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Abstract

This paper develops a mathematical formulation of a
margin problem in an automotive battery sizing use
case. This formulation is done thanks to theoretical
models of margin. This enables to use an approach
with explicit margins, which is compared to a worst-
case analysis and a probabilistic modeling. The models
of margin are then adapted to a numerical implemen-
tation through the definition of patterns and presets
adapted to the case study.

Keywords— Model of margin, Design under uncertainty,
Industrial practice, Reliability.

1 Introduction

Uncertainties are generated all along the life cycle of large
industrial systems, in their design, manufacturing, operation
and even their end-of-life. Some quantitative methods, des-
ignated under the name of Uncertainty Quantification (UQ),
have been developed to provide meaningful indicators for
decision. A probabilistic modeling of these uncertainties is
often used [1]. However it appears that, in some industrial
collaborative contexts, UQ methods are not widely shared
across the variety of engineering stakeholders who must in-
teract together, thus limiting the opportunity to go beyond
purely deterministic simulations. In these contexts, engi-
neers keep using margins to ensure the reliability of the
models, the simulations and the system in general. How-

*This research work has been carried out under the leadership
of the Technological Research Institute SystemX, and therefore
granted with public funds within the scope of the French Program
?Investissements d’Avenir”.

ever, the margins are often implicit or hidden, as they are
not monitored [2]. Thus, they cannot be used as indicators
to characterize the system.

To address this problem, some recent works, such as [2],
focused on laying the theoretical foundation of the concept
of margin in design science. In order to rigorously formulate
problems on margins, independently from the engineering
field or modeling practice, we proposed a formal mathemat-
ical framework to define margins in [3]. More precisely, the
concept of model of margin was proposed, describing the
sufficient information to uniquely define a margin. This ap-
proach is pursued in this paper, based on a use case. A
practical link between the model of margin and the risks
prevented is presented hereafter. Section 2 gives a review of
the literature on the formalization of margins. In Section 3,
the industrial use case is introduced. Section 4 recalls the
theory of the model of margin. Its application on the use
case in Section 5 shows how models of margin can be used in
an industrial context to formalize and generalize the margin
practices. Section 6 presents a design pattern used to guide
the numerical implementation of the margin presets for the
use case.

2 State of the art

2.1 Scope of the work

The word margin has multiple meanings in engineering. The
concept that we investigate can generally be described as an
amount of something included so as to be sure of success or
safety (Oxford Dictionary). It includes the notion of safety
margin, that is defined for instance in [4] as something that is
over and above what is strictly necessary and that is designed
to provide for emergencies [...]. In other contexts, it can



be called performance margin, margin to damage, flexibility
margin, and so on.

The margin of error in Statistics, which is the length of the
confidence interval, does not exactly satisfy our definition,
although some links could be established with it in some
specific cases (e.g taking a safety margin because of a margin
of error). The profit margin, which is the gain made by a
given operation, is not studied in this paper.

2.2 Classic margin indicators

Some indicators from the literature of various disciplines can
be identified as margins. The safety coefficients (v1,...,7n),
the reliability index Sgr [6], the capability process Cp [5]
and the monetary risk measure p(X) [7] are examples of in-
dicators that are used to measure an extra amount of some-
thing preventing a risk. Thus, they can be described with a
model of margin, which is presented in [3, Sec 4.].

2.3 Existing margin frameworks

Some works have been conducted to manage the margins in
more systematic ways. The task group on safety margins
(SMAP) was motivated by the need for a unified definition
to assess margins in power plants, in the context of the regu-
latory evaluation of design changes. One of their conclusions
is that a change in safety margins must be measured with a
change in probabilities of exceedance [8].

The quantification of margins and uncertainties (QMU)
approach is interested in the computation of margins so as
to assess safety goals in the storage of nuclear stockpiles [9].
This framework focuses more on distinguishing the sources
of uncertainties in order to have a relevant interpretation
of margins than on exploiting the particular structure of
margins.

In the field of complex system design, the topic of margin
allocation has been the source of some recent works [10,11].
The idea is to estimate the extra quantity to allocate to
each design variable in early design phases. In [11], the
margin on a design variable is defined as the difference be-
tween the chosen value and a requirement (either an upper
or lower requirement). However, their margin definitions do
not encompass the classic indicators such as the monetary
risk measure p and the capability process Cp, as they cannot
be taken on random variables.

