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Abstract—In Fire Probabilistic Safety Analysis (FPSA), the 
non-suppression probability (that quantifies the likelihood that 
the installed protection system fails to protect the target from 
fire) is typically estimated using predefined detection-
suppression event trees, that are expected to cover 
uncertainties with conservatism. In this study, a hybrid Monte 
Carlo (MC) and possibilistic approach is proposed for 
uncertainty propagation and effective quantification of a 
protection system non-suppression probability. In particular, 
aleatory uncertainty is represented by probabilistic 
distributions and treated by MC sampling, whereas, epistemic 
uncertainty of human behavior by means of possibility 
distributions. 
The approach is applied to a switchgear room of a Nuclear 
Power Plant (NPP). Uncertain responsiveness of the fire 
protection system is integrated into a detection-suppression 
event tree, allowing for a clearer modeling interpretation and a 
more accurate failure probability estimate. 

Keywords-Fire Probabilistic Safety Analysis (FPSA); fire 
non-suppression probability; aleatory uncertainty; epistemic 
uncertainty; possibility distribution 

I. INTRODUCTION 
The report “Fire Probabilistic Safety Analysis (PSA) 

Methodology for Nuclear Power Facilities (EPRI 1011989, 
NUREG/CR-6850, Final Report)” was issued to guide the 
fulfillment of fire PSA for commercial Nuclear Power Plants 
(NPPs) with state-of-the-art methods, tools and data [1]. 
Therein, Task 11 “Detailed Fire Modeling” describes models 
for fire growth and propagation (especially for the risk-
relevant compartments) and frequency estimation of 
scenarios in which fire protections fail to protect a target. In 
general, with respect to a generic fire scenario S, its 
frequency of occurrence F can be expressed as: 

 ,i S i
NS

i

F G SF PO§ ·
 � � �¨ ¸
© ¹
¦  (1) 

where λi,S is the fire ignition frequency due to the i-th 
ignition source present in the considered fire compartment 
[1,12]; Gi is a geometric factor adjusting the i-th ignition 
frequency λi,S  to a specific area of the compartment that 
might be affected by the ignition which takes into account 
the different locations or/and orientations of the ignition 
source; SF is the severity factor representing the probability 

that, given ignition, the fire achieves the minimum size 
required to damage the risk-relevant target and, can be 
calculated by using a heat release rate probability density 
function [1, 17, 18]; PNS is the non-suppression probability of 
the fire scenario, which quantifies the likelihood that the 
installed protection systems fail to protect the target from the 
ignited fire. To account for the uncertainties of the fire 
propagation process, the method reported in Appendix P of 
[1] is commonly employed.  

In a specific fire scenario, the estimate of PNS is affected 
by two types of uncertainties: (1) aleatory uncertainty due to 
inherent variability in the system behaviors, such as physical 
properties of the ignition sources, responses of the automatic 
protection systems, etc., and, (2) epistemic uncertainty due to 
lack of knowledge and action imprecision on the system, for 
example, human errors in manual protection measurements 
[2-4]. 

