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Abstract—To improve the resilience and ensure the dependabil-
ity of a critical system, the measurements and the derived intelli-
gence provided by the sensors monitoring the system need to be
reliable. This is increasingly challenging. As the computer vision
methods evolve, the usage of cameras as a part of monitoring
solutions has increased, and, consequently, the need for reliable
diagnosis strategies for those image-based sensors. This work
investigates the suitability of various single-value image metrics,
derived from first and second-order statistics, for detecting
partial camera obstruction. The presented methodology includes
using data augmentation techniques to expand a small dataset of
labeled images, and a score-based selection of the best metrics
for the target application. The results show that even simple
first-order statistics, such as the image histogram skewness, can
provide good detection results. The strategy presented could be
extended and adapted for the detection of other types of physical
anomalies, being particularly useful for integrity assessment in
applications with limited computational resources.

Index Terms—Camera diagnosis, image processing, integrity
monitoring, fault detection, data augmentation, information re-
liability.

I. INTRODUCTION

In the past few decades, the advancement of the computer
vision field, with sophisticated image processing techniques
and increasingly accurate machine learning (ML) based so-
lutions, has fostered the use of cameras in sensor systems
for various applications. As the state-of-the-art algorithms for
image processing are reaching, and sometime surpassing, the
level of human visual patter recognition [1], new possibilities
for camera based monitoring arises. However, as our reliance
on these systems increases, in particular for safety critical
applications such as autonomous vehicles and monitoring of
strategic infrastructure, the integrity assessment of the gathered
sensor information becomes indispensable. Although there
has been significant research on the field of sensor integrity
monitoring [2], most of the techniques focus on navigation
systems, as the advancements in the field were traditionally
made for the aviation sector [3]. Typically, the integrity
monitoring approach relies on statistical analysis, applying a
suitable model to derive an estimation for the monitored sensor
parameters, followed by constructing a test statistic from the
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obtained error that can be used for a hypothesis test. That
approach is not directly applicable for assessing the integrity
of camera based monitoring systems. However, the underlying
concept of a fault detection based on hypothesis testing could
be used, relying on specific image metrics as the test statistic.

Despite the enormous advancements in the computer vision
capabilities, that were leveraged by the increased computa-
tional power and deep learning algorithms, there are still
several open topics in the research of camera based sen-
sor integrity. As discussed in [4], for the image processing
community, the concept of image integrity is often related
to authentication, meaning that the content of an image has
not been altered in a malicious or unintended way. The
methods to assess and ensure integrity are typically relying
on the detection of digital image artifacts and cryptographic
signature protection measures. In the context of a camera
based monitoring system, these methods would be useful for
detecting and preventing image manipulation attacks, in case
there is a security breach on the access of the monitoring
data. However, in case of physical anomalies, such as the
ones derived from changes in the environmental conditions, the
integrity assessment strategy would have to be different. For
that case, there have been several studies on camera tampering
detection [5], [6], with methods to identify obstruction or
an unintended change in the camera position. These meth-
ods, usually based on edge detection [7], are employed for
surveillance cameras and require a static or known background
plane, being unsuitable for situations where the scenery is
dynamic or unknown. To deal with that scenario, methods
such as soiling detection and visibility restoration for cameras
in autonomous vehicles could be used [8]. Additionally, there
have been studies on visibility enhancement and de-weathering
methods for improving the quality of images under bad
weather conditions [9]. However, the methods found in the
literature are insufficient to cover all possible scenarios of
physical anomalies that can impact the reliability of a camera
based monitoring system. Therefore, the development of new
solutions and the investigation of different approaches for that
problem are still desirable.