The need for a margin definition which is general enough
to encompass the majority of practices and precise enough to
provide a good formulation of actual margin problems led us
to propose our own model of margin in [3]. While covering
the classic indicators of Section 2.2, it did not contain a
practical example of use of models of margin. Providing
such an example is one of the aim of the remainder of this
paper.

3 Industrial case: an automotive
battery sizing

3.1

The use case presented in this section is typically part of a
pre-design sizing study. To this end, simple models are used
in order to get a first idea of the characteristics of the system.
The numerical values used in this paper are provided for the
purpose of the demonstration only and are not actual values
used by our industrial partners.

The system of interest for this use case is a battery used
to power the starting engine of an automotive combustion
engine. The battery also supplies the vehicle components
with power when the engine is not running. When the engine
is running, the alternator provides enough power to charge
the battery and to operate the car devices.

We concentrate hereafter on satisfying the requirement:
the battery should store and supply enough energy to crank
the engine running in tough conditions. It is refined as fol-
lows:

Initial problem

e The battery must handle at least 6 months of storage
in warm, temperate and cold countries;

e To ensure that the engine actually start, there must be
enough power to perform three cranking.

3.2 Modeled phenomena

The variables used in this section are classified and explained
in Table 1 and Table 2. Due to the specific needs of our
analysis, we chose to only model the following phenomena:

Self-discharge Because of their internal electric conduc-
tivity, batteries cannot keep their state of charge, even when
unused. The conductivity is temperature-dependent and
thus affects the self-discharge rate. We assume furthermore
that the discharge rate is independent from the battery state
of charge at a given time. The energy consumed during a
period of inactivity of ¢, is approximated by:

Edischarge = Cbatt Vbatt tin kO (Hdis - erefl )a (1)
Post-cooling After the engine stops, some additional en-
ergy is required to cool the engine and avoid hot spots. The
post-cooling energy is expressed as:

0, if 0 < 0,
Eeool = Pcool(tm + (tc - tm) %)7 if 0 e [95; QL]
PCOOltC7 lf 0 > 95.

(2)

Electronic Control Unit standby mode Most of
the car embedded electronics components (ECU) - like the
battery management system - keep operating periodically
after the engine is stopped. This is modeled as a linear cost
with respect to the parking duration:



Variable \ Description Unit Variable | Description Unit
Design parameters Constants
Minimum battery capacity tin Vehicle parking duration s
Creq Ah -
needed 0 Engine temperature that re- K
Environment constraints s quires cooling
o+ Maximum cooling tempera- K Ky self-discharge coefficient K=%/s
cool ture required Temperature with zero self-
— : Ore, . K
_ Minimum starting tempera- discharge
estart 3 K
ture required o Exponent of the temperature No unit
ot Maximum mean temperature K dependency
dis required Critical engine temperature
Non-controllable variables 0. that requires a long time cool- K
Chatt Capacity consumed Ah ing
E Energy required to start the 3 te Critical cooling time s
start vehicle tm Minimal cooling time s
Eaischarge | Battery self-discharge energy J p Power of the engine cooling W
Eool Energy used to cooling engine | J cool system
5 Energy consumed by standby 3 P Power consumed by standby W
standby | oquipments standby | oquipments
Odis Mean battery temperature K Pitart Power of the starter W
Ocool Engine temperature (cooling) K ; Time required to start engine .
Ostart Engine temperature (start) K start at the temperature 6, fo
Additional cooling time coef-
. Descrinti : S K s/K”?
Table 1: Description of model variables 1 ficient
Oret, Reference temperature K
3 Expopent of the temperature No unit
Estandby = EO + Pstandbytirp (3) and time dependency
Vbatt Battery nominal voltage A%

Starting energy The energy required to start the engine
is dependent on the temperature. This has an impact on
the duration of the starting phase, which is modeled by a
dependency of the time on the temperature:

Estart - Pstart (tstart + Kl (estart - erefg)i) (4)
Total energy consumed The starting energy is
counted three times to match the requirements. The ex-
pression of the total energy consumed is:

Ebatt = Edischargc + Ecool + Estandby + 3 Estart (5)

from which we deduce the expression of the total consumed
capacity:
Ebatt

Vbatt

(6)

Cbatt =

3.3 Aim of the analysis

The goal of the analysis is to determine the minimum battery
capacity Chreq that fulfills the requirements stated in Section
3.1. The designer must choose the design parameter Creq
such that for all Oco01 < 02;01, Oais < 93}8 and Ostart > Opart
the inequation:

Creq 2 Cbatt (0(50017 estart, 9dis)~ (7)

Table 2: Description of model constants.

