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Abstract— The rolling element bearing (REB) is the most 

common mechanical element used in industrial machinery. 

Usually, in data-driven prognostic models for predicting the 

remaining useful life (RUL) of REBs, the failure threshold (FT) is 

assumed as a constant value of a statistical feature, such as root 

mean square (RMS), peak or kurtosis, extracted from vibration 

signals collected by sensors. The procedure to define the FT value 

is conservative and expert-based. In addition, FT is typically 

defined only with respect to one of the features. In this paper, to 

analyze the effect of the definition of FT by only one feature, the 

correlation of statistical features is studied on accelerated-life 

datasets of REBs. First, by reviewing the literature in the field of 

PHM and FT, features including peak, kurtosis, RMS, and level 

crossing rate are selected to be analyzed. Then, the correlation of 

these features is investigated on the PRONOSTIA and the Sharif 

University of Technology accelerated-life datasets. The results 

show that the correlation of features varies in the different tests 

of these datasets. As a result, in this paper, it is proposed that the 

FT is to be defined as a multi-feature fusion, which arises from 

the relationship between features. This proposed method helps 

resolve the ambiguity in defining the FT as a single fixed value. 

Keywords—failure threshold (FT), remaining useful life (RUL), 

multi-feature fusion, signal processing, PRONOSTIA dataset. 

I. INTRODUCTION

Predictive maintenance of rotating machinery plays an 
important role for the reliability and safety of industrial 
systems [1]. Rolling element bearings (REBs) are one of the 
most common mechanical components of rotating machines, 
and their failure is the main cause of 45% to 55% of machine 
failures [2]. Therefore, in the last two decades, methods for the 
prediction of the remaining useful life (RUL) of REBs have 
become of interest. The RUL of a REB is defined as the 
amount of remaining life of the equipment until a feature of the 

vibration signal reaches a predetermined FT value [3]. 
Generally, this threshold value is determined experimentally 
and conservatively. As a result, determining the appropriate FT 
plays a key role in industrial applications.  

In the literature, there are several approaches to 
determining the FT. Usually, in most RUL prediction works, 
the FT is defined as a constant value of a statistical feature of 
the vibration signals (such as the peak amplitude or RMS of the 
time signal) [4]. By so doing, the process of predicting the 
RUL becomes straightforward. However, some researchers 
have taken different approaches to predict the RUL. Peng et al. 
[5] categorized the FT into soft and hard FTs and assigned a
constant value to each. Soft failure occurs due to gradual
degradation over time, and hard failure arises because of the
effects of sudden impacts. In most life prediction problems of
REB, failure is regarded as a soft failure. Wang and Kuwait [6]
investigated the effect of the statistical distribution of FT on the
reliability of the equipment. In this method, instead of
assuming a constant value, the FT is described as a probability
distribution because of the variability in the desired reliability
values that operators consider for stopping the machines. Hua
et al. [7] proposed a method for adaptively determining the FT.
Nystad et al. [8] used the gamma probability distribution, in
which the mean and standard deviation were determined by
experts, to describe the FT in the life prediction process. Liao
and Tian [9] also studied the effect of load on determining the
FT and explained the dependence of FT on the radial force.
Behzad et al. [10] proposed the FT of the REBs as the
probability distribution of a vibration feature by using principal
component analysis (PCA) and copula models. Finally, they
discussed the effect of the proposed FT on the RUL prediction.
Works on the RUL prediction of REBs use as case study the
data set acquired by the center of Intelligent Maintenance
Systems (IMS) at the University of Cincinnati [11] as well as
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the PRONOSTIA data set published at the PHM 2012 
conference [12]. The FT or stopping criterion is defined as the 
specific level of accumulated debris in the lubrication system 
in the IMS dataset. However, in the PRONOSTIA dataset, the 
peak amplitude of 20g in the acceleration signal is considered 
as the stopping criterion. 

