
ETH Library

Agent-based framework for
assessing systemic risk of
interdependent sociotechnical and
infrastructure systems

Conference Paper

Author(s):
Dubaniowski, Mateusz Iwo ; Stojadinovic, Bozidar 

Publication date:
2022

Permanent link:
https://doi.org/10.3929/ethz-b-000595758

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
https://doi.org/10.1109/ICSRS56243.2022.10067709

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0003-3601-7296
https://orcid.org/0000-0002-1713-1977
https://doi.org/10.3929/ethz-b-000595758
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1109/ICSRS56243.2022.10067709
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Agent-based framework for assessing systemic risk 

of interdependent sociotechnical and infrastructure 

systems 
Mateusz Iwo Dubaniowski  

Future Resilient Systems at Singapore-ETH Centre (SEC) 

ETH Zurich 

Singapore, Singapore 

iwo.dubaniowski@sec.ethz.ch 

Božidar Stojadinović  

Future Resilient Systems at Singapore-ETH Centre (SEC) & 

Dept. of Civil, Environmental and Geomatic Engineering 

ETH Zurich 

Zurich, Switzerland 

 

Abstract—Sociotechnical systems consisting of 

infrastructures, businesses, and households are constantly 

expanding and evolving due to, among others, rapidly 

progressing economic development, urbanization, and 

globalization. These complex interdependent cybernetic 

systems become increasingly prone to both natural and man-

made disruptions. Such complex systems exhibit emergent 

effects in response to any disruption which propagates 

throughout those systems. Consequently, using traditional 

methods of risk assessment of individual systems is 

insufficient to predict the emergent systemic impacts of 

disruptive events of the future. Hence, there is an urgent 

need to develop models assessing systemic risk of such 

complex interdependent sociotechnical systems. The aim of 

the presented study was to (1) present and apply a 

framework for modeling interdependencies between complex 

sociotechnical systems at different levels of detail, with a 

particular focus on urban areas; (2) develop disruption 

generators and devise the method of assessing impact of 

disruptions on the systems; and (3) demonstrate how the 

modeling framework can be applied to assess systemic risks. 

Our study resulted in the development of a simulation 

combining socioeconomic agents’ models, such as households 

and businesses, with physical infrastructure systems models 

to assess systemic risks, reliability and safety associated with 

interdependencies in such sociotechnical systems. The 

disruption cost served as a measure of performance of the 

system used to assess the risk. Our model was shown to 

capture the emergent behavior of complex sociotechnical 

systems in response to disruptions. Based on our analysis, the 

most risk was associated with low-reconfigurability 

infrastructure systems, particularly disruptions to the water 

supply system, resulted in largest impacts. We also identified 

areas for future research that focus on including a wider 

range of systems, more accurate disruption generators, and 

on applying the presented modeling framework to other 

complex networks and sociotechnical systems.  

Keywords— risk assessment, infrastructure modeling, 

input-output model, complex systems, urban systems, 

infrastructure reliability, system safety, resilience 

I. INTRODUCTION 

Sociotechnical systems consisting of infrastructures, 
businesses, and households are constantly expanding and 
evolving due to, among others, rapidly progressing 
economic development, urbanization, and globalization 
[1]. As urban areas are becoming more densely populated, 
larger in area, and more complex, these complex 
interdependent systems become more and more prone to 
disruptions due to both natural and man-made hazards [2]. 

Such complex systems increasingly exhibit emergent 
effects in response to any disruption which propagates 
throughout those systems. The propagation of a disruption 
between systems contributes heavily to its negative impact, 
where a relatively mild disruption in one system could 
result in a massive impact to other systems or to the overall 
urban area [3]. 

This poses a challenge: using traditional methods of 
risk assessment of individual systems, such as risk matrix 
and analyzing historical data, might be insufficient to 
anticipate the future impacts of disruptive events on 
interdependent complex sociotechnical systems [4]. Hence, 
this study addresses the need to develop models assessing 
risk and reliability of such complex interdependent 
systems, with a particular focus on urban areas. 