; : + +
is true. The temperature constraints 0_ |, 0., 0 .. repre-

sent the range of temperature for which the requirements
must hold. The other limits, 0___,05. and 6%, are not
considered here, as they have no influence on our modeling.

star

4 Model of margin

A model of margin contains the information required from
the analysis of a phenomenon to uniquely define a (effective)
margin. This concept has been extensively developed in [3]
and the reader is invited to refer to it for a comprehensive
introduction to the concept. In this section, we recall from
[3, Sec 2.1] the notation used in the model of margin.

4.1 Model of margin

We call U the variable of interest, for which one is inter-
ested in computing a margin. U is a random variable on a
probability space (2, F,P) and it takes its values in E.

Definition 4.1 (Problem description). The problem de-
scription is defined by the triple (E,€,&). E is the state
space. The set of problem constraints € and the acceptance



set o are two subsets of the random variables on E, denoted
by L% (Q, E).

€ characterizes the values that can be taken by the vari-
ables describing the phenomenon U due to constraints given
by the model - such as physical or logical constraints.

o discriminates the values of U that are acceptable and
then included in this set, and those that are not.

Definition 4.2 (Probing set). Let (E, %, <) be a problem
description. The family of probing sets is a family of subsets
of E indexed by U € ¥, and is denoted by (Y1), ce- The in-
tersection between a probing set and the problem constraints
is ?Urg =%y nNe.

Gy gives the extent of the point evolution that one wants
to consider when computing a margin at the point U.

Definition 4.3 (Coordinates of interest). Let (E, &, ) be
a problem description and ($u)vew a family of probing sets.
A set of coordinates of interest is a metric space (S, ds), pro-
vided with a family of functions ¢y : y — S indexed by
U € €. The family (¢v)vew is called the family of coordi-
nate functions.

The set of coordinates of interest S represents the quan-
tities on which one wants to express a margin, which will be
measured by the distance ds. ¢y is the coordinate function
which associates each element of &y with its coordinates in
S.

Definition 4.4 (Model of margin). A model of margin is
the combination of a problem description, a family of prob-
ing sets and a set of coordinates of interest with the corre-
sponding coordinate functions. It is denoted by:

M= (E,&,, (%v)ves, S, ds, (pv)ves) (8)

4.2 Margin

Definition 4.5 (Margin).

Let M = (E, €, , (Yv)vew, S,ds, (¢u)vew) be a given mar-
gin model and U € & a variable of interest. The margin at
the point U for the model M is defined as:

ds (¢U(U)7¢U(dc n ?Uﬁg)) ifU e EQf,
—ds (¢U(U)7 ¢U(ﬂc n ?U\g‘)c n ¢U(?U‘<g))
iU ¢ o

)

m(U; M) =

Intuitively, the margin for a given point U is the distance
from this point to the acceptance set, for some chosen evo-
lution and focusing only on some coordinates describing the
variable of interest. U can be a random variable, but the
margin is ultimately expressed as a distance dg in a deter-
ministic metric space S.

4.3 Directional margin

A model of directional margin is a special case of model of
margin that consists in probing - 7.e exploring - the points in
one specific direction from the reference point and measuring
the distance from this point to the unacceptable points in
this specific direction.

The state space E is a vector space and we denote by w €
E the specific direction of the directional model of margin M.
The margin at the point U € o has the following expression:

mU;M)=inf {(A>0[U+ weANE}.

4.4 Taking a margin
4.4.1 Taking a margin on a set of points

when one speaks of taking a margin m, most of the times
they implicitly think of defining a model of margin M and
imposing a minimum margin m > 0 for this model of margin.
In that case, the requirement value m is called the demanded
margin, by opposition to an effective margin, which is the
margin actually measured for a point U. In this paper, in-
stead of writing that the acceptance set & of the model of
margin M is reduced by the condition m (U;M) > m, we
write that m margin is taken in M.