The definition of the FT as a constant value of a signal 
feature is commonly used in data-driven methods of RUL 
prediction. These methods describe the REB degradation 
process by constructing health indicators (statistical features) in 
the time and frequency domains, through signal processing 
[13]. Among the most widely used statistical features in the 
time domain are RMS [14], kurtosis [15], peak [16] and PSW 
[17]. In the frequency domain, Ball Pass Frequency Inner race 
(BPFI), Ball Pass Frequency Outer race (BPFO), Ball Spin 
Frequency (BSF), and Fundamental Train Frequency (FTF) are 
used [18]. 

To determine the best features to use as equipment health 
indicators, Liu et al. [19] studied the correlation between 
statistical features of vibration signals and the defect size in 
REBs, using the Case Western Reserve University dataset. 
They calculated the Pearson correlation coefficient for 25 
different statistical features in the time and frequency domains 
with defect size levels. Features with high and constant 
correlation coefficients to change operating conditions (speed) 
were introduced as the best features to describe defect growth. 
These features include peak, RMS, and skewness for the inner 
race fault and kurtosis, peak, and skewness for the outer race. 
Behzad et al. [20] also introduced the level crossing (LC) rate 
as a feature with a high correlation with defect growth in the 
inner and outer race of REBs. 

In the following sections, first the FT concept in REBs is 
discussed and explained. Then, the Sharif University of    
Technology (SUT) and PRONOSTIA accelerated-life data sets 
are introduced. Finally, the relationship between statistical 
features of vibration signals in the tests of these data sets is 
investigated. The purpose of examining this relationship is to 
challenge the problem of defining a FT by only a single feature 
value. Eventually, due to the correlation between the features 
in different failure modes, it is proposed to define the FT as a 
multi-feature fusion. 

II. FAILURE THRESHOLD 

Different failure modes and degradation processes can lead 
to the failure of REBs in rotating machines [21]. If the REB is 
designed correctly, properly manufactured and installed and is 
always adequately lubricated, installed, and aligned during 
operation, (away from moisture, corrosion, and excessive 
loading), then the mechanism that could lead to failure is the 
rolling contact fatigue (RCF) [22]. This is why, in most 
research studies related to the prediction of the RUL, the 
mechanism of RCF is considered. In this paper, the 
determination of the FT is addressed with respect to the 
physics of failure by spalling. When a defective component 
comes in contact with another component (defective or 
healthy), it causes sudden impacts. These impacts stimulate the 
REB structure and the structure of the components associated 
with it and cause vibrations. The results of experimental tests 

show that despite the correlation between the size of the defects 
and the vibration amplitude, their relationship cannot be 
described deterministically and, to some extent, random 
behavior is observed. For instance, in the experiments 
conducted by the IMS center, the FT is defined based on the 
physical defect (oil contaminant level). But, the vibration 
amplitudes at the end of the tests are different.  

In ISO 10816-3 [23], the marginal limit of vibration into 
zone D, which means immediate stop of the machine, can be 
considered as the FT. This standard defines the entry threshold 
in zone D in terms of machine power (Table I). 

TABLE I.  VIBRATION SEVERITY ZONE LIMITS ISO 10816-3 [23] 

Vibration severity Power of Machine  

Value of Velocity 

(boundary  mm/s) 

15 kW ~ 300 kW 300 kW ~ 50 MW 

0.71 
A 

A A 

A 

1.4 

2.3 
B 

2.8 

B B 3.5 
C 

4.5 
B 

7.1 

D 

C C 

11.0 
D D 

C 

 D 

Foundation Rigid Flexible Rigid Flexible 

A: Good, B: Satisfactory, C: Unsatisfactory, D: Unacceptable 

 