Building upon that scenario, this work investigates the
detection of partial camera obstruction using various first
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and second order image statistics. In contrast to the tam-
pering detection techniques used for surveillance cameras,
the proposed approach can be used for single images with
unknown or dynamic background and for applications with
limited computational resources. Our methodology relies on
applying a data based diagnosis and health monitoring strategy
to camera systems, using single value image statistics as
inputs, and the selection of the best metrics using feature
engineering concepts. The results, derived from a small dataset
of images that was expanded using data augmentation tech-
niques, outlines the performance of various image metrics for
the detection of partial camera obstruction. The metrics were
evaluated as individual test statistics, and also, used as features
for two ML based classifiers. Although the obtained results
are specific for a particular dataset and scenario, the proposed
methodology can be extended to detect physical anomalies in
camera based monitoring systems in various applications.

II. METHODOLOGY

A. Diagnosis and Health Monitoring of Camera Systems

Prognosis and Health Management (PHM) solutions assist
in the prediction of faults of components and processes,
perform diagnostics of the current operational condition, and
provide guidance for preventive or corrective maintenance
[10]. The data provided by the monitoring system is of-
ten processed automatically by algorithms that extracts the
necessary information for a particular application. The PHM
concept is usually applied for Remaining Useful Life (RUL)
estimation and optimized predictive maintenance in systems
where component failure and degradation are an issue. That
approach usually follows a four-step framework consisting of
data acquisition, diagnostics, prognostics and health manage-
ment [10].

The prognostics usually relies on a degradation model of
key components in order to make prediction of faults and
RUL. The health management aspect includes the decision-
making process of maintenance actions. The data acquisition,
containing appropriate data processing and conditioning steps,
and the diagnosis, that relies on monitoring the target system
with a suitable fault detection strategy, are directly applicable
to the scenario discussed in this work. Therefore, some meth-
ods used in PHM could be used for camera based monitoring
systems, in particular for the detection of physical defects
that compromise the provided information, and for deriving
actionable measures to restore the monitoring solution.

The problem of partial camera obstruction can be viewed as
a type of fault for which the diagnosis of the camera system
itself would be able to detect. In this sense, an unexpected
physical anomaly or a change in the environmental conditions
that can impair the provided information are a kind of in-
tegrity issue. Considering complex technical systems where
the camera has an important monitoring role, the reliability of
its provided information could have significant impacts in the
whole system. Therefore, using a suitable strategy to evaluate
the information integrity can be necessary.

The automated detection of these types of faults prompts a
warning that the provided information might not be reliable,
and also triggers a human intervention to do corrective main-
tenance in the camera to solve the issue. When that problem is
seen as a type of fault, the fault detection strategies that have
been fully investigated and proven in the diagnosis, reliability,
health monitoring and other related fields can be used [11],
[12].

Although there are a lot of different fault detection methods
and strategies, suitable for different applications, a simple
approach would be to investigate the distribution of image
parameters under the normal and faulty conditions. If for
a given parameter there is a significant difference between
those distributions, that parameter is a good metric to use
for the detection. In this context, a discussion of suitable
image metrics for the detection of physical anomalies will be
presented. The selection and evaluation of the image metrics
follows a feature engineering methodology such as the one
outlined in [13].

B. Image Analysis Metrics

There are several metrics, or statistics, computed from the
pixel levels of an image that can provide useful insights about
the characteristics of the captured scene. The most common
metrics are the so-called first and second order statistics. These
metrics have been used for image analysis in many works,
such as the fog detection method described in [14] and the
classification of medical images in [15].

The first order statistics, also referred as histogram proper-
ties, only accounts for the values of the pixel levels, disregard-
ing its relative position. In this way, they consider only single
pixel values, being unable to distinguish two images with the
same pixels but in scrambled or different positions. On the
other hand, the second order statistics takes into account the
way the pixel levels are distributed, with the values derived
from relationships between a pair of pixels at the time. They
are often used to characterize textures [16], defining aspects
such as coarseness, smoothness or pattern irregularities.