Aleatory and epistemic uncertainties can be treated by a 
hybrid Monte Carlo (MC) and possibilistic approach [3, 5, 6, 
13]. In particular, aleatory uncertainty related to randomness 
is modeled with MC sampling from probability distributions, 
whereas, epistemic uncertainty due to imprecise knowledge 
is treated by possibility theory, using possibility and 
necessity measures obtained from expert judgment. The 
approach has proven to be effective for jointly propagating 
the aleatory and epistemic uncertainties in a risk model [5]. 
In this study, with respect to the fire non-suppression 
analysis of a fire scenario, we propose the hybrid Monte 
Carlo and possibilistic approach to propagate aleatory 
uncertainty (affecting fire growth and propagation, and 
response time of the automatic protection system) and 
epistemic uncertainty (related to human behavior). 
Probability distributions of the aleatory variables (i.e., the 
response time of automatic actuation systems) are obtained 
from a detailed fire scenario modeling in Fire Dynamic 
Simulator (FDS) [4, 7, 8], whereas, possibility distributions 
(i.e., the Performance Shaping Factors (PSFs) affecting the 
human actions) are elicited from a Standardized Plant 
Analysis Risk-Human Reliability Method (SPAR-H) model 
[9-11]. Both probability and possibility distributions, being 
factors of the non-suppression probability, are integrated into 
the suppression-detection event tree, allowing for the 
quantification (with confidence) of the system failure 
probability. 
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The reminder of the paper is organized as follows. 
Section II presents the case study: the main characteristics of 
a NPP switchgear room and its FDS fire modeling. In 
Section III, a SPAR-H analysis of the manual protection 
actions is performed, to define the possibility distributions of 
the PSFs. In Section IV, responses of automatic and manual 
protection systems are combined into a generic detection-
suppression event tree, to estimate the fire non-suppression 
probability of a fire in the switchgear room. Section V draws 
the conclusions. 

II. CASE STUDY 
Switchgear rooms (equipped with cabinets and cables) 

are very important for the normal operation of safety-related 
systems [12], and, therefore, many efforts are devoted to 
fully quantify the fire risk in switchgear rooms resorting to 
FPSA. In this study, the reference room is assumed to be 
normally closed as shown in Figure 1 [12], where twelve 
power distribution cabinets are symmetrically distributed on 
the two sides of the room and, the cables are distributed in 
the cabinets and in the cable trays under the steel floor. 
Geometric parameters and physical properties values of the 
room are listed in Tables I and II, respectively. Automatic 
protection devices are installed in the center of the ceiling, 
i.e., one heat detector, one smoke detector and one automatic 
sprinkler. Once a fire occurs, successful detection of the 
smoke detector or/and the heat detector can, on one hand, 
actuate the automatic sprinkler to control the fire in a delay 
time around 0.2 minutes, and on the other hand, alarm the 
main control room, to call the response of a fire brigade 
(whose response time is 0.5~1 hour [14]). The fire also can 
be promptly detected and controlled thanks to an on-site fire 
man by using the fire extinguisher outside the room. 

TABLE I.    VALUES OF GEOMETRIC PARAMETERS OF FDS MODELING 

Category Input parameters 
Number Width [m] Depth [m] Height [m] 

Room 1 5.0 6.0 3.6 
Door 1 1.5 \ 2.2 

Cabinets 12 0.7 1.0 2.0 

TABLE II.    VALUES OF PHYSICAL PARAMETERS OF FDS MODELING 

Category Paint Cable Wall 

Material Flame 
retardant PVC 

Ceiling Concrete 
Floor Steel;paint 
Wall Concrete 

Density [kg/m3] 1200 1380 

\ 

Heat of combustion 
[kJ/kg] 20900 17974 

Heat conductivity 
[W/(m·K)] 0.25 0.16 

Ignition point [K] \ 523.15 
Specific heat 1.0 0.9 
Heat of reaction 
[kJ/kg] \ 1500 

 
The room obeys the general fire compartment 

partitioning requirements and standards of commercial NPPs, 
e.g., fire barrier with a minimum fire protection endurance 
rating of one hour, a well-sealed concrete wall with a 

minimum thickness of 4 inches, spatial separation, 
environment condition control, etc. [1]. 
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Figure 1. Layout of the switchgear room 

III. ESTIMATION OF THE DETECTION-SUPPRESSION 
PROBABILITY 

Regarding a fire, the non-suppression probability PNS is 
calculated by summing the probabilities of non-suppression 
(NS) sequences, which represent scenarios where the fire is 
not suppressed by the suppression protection activities, in a 
detection-suppression event tree. The event tree is developed 
by identifying the detection and suppression features 
installed against the fire. Three classes of (detection and 
suppression) protection activities are identified in the 
tradition detection-suppression event tree: prompt (e.g., fire 
watch, high sensitivity detector, etc.), automatic (e.g., 
heat/smoke detector, sprinkler, etc.), and delayed (manual) 
(e.g., control room verification, fire brigade, etc.) activities 
[1]. 

