the 
normalized distance to the limit state, to improve the quality 
of inputs data for ANN training. An additional sensitivity 
analysis and cross-validation is applied to the data selected 
by the adaptive ANN to determine the optimal configuration 
of the ANN. Fragility curves can be computed based on the 
ANN simulation results. 

The proposed ANN adaptive training methodology is 
applied to a nonlinear Takeda oscillator to compute seismic 
fragility curves. The result is compared to the fragility curve 
calculated with random selection of input parameters. It has 
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been observed that the fragility curve determined by ANN 
adaptive training shows more accuracy.  
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