Several models exist that address the issue of risk in 
various infrastructure systems, such as water supply, 
traffic, and power grids [5]. However, these approaches 
analyze individual systems and omit interdependencies 
between those. A system-of-systems (SoS) methodology 
has been used to model interdependencies among 
infrastructure systems by Eusgeld et al. [6]. However, the 
feasibility of this model was not analyzed, and the model 
was not applied in the context of system risk assessment. 
Dubaniowski and Heinimann [3][7] proposed a modeling 
framework for interdependencies between infrastructure 
systems, businesses, and households. A similar approach 
was attempted by Didier et al. [8], who focused on 
modeling demand and supply for infrastructure resources. 
However, these studies did not consider physical properties 
of infrastructure systems and were not adapted to assess 
systemic risk and safety in urban areas. 

The aim of this study is to (1) present and apply a 
framework [7] for modeling interdependencies between 
complex sociotechnical systems at different levels of 
detail, with a particular focus on urban areas; (2) develop 
disruption generators and devise a method of assessing 
impact of disruptions on the systems; (3) demonstrate how 
the modeling framework can be applied to assess systemic 
risks. In particular, the novelty of this study is to introduce 
physical models along higher-level socioeconomic models 
such as multi-input-output agent-based model. 

II. MODEL DESCRIPTION 

A. System-of-systems (SoS) 

In this study, we developed and present a model of 
interdependencies between infrastructure systems, 



businesses, and households to assess systemic risk in urban 
areas. The model consists of several components (also 
called federates) that operate as a system-of-systems. The 
SoS approach allows us for easy differentiation in 
granularity of the model in terms of both level of detail of 
the model, its duality with the real-world, as well as spatial 
granularity. The overall conceptual framework of the 
model and its components is presented on Figure 1. 

From Figure 1, we can see that our conceptualization of 
the system consists of several models, which are integrated 
together in the system-of-systems (SoS) model of 
infrastructure systems. SoS approach allows for exchange 
of important information between constituent simulation 
models, however, at the same time it keeps each model 
autonomous in performing detailed simulations of their 
respective system. To assess systemic risk, we focus on 
interdependencies between infrastructure systems, 
households, and businesses. Our SoS model consists of 
physical models of infrastructure systems. We focus on 
water, transportation, and power. These three models 
(yellow boxes on Figure 1) are supplemented by a high-
level overarching model, which enables us to easily define 
interactions between businesses, households, and 
infrastructure systems, and thus is responsible for 
capturing interdependencies. We use an agent-based multi-
IO model as this high-level model in this study. However, 
the multi-IO model can be replaced with alternative high-
level models, such as e.g. Re-CoDeS [8], representing 
interactions between infrastructures and socioeconomic 
agents. We decided to use the multi-IO model as the high-
level model because it allows for capture of interactions of 
infrastructure systems with socioeconomic agents. A 
particularly useful characteristic of the multi-IO model is 
that infrastructure systems are represented within the 
model directly at a higher, more abstract level. In turn, this 
allows us to abstract away physical properties of the 
systems and model these in a detailed, specific, purpose-
built, low-level model. In the multi-IO model, only the 
infrastructure system’s input-output capabilities with 
regards to other socioeconomic agents are preserved. 

 Finally, the above components, i.e. physical 
models and multi-IO model are supplemented with a 
disruption generator, which introduces disruptions into the 
systems. A disruption can affect one system or a 
combination of systems directly. The generator can be 
based on predefined scenarios, or it can be a stochastic 
generator, or a combination of both depending on the 
needs of the simulation. The generated disruptions can be 
applied to various points of the model. They can affect the 
overarching high-level multi-IO model, or individual 
physical simulations of infrastructures. The details of a 
particular disruption generator used in each experiment 

need to be defined by considering the level of detail that 
the disruption should represent, the overall affected area, 
whether it affects just one infrastructure system or a set of 
such systems, and what is the objective of the simulation. 

B. Multi-IO Model 

The multi-IO model represents socioeconomic units, 
such as businesses and households, as agents, which use an 
input-output model to represent production and 
consumption capability of a business or a household. 
These agents form nodes of a network, in which edges 
represent infrastructure system links between the agents 
i.e. resource transfer links between socioeconomic units. 
Hence, in a multi-IO model we have several input-output 
models each corresponding to a different socioeconomic 
unit. The multi-IO model consists of three elements: (1) a 
set of networks, where each network consists of (a) nodes 
corresponding to socioeconomic units – agents, and (b) 
edges corresponding to resource transfer links; (2) agents 
representing socioeconomic units that perform production 
following the IO model; and (3) self-organizing 
mechanism based on cost of resources. [7]. The multi-IO 
model, which we use and expand upon in this study was 
developed by Dubaniowski and Heinimann. A detailed 
description of the model for reference can be found in their 
works [7][3]. 