In this study, we develop the detection-suppression event 
tree of the switchgear room fire by: A. detailed fire modeling 
by the Fire Dynamics Simulator (FDS) [7], allowing for the 
estimates of the times available for the suppression actions 
that are feeding to calculate the probabilities of non-
suppression that suppression actions and, B. extracting the 
possibly available protection actions and developing the 
detection-suppression event tree. 

A. Detailed Fire Modeling 
FDS is here used to model NF=20 fire scenarios for the 

switchgear room. Geometric parameters and physical 
properties values listed in TABLEs I and II, respectively are 
used to feed FDS. 

Possible ignition sources in the simulation are assumed to 
be cables in the cabinets or/and in the cable trays (shown 
with stars in Figure 1). The fire can, then, propagate and 
grow in the switchgear room (under the conditions of 
abundant oxygen and cable ignition temperature). The FDS 
simulation entails: 

y Obtaining the time for target damage tdam, (i.e., time 
at which the cable temperature exceeds Tdam=205oC 
(Task 8 of [1]). 

y Calculating the time available for the suppression 
action tR (Appendix P of [1]): 
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 R dam S Dt t t t � �  (2) 
where, tS and tD are the response times of suppression 
system and of detection system, respectively (Notice 
that both automatic and manual suppression 
measures are not considered in the FDS modeling, 
allowing a conservative estimation of a most severe 
value tdam). 

y Obtaining the response time of automatic detector 
tAD, (triggered when the temperature of 50oC is 
exceeded and visibility becomes below 1.0m due to 
smoke). Heat and smoke thermocouples are located 
as shown in Figure 1. The response time of the 
sprinkler tAS which can be obtained resorting to 
tAS=tAD+dtAD, where dtAD is the delay time between 
automatic detection and the sprinkler actuation. 

y Developing the detection-suppression event tree, 
considering the estimated response times of prompt, 
automatic and manual protection actions and the time 
to target damage tdam. 

 

 

Figure 2. Profiles of the temperature of the most and the least severe fire 
scenarios 

 

Figure 3. Profiles of the visibility of the most and the least severe fire 
scenarios 

Figures 2 and 3 show the profiles of the temperature and 
the visibility of the most and the least severe FDS runs, 

respectively. In Figure 2, both temperature profiles remain 
low at the early stage of the fire scenario. Then, in the most 
severe scenario the fire grows rapidly and reaches the target 
damage criterion equal to 205oC at tdam=5min, due to the 
flashover in the switchgear room. After the fully developed 
combustion that lasts 10min, the fire decays. In Figure 3 
shows that in both scenarios the visibility profile rapidly 
decreases and goes below 1.0m in a very short time period 
after the fire ignition. The minimum visibility lasts for 
around 10min, corresponding to the development of 
combustion in Figure 2, then smoke optical density stabilizes. 

The mean value of the response time of detectors tAD in 
the NR=20 runs of simulation are estimated by: 

 
2

,
1

2
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and turns out to be equal to 3 min. Considering the actuation 
of the automatic sprinkler delaying ADt  around 0.2 minutes 
(i.e., dtAD), we obtain tAS equal to 3.2min. 

B. Development of the Detection-Suppression Event Tree 
Automatic protection actions (including responses of the 

heat and smoke detectors, and the automatic sprinkler) are 
considered in the development of the detection-suppression 
event tree, because they would be automatically actuated 
within the time to target damage, namely, tdam > tAS. 

Once detected, fire brigades are called to take prompt 
suppression measures to avoid the scenarios escalation. In 
human reliability, human performance is affected by the 
Performance Shaping Factors (PSFs), especially under a 
stressful working condition, e.g., an available time to 
suppression less than 5min. Thus, Human Error Probability 
(HEP) in the response of prompt protection actions should be 
considered in the detection-suppression event tree, 
accounting for the performance of an operator or a crew 
when acting upon an urgent event. We consider the mean 
values of the detection time of the fire man tPD and of the 
delay time of the fire man to get the water from the fire 
extinguisher dtPD equal to 1.5min and 0.5min, respectively. 