The histogram H () of an image contains the frequency of
occurrence of a gray level ¢ in that image. It represents the
frequency of all possible gray levels p, and it is calculated by
the sum of pixels with a specific value i, divided by the total
number of pixels. In this way, the main first order statistics can
be computed from the image histogram using the following
equations:

p=" iH(i) (1)

p—1
e =Y (i — p)FH (i) for k = 2,3 or 4 2)

i=0
The mean p represents the mean brightness level of the
image; the variance uo is a measure of how much the values
deviate from the mean; the skewness p3 represents the asym-
metry of the histogram; and the kurtosis p4 can be viewed as
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a measure of the sharpness of the peak around the mean value
in the histogram.

The second order statistics of an image are usually rep-
resented by the Gray Level Co-ocurrence Matrix (GLCM).
The matrix computes the relative frequency of pairs of pixels,
separated by an offset distance of d pixels following the
direction of an angle 6. Its size is defined by the number of
possible pixel values, being 256 x 256 for standard compressed
images. In this way, an element P; ; of the matrix represents
how often the pixels of value 7 and j appear together in
neighboring offset elements of distance d at an angle 6. The
angles are typically parameterized in horizontal, vertical and
diagonal (0, 90 and 45 degrees), but the choice of the offset
distance can depend on the types of textures and patterns,
being usually set as a range of values to capture that variability
of elements.

One GLCM matrix is defined for each distance and angle
pair, but there are various features, which are single value
metrics, that can be extracted from it. In the first work where
the GLCM was presented [16], a set of 14 features were
defined. Each feature represents specific characteristics of the
matrix that can be related to certain texture attributes, or image
patterns. However, the most used features are the Angular
Second Moment (ASM), Contrast, Correlation, Homogeneity,
Dissimilarity and Entropy, which can be calculated as follows:

p—1
Contrast = Z (i —§)*Pi 3)

4,5=0

p—1
Dissimilarity = Z i — jl P ; “4)

ASM =

> P )

P741]
2. 17657 ©

Homogeneity =

1 . )
Correlation = Z Pm-w 7
i,j=0
p—1
Entropy = Y —Pi;log(Pi;) ®)
i,j=0

Where .., p1y and o, o, are respectively the mean and
standard deviation of the horizontal and vertical components
of the matrix.

The four first order statistics and the six GLCM features
presented will be evaluated in this work as metrics for par-
tial camera obstruction detection. However, since the GLCM
features are associated to an offset distance and angle, to
avoid having an excessive number of parameters, a strategy
to summarize those values was developed.

The optimal distance that maximizes the differences in the
values for the different types of images that are being classified
depends on the patterns in the textures of the images. Since for

Example of GLCM Derived Metrics
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Fig. 1. Example of the derived GLCM metrics for the dissimilarity parameter.

an arbitrary scene that is unknown, a range of offset distances
between 1 and 32 pixels (as proposed in [17]) was chosen and
metrics derived from those values were used. These metrics
are, the mean value and range (the difference between the
maximum and minimum value) of the GLCM feature for all
distances and angles, and the first order fitted slope of the
values in respect to the offset distance. In this way, there would
be three values for each feature, and for each angle. To account
for the variability between different angles, a first order slope
for that range of values was also included. Therefore, for
each GLCM feature there are four metrics being considered,
instead of one for each pair of distance and angle. The plot
in Fig. 1 shows an example of those summarized metrics for
the dissimilarity feature.

C. Image Data Augmentation Techniques

One of the main issues in data based classification problems
is the acquisition of sufficient labeled data. In the context of
this work, the challenge would be creating a balanced dataset
of images in different scenarios and conditions with and
without partial camera obstruction. Instead of resorting to such
a costly and time-consuming data gathering campaign, the use
of data augmentation techniques in a small dataset of reference
images could be an effective solution. The main strategy
consists of applying various types of image transformations
in a randomized way, generating an arbitrarily large amount
of different images that are based on the same source. The
drawback is that the expanded dataset would still be limited
to some underlying characteristics of the original dataset, with
extended variability around that original source. Some simple,
yet effective, data augmentation techniques are the following
[18]:

o Geometrical transformations, such as change in the per-
spective (skew and shear), rotation, mirroring (horizontal
and vertical flip);

« Color, brightness, contrast and sharpness adjustments;
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o Cropping and zooming, which selects a smaller region of
the image;

o Erasing, the replacement of parts of the image with
random noise.