4.4.2 Taking a margin on a point

Sometimes, it is easy to choose the “best” point U™ as a
unique solution of:

U* = argmin¢(U).
Ued

(10)

cis a cost function, and it can possibly be trivial to compute.
It can be the value of one coordinate of U for instance. It
might be easy as well to choose the best point V* from
the “marged” acceptance set {V € &|m (V; M) > m} for the
same cost function. It seems common that, in that case, one
says that “V™ is the point U* with m margin”.

5 Application to the industrial
case

In this section, we compare two classic design methods to
choose the battery capacity to an approach enabled by the
model of margin, namely the design with explicit margins.
Each of the three method have in common a formulation of
an optimization problem under constraints:

* .
Creq = argmin Creq.
Creq €2

(11)

The difference lies in the construction of the optimization
space 9.



5.1 Three design approaches
5.1.1 Worst-case design

The worst-case approach consists in taking each environ-
ment variable at its worst value for all the considered en-
vironments. Looking at the given reference values in Table
3, and considering the monotony of the capacity with re-
spect to the environment variables, the worst case happens
when 0 | = 80°C, 01 = 35°C and 0,,, = —18°C. The
optimization space 9 is then constructed by applying the
condition of Equation (7) with the aforementioned values.
Thanks to the monotonicity of the model, we compute the
optimal design as Chpatt(80, —18,35), which leads to a nu-
merical value of:
Creq =92AN.

This approach is interpreted as a sequential margin accu-

mulation in Section 5.2.

Environment | 07 0. Ogart | DProbability
Temperate 65°C | 20°C | 0°C Dtemp
Cold 65°C | 20°C | —18°C Peold
Warm 80°C | 35°C 0°C Pwarm

Table 3: Reference environment constraints depending
on the environment.

5.1.2 Probabilistic design

in the probabilistic approach, each environment of Table 3
is assigned to an event. The universe is then composed of
three exclusive events Q = {Wtemp, Weold, Wwarm }, modeling
the event “being in a temperate (resp. cold and warm) coun-
try”. A probability measure is constructed from data on the
consumer profiles and assigns the probabilities premp;Pcold
and pwarm tO each event. 9;01,93}5 and 60,,, are now ran-
dom variables whose laws are given by the values associated
to the probability of each scenario (see Table 3).

Chatt 1s then also a random variable. The criteria is re-
formulated in “satisfying Equation (7) with a probability of
~v € [0,1]”. The optimization space & is then given by the
values Cheq for which:

P (Chatt (0201, Ootares One) < Crea) = 7.

cool» (12)
As illustrated in Figure 1, different choices of Cy,, are pos-

sible (43Ah, 63 Ah or 69 Ah), depending on the « chosen.

One can remark that even for v = 1, i.e when Equation (7)
is always satisfied, the optimal value Cheq is 69 A h, which is
smaller than the worst-case value 92 A h. This characteristic
is captured in margin framework, by performing a mutual
accumulation on the margins instead of a sequential one, as
explained in Section 5.2.

5.1.3 Design with explicit margins

the global motivation of the proposed approach is to ensure
that all the margins considered in the analysis are relevant.

Prot

0.0 T T T T
40 47 50 60 63 OO”“

Cieq (AD)

T T
80 90 100

Figure 1: Probability ~ to satisfy the constraint with
respect to the value of Cieq. This is also the cumulative
distribution function of Chpays.

Margins can be explicitly identified and described thanks to
their models of margin.

In Table 3, one can see that a margin of —18 °C has been
taken for 6, . in the cold environment, with respect to the
temperate one. A margin of 15 °C for 0;‘;01 and 93}5 has been
taken in the warm environment.

As a car cannot be in a cold country and in a warm coun-
try at the same time, a simple rule is to consider that these
margins must not be taken “at the same time”, but instead
separately. By applying this rule, one computes Cy.q as the
maximum of Chatt (65,20, —18) and Chratt (80, 35,0). The nu-
merical value is the same as the probabilistic modeling with
v=1

Cleq =69AN.

The rigorous interpretation of this use case in terms of
models of margin is presented in Section 5.2. The rule is
generalized in Section 5.3. Section 6 gives some insights to
implement it globally as a numerical tool.