Manual protection actions are not considered in this 
study since the fire brigade (whose response time is usually 
at least 0.5h [14]) have no time to take any protection 
measures to control the switchgear room fire (with respect to 
the conservative tdam equal to 5min). In this sense, the failure 
probability of manual suppression action is assumed to be 
equal to 1 and, thus, is excluded from the detection-
suppression event tree of the switchgear room fire. 

The resulting detection-suppression event tree is shown 
in Figure 4: 13 sequences are modeled, among which 4 allow 
for suppression (OK) and 9 for non-suppression (NS). In 
case the extinguisher (i.e., Prompt Suppression) is effectively 
activated by the fire man (i.e., successful Prompt Detection) 
or the sprinkler (i.e., Automatic Suppression) is effectively 
activated after received the alarm of detection (i.e., 
successful Automatic Detection) before tdam equal to 5min 
(i.e., successful Prompt Response or successful Automatic 
Response), the fire can be suppressed/mitigated 
(corresponding to sequences j=1, 2, 6, 10). Whereas, in case 
of failures of both prompt and automatic protection actions, 
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the fire cannot be successfully suppressed (corresponding to 
sequences j=3, 4, 5, 7, 8, 9, 11, 12, 13). 

Cable Fire
Detection Suppression Detection Suppression

No. Cons.

1 OK

2 OK

3 NS

4 NS

5 NS

6 OK

7 NS

Prompt Automatic

Response* Response

8 NS

9 NS

10 OK

11 NS

12 NS

13 NS  
Figure 4. The detection-suppression event tree of the switchgear room fire; 

(*) indicates that the occurrence of the event is caused by a human error 

In the detection-suppression event tree of Figure 4, nine 
sequences contribute to the non-suppression probability. The 
probability of the occurrence of the jth non-suppression 
sequence, pj, j=3, 4, 5, 7, 8, 9, 11, 12, 13, is the product of 
the probabilities Pk, k=PD, PS, PR, AD, AS and AR, of 
occurrence or non-occurrence of the events along the 
sequence: 

 � �1j k k
k occurrence k non occurrence

p P P
� � �

 � �� �  (4) 

 
Table III lists the values of the failure probabilities of the 

detection and suppression protection actions (Appendix P of 
[1]). 

TABLE III.    FAILURE PROBABILITIES OF THE DETECTION AND 
SUPPRESSION ACTIONS (APPENDIX P OF [1]) 

Head event Failure Probability 
Prompt Detection (PPD) 0.1 
Prompt Suppression (PPS) 0.05 
Automatic Detection (PAD) 0.05 
Automatic Suppression (PAS) 0.05 

 
Whereas, the failure probabilities of “Prompt Response” 

PPR and of “Automatic Response” PAR can be calculated by 
the approach proposed in Appendix P of [1]. PAR that 
“Automatic Response” does not succeed before the time to 
target damage tdam) is estimated by: 

 � � � �
0

exp
ARt
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§ ·
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where tAR is the time available for the automatic response, 
θ(tAR) is a function of the parameters of the probabilistic 
model chosen for tdam and indicates a time varying the rate at 
which the fire is suppressed. For simplicity, θ(tAR) can be 
estimated to be a constant value θ (assumed to be equal to 
0.36 [1]) indicating the rate of fire suppressed, and Eq. (5) 
changes to: 

 � � � �expAR ARdam ARP tt t T �!  (6) 

 
In the same way, the failure probabilities of “Prompt 

Response” PPR can be calculated by: 
 

 � �expPR PRP HEP tT � �  (7) 

where, tPR is the time available for the prompt suppression 
action, and HEP is the probability of human error. tPR and tAR 
can be calculated by Eqs. (8) and (9), respectively.  
 