In REBs, it is not possible to observe and track the size of 
the defect in operating conditions, and because there is no 
deterministic relationship between the defect size and the 
feature value, the defect size can be described by a distribution 
of the vibration feature. This distribution is usually assumed to 
be a Gaussian distribution. The advantage of defining a 
threshold as a fixed defect size is that it allows an easy 
reliability computation. However, the difficulty to establish the 
connection between the physics of defect and statistical 
features leads to ambiguity in the definition of the FT. 
Regarding the relationship between defect and vibration 
features, Liu et al. [19] proposed that the features of kurtosis 
and peak for the outer race, and RMS and peak for the inner 
race have an almost linear relationship with the growth of the 
defect. As a result, these features should also have a linear 
relationship to each other. In the following sections, the 
relationships between these features as well as the LC rate 
feature are analyzed on the accelerated life dataset of SUT and 
PRONOSTIA. The purpose of this analysis is to show the 
necessity of defining the FT as a combination of several 
vibration features. This definition also helps to clarify the 
relationship between different definitions of FTs as a fixed 
value of a feature in the literature.  
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III. INTRODUCING TWO REB DATA SETS 

In this section, two experimental run-to-failure data sets are 
introduced to study the effectiveness of the proposed method. 
Dataset-1 corresponds to a set of accelerated life tests of an 
REB in the laboratory of SUT. Dataset-2 corresponds to a set 
of accelerated life tests of an REB in the FEMTO Laboratory. 
The details of these two datasets are introduced in the next 
subsections. 

A. Accelerated Life Test Data Set of SUT 

A group of accelerated life tests on REBs was conducted in 
the condition monitoring (CM) lab of SUT. The test rig is 
shown in Fig. 1, in which, a test REB is mounted on one end of 
the shaft. Also, two other REBs have been used to support the 
weight of the shaft. As a drive system, the shaft is coupled to 
an electromotor through the pulley and belt. The test REB is a 
6907 deep groove single-row bearing. The dimensions and 
bearing fault frequencies of the test REB are listed in Table II. 
The loading mechanism forces the housing of the test REB 
downward. Therefore, the loading zone is located at the top of 
the test REB. Experiments were conducted in unchanging 
operational conditions, 2000 rpm rotational speed and 9000 N 
radial load. In this setup, an accelerometer is installed 
vertically on the housing of the test REB. The sampling rate 
frequency for the accelerometer is 25.6 kHz. The stopping 
criterion or FT was defined on the peak of the acceleration 
signal. Therefore, reaching the peak of 20g was the final failure 
criterion, and accelerated life tests were stopped at this moment. 

 

Fig. 1. Test rig of accelerated life tests on REBs. 

TABLE II.  CHARACTERISTICS OF TEST REB 

Dimensions 

OD Outer Diameter (mm) 55 

ID Inner Diameter (mm) 35 

W Width (mm) 10 

N Ball numbers 11 

BCFs 

BPFO Ball Pass frequency outer race 204.5 

BPFI Ball Pass frequency inner race 262.1 

BSF Ball spin frequency 132.9 

FTF Fundamental cage frequency 14.6 

Dynamic 

Characteristics 
 

Static load rating (N) 6850 

 

Dynamic load rating (N) 9550 

 

Six run-to-failure tests were performed in the mentioned 
test rig, and corresponding vibration data were acquired. At the 
end of each test, the test REB was dismantled, and final failure 
modes were investigated through visual inspection (Fig. 2). 
Table III reports the RUL of each test REB and the 
corresponding verified failure mode at the end of the tests [24]. 

TABLE III.  SUMMARY OF ACCELERATED LIFE TESTS 

Useful life (sec) Failure Mode Test No. 

10961 Inner race 1 

4181 Inner race 2 

81535 Rolling element 3 

26448 Inner race 4 

6498 Rolling element 5 

5546 Rolling element 6 

 

 

Fig. 2. Visual inspection results of failures in the elements of accelerated life 

test REBs. 

B. Accelerated Life Test Data Set of PRONOSTIA 

The FEMTO Laboratory developed an experimental 
platform to do accelerated life tests on REBs, seventeen 
accelerated life tests were performed on REB. The test data 
included vibration measurements in the horizontal and vertical 
directions throughout the REB life period, and the dataset was 
named PRONOSTIA. In this test, an electric motor with a 
power of 250 W and a speed of 2830 rpm was used as a drive 
system. The engine speed was reduced by a gearbox to less 
than 2000 rpm. In these tests, reaching the vibration amplitude 
to 20g is considered the stopping criterion or FT of the REB. 
Characteristics of the operating conditions and the number of 
tests performed are given in Table IV. Fig. 3 shows the test rig 
and its different parts. 