5.2 Detail of the design with explicit
margins

We reformulate the industrial case within our margin frame-
work. To do so, we first construct a deterministic problem
description of the models of margin. The state space E is
chosen to be the set of the design variables and the environ-
ment constraints given in Table 1. The set of the problem
constraints € is given by the equations of Section 3.2. The
acceptance set o/ is composed of the states satisfying the
criterion of Equation (7). U represents a battery designed
for temperate countries. We want to prevent two risks that
are not modeled in the problem description:

e (R1): being parked in a cold country and running out
of battery;

e (R2): being parked in a hot country and running out
of battery.

We define My, a directional model of margin in the di-
rection of a decrease in 6 To prevent (R1), we take a

start*



margin of 18°C in My, i.e we impose a smaller minimum
starting temperature.

We define Mg, a directional model of margin in the direc-
tion of an increase in 61 6% . To prevent (Rz), we take
a margin of 15°C in Mz, i.e we impose a greater maximum
cooling and mean temperature.

These two margins lead to the conditions of Table 3 for
warm and cold countries. In order to choose our best design,

we use an informal design rule:

When two risks are mutually exclusive, there is no
need to add up the margins taken for each event.
Instead, one could consider the possible designs
with margins for each event separately and choose
the best among their intersections.

This rule actually describes an implicit consideration mod-
eled in the probabilistic design. As a car cannot be parked in
a cold country and in a warm country at the same time, the
values of the constraints 9$S = 35°C and Ostary = —18°C
should not be imposed at the same time. The optimization
space 9 is then the intersection of the designs with a margin
of 18°C in M; and of the designs with a margin of 15°C in
Mo:

2 ={U €L’ (Q,E)|m(U;M:) > 18°C}

(13)
N{U € L°(2,E) |m (U;M,) > 15°C}

The impact of different strategies of margin accumulation
is illustrated in Figure 2.

Margin my = 20°C in My when
my = 18 °C has been taken in M;.
(simultaneously cold and warm)

Margin m; = 18°C
in M (cold countries)

0 O 0

oo oo oo

1 CM N 80 90 100 110
— .
AVAVA D,

—>
Margin ms = 20°C
in My (warm countries)
esign rule
(Creq = 69AN)

Worst-case
(Creq=92AN)

Figure 2: Reduction of the optimization space depend-
ing on the accumulation strategy. 9; is the optimiza-
tion space in the design with explicit margins and s is
the optimization space in the worst case.

With this method, our optimal value is:
Cioq = 69 Ah. (14)

This result is the same as the probabilistic design with v = 1.

5.3 Generalization of the industrial case

The example given in the previous section will help gener-
alizing it. During the design process, multiple margins are
taken to cover various risks. This process can be described
as:

1. Starting with some failure criteria that define a set of
acceptable designs .

In the previous case, &/ is given by Equation (7).

2. Considering a first risk R1, that is not prevented by the
failure criteria.

In the previous case R; is “being parked in a cold coun-

try and running out of battery”’.

3. Taking some margins on some quantities to cover the
risk R;.
my = 18 °C margin in M; has been taken in the previ-
ous case.

4. For each other risk R; repeating Step 3.

Only Rz “being parked in a warm country and running
out of battery” has been considered previously.

5. Getting a “marged” acceptance set @marg covering all
the risks considered.

This set was denoted by 9 in the previous case.

6. Choosing an optimal design among @marg-

The optimal design was Creq = 69 Ah in the previous
case.

5.3.1 Margin accumulation strategies

An interesting remark that can be made from the previous
case is that there are (at least) two different ways to take two
margins simultaneously. Let us denote by M(&/) the model
of margin M in which its original acceptance set is replaced
with /. The two ways are:

Sequential accumulation considering a margin m;
has been taken in My, take an additional margin ms in Ms.

g ={U e d|mU;M (L)) >mi1}

dmarg:{U€d|m(U7M2(ﬂ1)) ng} (15)

An illustration of sequential margins accumulation is shown
in Figure 3a. This leads to the worst-case design in the
industrial case.

Mutual accumulation the points U are required to
have m; margin in M; and mso margin in Ma:

Hmarg ={U € & |m (U; M1()) = m1 } 16)
N{U € o |m (U;M2(L)) > ma}. (
An illustration of mutual margins accumulation is shown in
Figure 3b. This leads to the design with explicit margins in
the industrial case.