 tPR=tdam-dtPD-tPD (8) 

 tAR=tdam-dtAD-tAD (9) 

In the traditional quantification of the detection-
suppression event tree of Figure 4, the headers probabilities 
PPD, PPS, PAD, PAS are taken from TABLE IV and, whereas, 
PPR and PAR are calculated by Eqs. (6) and (7), in which HEP 
is assumed to be equal to 1e-3 [10], and detection and 
suppression times dtPD, tPD, dtAD and tAD of Eqs. (8) and (9) 
are assumed to be mean values equal to 0.5min, 1.5min, 
0.2min and 3min, respectively. The non-suppression 
probability of the switchgear room fire is estimated to be 
equal to 0.0828 (see dotted line with black diamonds in Fig. 
10), based on sum of the non-suppression sequence 
probabilities. 

IV. UNCERTAINTY PROPAGATION FOR QUANTIFYING PNS 

A. Probability Distributions of Response Times 
Among the Nk fire scenarios of Section III.A, profile 

bounds allowing calculating response time intervals of the 
heat and smoke detector result to be [2.5, 4.5]min and [1, 
4.5]min, as shown in Figures 2 and 3, respectively. The 
deviation of the response time of detectors is estimated by: 

 

 � �
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2
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and turns out to be equal to 0.64min. Thus, considering ADt  
estimated equal to 3min, we assume the probability 
distribution of tAD follow a normal distribution N(3, 0.64) 
min. With dtAD being assumed to be distributed from a 
normal distribution dtAD~N(0.2, 0.03)min, tAS results to be 
N(3.2, 0.6407)min. 

At the same time, we consider the probability 
distributions of tPD and of dtPD to be distributed from the 
normal distributions N(1.5,0.5)min and N(0.5,0.5)min, 
respectively. 

Table IV lists these probability distributions. 

TABLE IV.    DISTRIBUTIONS OF THE DETECTION AND SUPPRESSION TIMES 

Time Distribution 
tPD N(1.5,0.5)min  
dtPD N(0.5,0.5)min  
tAD NAD=N(3,0.64)min 
dtAD dNAD=N(0.2,0.03)min 
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B. Possibility Distributions of HEP 
In Human Reliability Analysis (HRA), HEP is 

incorporated into the overall probabilistic models [9]. The 
SPAR-H method can be used to quantify the HEP by 
providing a taxonomy of common human errors (i.e., PSFs) 
under expert judgment [10]. In this study, HEP is estimated 
by the SPAR-H method, to calibrate the failure probability of 
the “Prompt Response”. Due to the scarcity of data, 
possibility distributions are here proposed to represent 
epistemic uncertainty in the SPAR-H model [5].  

A possibility distribution π(y) describes the more or less 
plausible values of epistemic uncertain variable y, and 
provides two measures of the likelihood of an event, for 
instance that the value of a real variable y should lie within a 
certain interval A: the possibility S and the necessity N. 

 � � � �sup
y A

S A yS
�

  (11) 

 � � � � � �� �1 inf 1
y A

N A S A yS
�

 �  �  (12) 

With respect to the representation of uncertainty, one 
resorts to the elicitation of expert knowledge that is often of 
ambiguous, qualitative nature so that the associated 
uncertainty may be more adequately captured by possibilistic 
distributions. 

Table V lists the eight basic PSFs that are used to 
estimate the HEP [10]. 

TABLE V.    PSFS UTILIZED IN THE SPAR-H MODEL [10] 

PSFi Definition 
Available 
time 

The amount of time that an operator or a crew has 
to diagnose and act upon an abnormal event. 

Stress 
The level of undesirable conditions and 
circumstances that impede the operator from easily 
completing a task. 

Complexity How difficult the task is to perform in the given 
context. 

Experience/ 
training 

The experience and training of the operator(s) 
involved in the task. 

Procedure The existence and use of formal operating 
procedures for the tasks under consideration. 