 

Fig. 3. Overview of PRONOSTIA tests platform [12]. 
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TABLE IV.  CHARACTERISTICS OF PRONOSTIA TEST [12] 

No. of tests Load (N) Speed (rpm) 

Operating 

condition 

number 

7 4000 1800 1 

7 4200 1650 2 

3 5000 1500 3 

 

IV. RESULTS 

Different types of defects can occur in the REBs. The 
correlation of statistical features is studied on the SUT dataset 
and seven PRONOSTIA tests in the first operating condition to 
investigate the importance of considering several features for 
defining FT. The FT for both datasets is defined to be the 20g 
acceleration signal peak; measurement points with values 
higher than that are also observed. Also, both datasets have 
series of signals in their faulty stages, so comparing features in 
these datasets make sense. 

Graphs of the peak relative to the RMS and kurtosis for the 
acceleration signal are plotted for both datasets (Fig. 4). These 
features were also investigated in [19]. According to the results 
of this work, the linear relationship between the peak and RMS 
features indicates inner race defect, and a linear relationship 
between the peak and the kurtosis demonstrates outer race 
defect. But Fig. 4 shows a linear relationship between two 

features of the peak and the RMS in all experiments, with 
different types of defects in the two datasets. As a result, the 
linearity of the relationship between these features cannot be 
the only reason for the defect in the inner race. In the 
relationship between peak and kurtosis, there is no linear 
relationship between these features in the SUT data set due to 
the lack of outer race defect on REBs. On the other hand, in the 
PRONOSTIA data set, tests 2 and 6 show a linear relationship 
between these features, which may be due to a defect in the 
outer race of the REB.  

Graphs of the LC rate relative to the RMS and the peak for 
the acceleration signal are plotted in Fig. 5 for the SUT data set 
and seven tests in the first operating conditions of 
PRONOSTIA. The graph of the LC rate relative to the peak in 
the first operating conditions of PRONOSTIA,  for tests 1, 3, 
and 4 to the peak value of 25g, behaves as a parabola and, then, 
decreases by increasing the peak. This behavior can be due to 
the combination of failure modes occurring in the REB. This 
point seems to be 5g in the graph LC rate relative to the RMS. 
Also, the LC rate graph has almost the same slope compared to 
the RMS for the three tests 3, 5, and 6 with the ball failure 
mode in the SUT data set, whereas for the three tests with the 
inner race failure mode, the slope of these graphs is higher than 
other failure modes. A similar approach is considered for 
PRONOSTIA tests. The graphs that have a lower slope than 
the dashed line shown for PRONOSTIA data are expected to 
relate to a ball or outer race failure, and those with a higher 
slope to an inner race failure. 

 

    

    

Fig. 4. Peak-RMS and Peak-Kurtosis graphs in the data sets of SUT and PRONOSTIA 
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Fig. 5. Peak-Level crossing rate and RMS-Level crossing rate graphs in the data sets of SUT and PRONOSTIA 

V. CONCLUSIONS  

In this paper, we have investigated vibration features in the 
SUT and PRONOSTIA data sets with the aim of defining the 
FT. In view of the different possible definitions of FT based on 
features, the behavior of vibration features such as peak, 
kurtosis, RMS, and LC rate on two run-to-failure data sets was 
studied. It is found that the feature of kurtosis is a suitable 
feature for the growth of outer race defects. Also, the 
difference between the slope of the RMS relative to the level 
LC rate graph can be a good health indicator for separating 
inner race defects from ball and outer race defects. Therefore, 
to observe the growth of defects in REB components, we need 
to simultaneously examine various statistical features such as 
kurtosis, RMS, and LC rate. Consequently, it is necessary to 
define the FT based on several vibration features that result 
from the different failure modes of the REB elements. 
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