It is possible to prove that the “marged” acceptance
set Hmarg resulting from the sequential accumulation is
always smaller than or equal to the one from the mu-
tual accumulation. The argument is that, as o1 C &,
the sequential marged acceptance set is included in
{U € o |m(U;Mz()) >mz} and also in ;. This is il-
lustrated in the comparison of Figure 3c.



Initial forbidden set A° PZZ Initial forbidden set A°
7 b [==3d Taking (M;,m;) margin on A == Taking (M;,m;) margin.
¢ @@ Taking (My, m) margin on A, 2 Taking (M,, m,) margin.

0 i f 0 i f T
2.0 -15 -10 —0.5 0.0 -2.0 ~15 -1.0 0.5 0.0
T r

(a) Sequential margins accu-
mulation of a margin of 1
taken in M; then of margin of
0.5 taken in Mao.

(b) Mutual margin accumula-
tion of 1 margin taken in M;
and 0.5 margin taken in Ms.

Initial forbidden set A°
Sequential margin accumilatio

E==9 Mutual margin accumulati

-1.0 —0.5 0.0
z

(c) Comparison of both
strategies (sequential is in
plain grey and mutual is
dotted).

Figure 3: Two strategies of margins accumulation for
the acceptance set o = {(z,y)|y > z*}. My is a direc-
tional model of margin on a decrease in z and Ms is a
directional model of margin on a decrease in y. A mar-
gin of 1 is taken in M; and a margin of 0.5 is taken in
Ms.

Nonetheless, the sequential accumulation should not be
forbidden. In fact, both strategies are relevant depending
on the purpose of the accumulation.

The purpose of the sequential accumulation is first to pre-
vent the risk Ry by taking a margin of m; in M;. Then,
assuming this risk occurs, one prevents a second risk Rs
(potentially the same) by taking a margin of mz in Ma.

The mutual accumulation can be seen as preventing a risk
R1 by taking a margin of m; in M; and a second risk Rz by
taking a margin of mg in Ma. The case in which R; and R»
happen at the same time is not considered, though.

It is now possible to rewrite the informal design rule as
follows:

Assuming that Ry and Ry are two risks that can-
not happen at the same time and a margin of my
(resp. m2) has been taken in M; (resp. Ms) to
cover R; (resp. R:), the final acceptance set cov-
ering R1 and Rz can be constructed by the mutual
accumulation of mi taken in M; and mo taken in
M.

It is assumed that the models of margin M; and M2 share
the same problem description and, in particular, the same
acceptance set.

5.3.2 On the construction of the acceptance set
o

in an optimization context of the type:

U" = arg min

Ue{ved|m(V;M)>m}

c(U) (17)

it seems to be a good practice to take margins on the in-
tensity of the environment constraints - 6 | for instance -
rather than on some actual values of the environment vari-
ables - 0..01 for instance.

Taking a margin on a constraint only imposes a stronger
constraint, e.g a greater 0;01. Now, let us assume that fcoo1
is included in the point U instead of Gj;ol. In that case, a
temperate constraint fcoo1 > 65 °C would likely be included
in the acceptance set, to make sure that the design would
fulfill the temperate country requirements. A margin for
the warm countries in an increase Ocoo1 would forbid any
Ocoo1 value between 65°C and 80°C. Then, even a mutual
accumulation would impose 6.0o1 > 80°C. With a similar
reasoning on the two other environment variables, the opti-
mal design would be the worst-case, instead of the one with
explicit margins.

’ Method Creq
Worst-case 92Ah
+ The simplest.
— Very conservative.
Explicit margins 69Ah

+ No more additional phenomena modeling
than in the worst-case, performs better, in-
terpretation in terms of margins.

— Needs a modeling of the margins and of the
risks.

Probabilistic model Depends on v, <69Ah

+ Takes into account the correlations.

— Requires a probabilistic framework.

Table 4: Comparison of the three design methods
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ModelOfMargin

Problem description

operations
getMargin( v: Inputs): Real

1
) j !
StateFactory ProbingSet ]
coordFunct [1] :
iy ProblemConstraints
~— operations <~ Coordinate Function <<------ CoordinateOfInterest
getState( v: Inputs): State I
1 /l\ A
1

\[[1] AcceptanceSet
operations SubsetOfCoordinateOfInterest Distance
isStateAcceptable( u: State): Boolean
Association Composition Dependency
* b1 1 b[1]
A B A 0%-| B A <---1 B

A class A has an association with
another class B if an object of
class A needs to maintain a refer-
ence to an object of class B. [12]

A composition is an unidirec-
tional association, It means
that A is composed of B.