Ergonomics 

The equipment, displays and controls, layout, 
quality and quantity of information available from 
instrumentation, and the interaction of the 
operator/crew with the equipment to carry out 
tasks. 

Fitness for 
duty 

Whether or not the individual performing the task 
is physically and mentally fit to perform the task at 
the time. 

Work 
processes 

Aspects of doing work, including inter-
organizational, safety culture, work planning, 
communication, and management support and 
policies. 

 
The product of all the PSFs is, then, used to calculate the 

HEP, as in Eqs. (13) and (14): 

 
composite i

i

PSF PSF �  (13) 

 
� �1 1

composite

composite

NHEP PSF
HEP

NHEP PSF
�
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 (14) 

 
where NHEP is the nominal HEP value that sometimes can 
be cited from the database; and PSFcomposite of Eq. (13) is the 
composite PSF that accounts for a combined influence that 
all PSFs in the SPAR-H model jointly result in. Each PSF is 
assigned with a PSF level (value) from a couple of options 
by the reviewer judgment. 

Interdependencies among PSFs affecting the “Prompt 
Response” event are represented by the PSF influence matrix 
(Appendix G of [10]) shown in Figure 5. Accordingly, the 
experts elicit their knowledge on the possibility distributions 
of the PSFs, i.e., π(PSFi), i=av(ailable time), st(ress), 
co(mplexity), ex(perience/training), pr(ocedure), 
er(genomics), fi(tness for duty) and wo(rk processes), as 
shown in Figure 6, to represent the multipliers of the PSFs 
affecting the human performance in “Prompt Response”. 

Human error Successful suppression

Available 
time

Ergonomics Stress

Complexity

Experience/
Training

Fitness for 
duty

Work 
processesProcedure

Improve or degrade performance

 
Figure 5. Path diagram showing the interdependencies among PSFs 
affecting the human performance in the event “Prompt Response” 

Without loss of generality, we have considered 20 α-cuts 
,(௜ܨܵܲ)ఈߨൣ ൧(௜ܨܵܲ)ఈߨ  with α (=0.05, 0.1, …, 1) to 
characterize each ith possibility distribution π(PSFi) of 
Figure 6. By using the fuzzy extension principle ([3, 5, 15, 
16]), the α-cuts of the possibility distribution describing the 
quantity PSFcomposite of Eq. (13) are computed.  

 � �composite i
i

PSF PSFD DS �  (15) 

 � �composite i
i

PSF PSF
D DS �  (16) 
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Figure 6. Possibility distributions of the eight PSFs affecting the human 

performance in the event “Prompt Response” 

Figure 7 shows the obtained possibility distributions of 
PSFcomposite. Then, the possibility distribution of the HEP is 
computed by applying the extension principle to Eq. (14). 
And using a NHEP value equal to 1e-3 according to [10], 
Figure 8 shows the obtained results. 

 

 
Figure 7. Lower and upper limits of the α-cut of PSFcomposite 

 
Figure 8. Lower and upper limits of the α-cut of HEP 

C. Results 
The non-suppression probability of the detection-

suppression event tree of Figure 4 can be estimated, 
combined with Nm=100 runs of MC. At each run, 

1) Sample the values of the detection and suppression 
times from the probability distributions of TABLE IV, then, 
to calculate PPR without considering HEP and PAR; 

2) Integrate the lower and upper limits of the α-cut of 
HEPቂܲܧܪఈ,ܲܧܪఈቃ into PPR, to calculate the α-cut intervals 
of PPR ቂ ௉ܲோఈ , ܲ௉ோ

ఈ ቃ; 
3) Calculate the probabilities (j=7,8,9,11,12,13) and the 

α-cut intervals (j=3,4,5) of the occurrence of the non-
suppression sequences based on Eq. (4), and, thus, sum into 
the α-cut intervals of non-suppression probability; 

4) Calculate the mean values of the α-cut intervals of 
non-suppression probability ቂ ேܲௌ