Other strategies, that are based on ML, are texture and
style transfer [19], and synthetic images created by Generative
Adversarial Networks (GAN) [20], [21], [22]. However, in this
work, only the geometrical transformations, random cropping,
brightness, contrast and sharpness adjustments will be used.

III. EXPERIMENTS AND RESULTS
A. Framework for Image Data Augmentation

A framework for testing integrity assessment methods for
camera based monitoring systems was developed. The goal
was to have a tool able to simulate the output of a monitoring
system, that could be comprised of several image based
sensors, under different conditions and scenarios. The software
works by selecting an image, from a dataset of reference
images, that matches a specific user defined job configuration.
Then, it can apply image transformations (data augmentation
techniques), in a randomized manner or according to a desired
input. Additionally, the framework is capable of introducing
artificially generated defects, but that functionality will not be
covered in this work. The software was developed in Python
following an Object-Oriented Programming (OOP) paradigm
and using popular open source image processing libraries, such
as Python Image Library (PIL), Scikit-image and OpenCV.
The diagram in Fig. 3 shows the data-flow and outlines the
features of the framework.

The proposed framework can assist on the evaluation and
development of integrity assessment methods, with the goal
of improving the reliability of the monitoring solution. In this
way, the software was used to extend on an existing dataset
of natural images with and without partial camera obstruction.
The original images were taken with different exposure times
from a single scenario, under normal conditions and with two
different instances of obstruction, as depicted in Fig. 4. The
camera used was a Teledyne E2V Bora 1.3Mp [23], which
contains a Time-of-Flight (ToF) specialized image sensor
suitable for machine vision applications. The original dataset
was expanded to a balanced set of 4000 images using the
data augmentation techniques described in the section II-C. A
special care with the random crop parameters was made for
the images with partial camera obstruction, to avoid cropping
into a region containing only the obstruction profile. The Fig. 2
shows examples of the produced images for the non-obstructed
scenario.

B. Image Metrics Selection

The image metrics discussed in II-B were computed for
the original and augmented dataset. The developed framework
enabled extending the variability of the analyzed image pa-
rameters without performing further data gathering campaigns.
The combined distribution and scatter plots in figure 5 show
the relationship and variation of four of the selected image
parameters under the normal, and partially obstructed scene.

The metrics were ranked based on a score calculated from
the difference of the mean values divided by the sum of the
standard deviation for the normalized values (scaling between
0 and 1) in each of the two categories. In this way, the score,
called here M-Score for the sake of differentiating it, is a
measure of the separability between the distributions, favoring
the metrics with the smallest overlap in their histograms.
Additionally, the Kullback-Leibler divergence [24] and the
Bhattacharyya distance [25] were also considered. Those are
measures of the similarity between two statistical distributions.
However, the image metrics selected using these quantities
had a worse performance when used as the features for
the detection of the partial obstruction defect. Therefore, the
simple M-Score related to the difference between the means
was used for the selection of the best metrics.

TABLE I: Selected image metrics and their score for partial
obstruction detection.

Image Metric M-Score F1-Score
Skew 1.178 0.934
GLCM Correlation Fit Slope Mean 1.169 0.900
GLCM Homogeneity Mean 1.144 0.878
GLCM Dissimilarity Range 1.121 0.877
GLCM Dissimilarity Fit Slope Mean 1.102 0.867
GLCM Dissimilarity Mean 1.090 0.862
GLCM Contrast Range 1.057 0.864
Mean Brightness Level 1.048 0.817
GLCM Correlation Range 1.046 0.892
GLCM Contrast Fit Slope Mean 1.040 0.853