A Dependency is a Relationship that
signifies that a single model Element
or a set of model Elements requires
other model Elements for their spec-
ification or implementation. [13]

Figure 4: Description of Margin metamodel using UML Class Diagram

5.4 Conclusion of the section

The margin that were taken during the design are now rigor-
ously defined, thanks to the models of margin. This rigorous
formulation helped us expressing a particular design margin
rule for general cases. This illustrates the aim and the po-
tential of the model of margin: to formulate problems on
margins and their solutions in a rigorous, general way.

6 Structure of an implementa-
tion of a model of margin

The previous formulation of the model of margin allows an
exhaustiveness to manage each model of margin. However,
it may not be simple enough to be used by a specialist sim-
ulation designer. In this section, a software design pattern
for the model of margin is built. This pattern enables the
definition of presets that could be plugged to each concept
of model of margin. A focus on the preset for the use case is
presented. The pattern will be described thanks to a meta-
model, that defines the concepts and the relationships be-

tween these concepts.

6.1 Metamodel definition

The metamodel of the model of margin describes its com-
ponents, for the purpose of their software implementations.
The Unified Modeling Language (UML) is used to describe
the metamodel, although one does not need to be familiar
with it to understand the patterns we expose. When some
UML concepts are used in a figure, their meaning is given
in a table below the figure.

A UML class, represented as a box, has the same meaning
as classes described in programming language as C++, Java,
or Modelica. It is a collection of properties and operations.
Classes can be seen as a mold, where instances can be seen
as items generated from a class.

Each mathematical object is modeled with an abstract
class, which is a class that cannot be instantiated as is. The
classes that are actually instantiated all inherit from the ab-
stract classes. The process of inheritance consists in impos-
ing the feature (attributes and methods/operations) inter-
faces of the parent abstract class to the classes that inherit



from it. To differentiate abstract classes from other classes,
the name of abstract classes is written in italic. For instance,
in Figure 4, each model of margin must have a class inher-
iting from ProblemConstraints. Each of these classes must
have an operation getState, which represents the computa-
tion of the state (inputs and outputs) with respect to the
inputs. However, the operation getState can be different for
two models of margin, as they can refer to different phenom-
ena.

6.1.1 Problem description

the abstract class ModelOfMargin is associated with the
ProblemConstraints, StateFactory and AcceptanceSet ab-
stract classes. The three latter classes come from a prior
modeling, without any margin consideration a priori. They
can then exist without the model of margin, and conse-
quently, an association link is used.

State space The role of the state space E in the mathe-
matical model of margin is to declare what are the variables
that would be of interest in the model. The variables can
either be input, intermediary or output variables. The nu-
merical counterpart is the StateFactory, which defines how
to instantiate the state.

The BatteryState of the use case (Figure 5) is imple-
mented to be used in an optimization context. The distinc-
tion between the design parameters, the battery outputs and
the environment variables allows to identify the variables on
which an optimization algorithm can operate. These vari-
ables are taken from Tables 1 and 2. The BatteryStateSpace
has a method BuildBatteryState(...) to construct a state
instance.

Problem constraints as written in the introduction,
an implementation of the ProblemConstraints must have a
method getState. This method is given by the models sim-
ulating the phenomenon.

Acceptance set For the numerical representation of &,
we only impose that any representation inheriting from Ac-
ceptanceSet has an “oracle function” isStateAcceptable. This
function returns “True” if the state given in argument is in
acceptance set and “False” otherwise. The construction of
this acceptance criterion may come from various sources.
For instance it can be some requirements specifications doc-
uments, the simulation itself, or a demanded margin condi-
tion.