ఈ , ܲேௌ
ఈ ቃ, by repeating Steps 1) 

to 3) for Nm times and collecting the related statistics. 
Figure 9 shows the α-cut intervals of the probability of 

the successful suppression (j=1,2) and non-suppression 
(j=3,4,5) sequences, which are attributed to the possibility 
distribution of HEP of the “Prompt Response”. The 
probabilities of these sequences are characterized by the α-
cut intervals between the lower and the upper limits, and 
affected by the distributions obtained from the detailed fire 
modeling and from the human reliability analysis. The 
remainder of the sequences is not affected by the possibility 
distribution of HEP, since the “Prompt Response” is failed. 
For each trial of the MC simulation, the probabilities of the 
sequences can be calculated by Eq. (4).  
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Figure 9. The α-cut intervals of the occurrence of the suppression (1,2) and 

non-suppression (j=3,4,5) sequences 

Figure 10 shows all the Nm trials of the estimated α-cut 
intervals of the non-suppression probability such that the 
mean values ቂP୒ୗ஑ , P୒ୗ

஑ ቃ can be obtained, combining the α-cut 
intervals of the occurrence of the non-suppression (j=3, 4, 5) 
sequences with the probabilities of occurrence of the 
sequences which are not affected by HEP (j=7, 8, 9, 11, 12, 
13). The non-suppression probability is characterized by the 
α-cut intervals between the lower and the upper limits, and 
affected by both the probabilistic and possibilistic estimates 
obtained from the detailed fire modeling and from the human 
reliability analysis. Results show that the preference of the 
non-suppression probability is between 0.0993 and 0.1538 
where the degree of possibility is equal to 1, whereas the α-
cut intervals are increasing when the degrees of possibility 
are small. The reason is that the estimated HEP is the 
product of all the PSFs with a relative large α-cut intervals, 
such that will entail further minimization of the possibility 
distribution, based on the identification of the interrelations 
among PSFs and the most critical PSFs affecting the 
“Prompt Response”. 

 
Figure 10. The α-cut intervals of the non-suppression probability 

As comparison, conservative result of the traditional 
estimation (PNS equal to 0.0828) drops into the α-cut 
intervals between possibility and necessity measures when α

0.8, whereas, it is illustrated to be underestimated, 
combined with the preference interval between 0.0993 and 
0.1538 when α=1.0 obtained from Figure 4, without 
considering aleatory uncertainty of automatic protection 
actions and epistemic uncertainty of human behavior. These 
results highlight that neglecting a proper treatment and 
propagation of epistemic uncertainty related to human 
behavior would endanger the NPP, due to an 
underestimation of the non-suppression probability. 

V. CONCLUSIONS 
In this study, a hybrid Monte Carlo (MC) and 

possibilistic approach is proposed for uncertainty 
propagation responding to a fire, to estimate the non-
suppression probability by quantifying the detection-
suppression event tree. 

The proposed approach is applied to a fire scenario of a 
NPP switchgear room. Aleatory uncertainties represented by 
probability distributions is obtained from a FDS detailed fire 
modeling that simulates the fire growth and propagation 
processes, whereas epistemic uncertainties represented by 
the possibility distributions is empirically judged by a 
SPAR-H method where the probability of human error is 
characterized by the product of eight basic human PSFs. 

The resulting preference of the non-suppression 
probability combining the considered probabilistic and 
possibilistic variables is between 0.0993 and 0.1538 and, 
provides a better and more realistic estimation compared 
with the traditional probabilistic approach. However, a 
relative large α-cut intervals of the non-suppression 
probability at the small degrees of possibility will raise 
further concerns on optimization of the estimation of the 
variable distributions, especially for the possibility 
distributions of PSFs in the SPAR-H model, where the most 
critical PSFs affecting the “Prompt Response” should be 
identified, to assess the quantitative interrelations among 
PSFs and, thus, to more conservatively estimate the HEP and 
the non-suppression probability. 
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