C. Partial Camera Obstruction Detection

Simple detection tests in which each individual metric is
used as a test statistic were conducted. The optimal threshold
for each metric was determined by performing a Kolmogorov-
Smirnov test of goodness of fit for a range of possible values
for the metric of interest, in respect to the distributions of the
null and alternative hypothesis (normal and partially obstructed
conditions). Performing the test in a range of values and
extracting the p-value lines from both conditions enables the
optimal selection of the threshold value, being the intersection
between the two p-value lines, as shown in figure 6. In the
design of a statistical test there is always a compromise
between false positives and false negatives (type I and II
errors). Therefore, the selection of the threshold value can be
tailored to prioritize the avoidance of either one of these errors,
but not both at the same time. The optimal value considered in
this work is the one that balances those two errors, providing
the best average detection rate between the two categories.
Note that in some cases, for bad metrics, the overlap between
the two distributions is so large that the p-value curves does
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Fig. 2. Example of applying various data augmentation techniques to a sample image: (a) - Original image; (b) - Size preserving skew; (c) - Size preserving
shear; (d) - Size preserving rotation; (e) - Horizontal flip; (f) - Random crop; (g) - Contrast increase; (h) - All combined.
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Fig. 3. Representation of the proposed monitoring system framework, outlining the data-flow and its features.

not intercept. Those metrics were removed from consideration.
Alternatively, the threshold value could be determined from the
intersection of the Kernel Density Estimation curves, which
gave very similar results.

These tests based on a single metric were conducted using

. o the extended dataset of images and the detection result was

Fig. 4. Sample of the original dataset: (a) - Normal scene; (b) and (¢) - eyalyated in terms of the weighted average F1 score, which
Partially obstructed camera. K . K >

considers the precision and recall for the detection of the two

categories (normal and partially obstructed). The obtained F1-

score showed high correlation with the M-Score previously
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Fig. 5. Variation of the image metrics that had the highest score for the detection of partial camera obstruction.

discussed. The results for the best metrics are presented in
table I.

In addition to the tests based on an individual metric, two
types of ML classifiers, an Artificial Neural Network (ANN)
and a Random Forest algorithm, were trained following an
80-20 train-validation split using the 10 best image metrics
presented as features. Since the train-validation split is ran-
domized, the performance of the ML classifiers were evaluated
over 100 runs. The F1 score of the weighted average between
the two categories was used as the evaluation metric. The
results were computed for the augmented dataset, containing
4000 images, and also for the original dataset, with only 12
images. As expected, the average F1 score for the augmented
dataset was better, 0.883 against 0.842 for the ANN, and
0.914 against 0.812 for the Random Forest. Moreover, the
distribution plots in figure 7 shows that the results were

more consistent for the augmented dataset, supporting the
use of data augmentation techniques even for very small
datasets. Although the classifiers trained with only the original
small dataset had perfect scores sometimes, that is clearly
a sign of overfitting. When using the augmented dataset as
validation data for the classifiers that were trained with the
small original dataset, the F1 score was very close to the
average of the 100 runs, being 0.851 for the ANN and 0.824
for the Random Forest. Therefore, expanding the dataset with
data augmentation techniques improved the detection rate.

IV. DISCUSSION AND CONCLUSION

It is surprising to note that an ML based classifier had,
on average, a lower detection rate than the simple threshold
based test using the best individual image metric. The average
F1 score for the Random Forest classifier was 0.914, while
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Fig. 7. Distribution of the F1 score for the detection of partial camera

obstruction using two classifiers, in the augmented and original image dataset.

the same score for the Skew (histogram skewness) metric
was 0.934. That can be explained by the fact that no feature
selection and parameter optimization were performed for the

important to investigate alternative solutions, that require less
processing power, and that can be tailored to cover different
scenarios. In this way, the usage of simple image metrics to
evaluate the reliability of the information provided by cameras
could be advantageous for applications with constrained pro-
cessing resources. This work presents a simple, yet, effective
methodology that could be applied to those scenarios.
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