The initial acceptance set of the use case has come from
the criterion of Equation (7) and was deduced from the high
level requirements. The quantity p = Cpatt — Creq can be
identified as a measure of the risk, that must be smaller
than the threshold preq = 0. It can thus be modeled with
a RiskMeasureAcceptanceSet, as shown in Figure 6. In this
specialization of AcceptanceSet, isStateAcceptable is True if
and only if p(State) < preq-

EnvironementVariableg
attributes
93001: Real = BatteryState
6. Real o ;ttrlibutes StateFactory
01 Real coolt 1160
A :l,m: Real A
DesignParameters O:[is: Real BatteryStateSpace
attributes F =1 Cvate: Real operations
Chatt: Real FEadischarge: Real E> BuildBattState( 6 ;...
FEeool: Real
BatteryOutputs Fstanaby: Real
attributes => Foart: Real
Edischarge: Real
Ecool: Real
Egtanaby: Real
Egare: Real
Generalization

A K— B

B class inherits from A class means that all charac-
teristics of A class are included in B class

Figure 5: State of case study

ModelOfMargin
+reviousModelOfMargins [1] [*]
1 RiskMeasure
MarginThresholdRiskMeasure | attributes
attributes Il riskThreshold: Real [1]
precedingMargins: Real operations
riskMeasure( u: State): Real [1..%]

[

RiskMeasureAcceptanceSet

AcceptanceSet

4_

- operations <
return true if isStateAcceptable( u: State): Boolean
riskMeasure(u) <riskThreshold | pp——

Figure 6: AcceptanceSet implementation for the case
study .

It has been stated that taking a margin consists in re-
ducing the acceptance set by imposing m (U; M) > m (see
Section 4.4.1). The implementation of this operation is il-
lustrated in Figure 6 in the MarginThresholdRiskMeasure
class. The condition can be expressed with risk measure, by
defining p(U) = —m (U; M) and preq = —m.

6.1.2 Specific objects of the model of margin

The problem description comes from the modeling of the
phenomenon. The other objects, such as the probing set or
the coordinate functions are specific to the model of margin.

Each model of margin specific object is defined as an ab-
stract class. Theses classes could not exist without a model
of margin and thus, they have a composition link with the
ModelOfMargin abstract class.



Probing set for each state U, the classes inheriting from
ProbingSet must describe the value of the states that would
be explored in the computation of the margin. In a direc-
tional model of margin, it is implemented as a vector. This
direction vector represents the semi-line starting at the state
U and going in the direction of the vector.

In the use case, the two models of margin defined in Sec-
tion 5.2 are directional margins. The probing direction of
My is €= the unit vector in 6, , and the probing di-

rection of Mz is ep+ +e,

cool

. + . +
in 6, and in 0.

+ , the sum of the two unit vectors
dis

Coordinates functions and coordinates of inter-
est the specialization of CoordinateFunctions must carry
the information to project any state in the ProbingSet to an
element of CoordinatesOfinterest.

In a directional model of margin, the coordinate of inter-
est is formed by the abscissa of points on the semi-line. It
can thus be deduced from the direction vector. In this case,
the information of the CoordinateFunctions and Coordina-
teOfInterest can be factorized with the information used to
construct the probing set.

Distance the implementation of Distance must describe
how to compute a distance between two elements of Coordi-
natesOfInterest.

By convention, in a directional model of margin, the direc-
tion vector defining the ProbingSet (Section 6.1.2) is also the
“unit vector” defining the Distance. However, the (mathe-
matical) probing set and the distance remain two different
conceptual objects.

7 Conclusion and future work

The application of the theoretical model of margin presented
in Section 4 to the automotive case of Section 3 helped:

e Formulating a margin problem and formulating its so-
lution in a rigorous way, in Section 5.2.

Generalizing the solution so it can be applied in a ap-
proach of design with explicit margin, in Section 5.3.
This approach consist in identifying the relevant mar-
gins.

Deducing some software design patterns for a numerical
use of the model of margin, in Section 6.

This is an encouraging sign for the ability of the model of
margin to formalize practical margin approaches to handle
risk.

Some different axes can be identified for some future de-
velopments:

e Other margin practices and rules can be identified in
industrial cases with different contexts. Their rigorous
formulation with the model of margin could help to
standardize these practices for interacting stakeholders.

o Taking a margin is closely linked to a risk to prevent.
This risk is not formalized in the model of margin. Is
it possible to construct an operating model of risk that
keeps some of the genericity of the model of margin?

On a more theoretical aspect, the model of margin is
itself a mathematical object. Studying it can help pro-
viding some general classes of solutions for problems
such as computing a margin or optimizing a design un-
der a demanded margin constraint.
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