C. Physical Models 

To complement high-level multi-IO model, physical 
level models of infrastructure systems are integrated within 
the SoS model. These allow for a better representation of 
physical properties of individual infrastructure systems. 
Such composition allows for a good duality with a real-
world on individual system model level, while at the same 
time allowing for convenient modeling of businesses and 
households and their responses to various disruptions on a 
higher level. 

Physical systems can be included for all infrastructures 
considered in the simulated urban area. These models can 
include state-of-the-art models of infrastructure systems, 
which are currently available, or these can be custom built 
models developed with unique internal knowledge about 
the system in question available only to the system 
operators. The main challenge remaining then is to derive 
transfer functions between input and output parameters of 
the multi-IO model and of physical models of individual 
infrastructure systems so that the relevance and accuracy 
of the simulation is preserved at both more abstract, high-
level, and at the more detailed, low, physical level. 

In our study, we limited this inclusion of physical 
models for simplicity, and so we included two physical 
system models, which allowed us to improve the 
representation of the system in the multi-IO model 
component. Thus, we include the transportation system 
and water supply system as two physical components of 
the SoS model. Hence, we use transportation system 
component to obtain more detailed, physical-level 
simulation of routing the resources around the 
transportation networks. The routing derived from the 
physical transportation system model is then applied to 
multi-IO model, and the cost associated with the routing 
configuration can be calculated for all the resources. 
Similarly, we use water supply system model to obtain 

Fig. 1. System-of-systems (SoS) approach to modeling systemic risk of 

infrastructure systems, businesses, and households. It consists of a high-

level multi-IO model, physical models of infrastructure systems, and a 

disruption generator for introducing disruptions into the SoS simulation. 
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physical parameters of water transportation, which then are 
transferred to cost parameters in the multi-IO model. 

The model of transportation system that we used in this 
study as a physical transportation system model is a User 
Equilibrium Model described by Sheffi [9] and developed 
by Zheng Li [10]. The model of water supply system that 
we used in this study as a physical water supply system 
model is the Water Network Tool for Resilience (WNTR) 
model described by Klise et al. [11]. We have used these 
model implementations as our physical system model 
components of the SoS model. 

D. Model Integration 

Having included a simulation of both physical models 
and a high-level multi-IO model, the crucial aspect is 
integration of these models at different levels of 
abstraction. In particular, the output parameters from the 
physical model need to be transferred to the multi-IO 
model so that the output parameters of the physical model 
can be included as input parameters of the multi-IO model. 
The main output of the physical model is the time for 
transportation between two nodes of the transportation 
network and water leak for water supply system. On the 
other hand, the main input parameter of the multi-IO 
model would be the cost of transportation of a resource 
between two nodes. Similarly, the main input parameter to 
the transportation system and water supply models is the 
quantity of resources needed to be transferred and the 
origin and delivery point of resources. This is the data that 
needs to be exchanged between multi-IO model and 
physical-level models. The location and quantity of 
resources is natural and the same both for physical and 
multi-IO models. However, to convert time and water 
leaks into monetary cost value, we need to use a 
conversion factor, where we need to assign a monetary 
value to a unit of time for transportation and unit of water 
leak for water supply system. This value differs depending 
on what is the transported resource. The data exchange 
between multi-IO model and physical transportation model 
is presented in Table 1. 

TABLE I.  PARAMETERS REQUIRED TO MODEL INFRASTRUCTURE 

NETWORKS IN MULTI-IO MODEL AND IN PHYSICAL MODELS. WE CAN SEE 

CORRESPONDENCE BETWEEN INPUT TO PHYSICAL MODELS AND OUTPUT 

OF MULTI-IO MODEL. WE ALSO SEE THE NEED FOR TRANSFER FUNCTION 

BETWEEN INPUT TO MULTI-IO MODEL (COST) AND OUTPUT OF PHYSICAL 

MODEL (TIME). 

 Transportation 
model 

Water 
supply 
model 

Multi-IO model 

Input parameter Origin and 
destination 

Origin and 
destination 

Cost 

Output parameter Time Water leak 
quantity 

Origin and 
destination 

 

E. Risk Assessment 

To perform systemic risk assessment using the 
described model, we follow the Monte Carlo approach 
[12], where simulations are repeated multiple times to 
estimate the result. We devise a stochastic disruption 
generator, which follows certain prescribed rules to induce 
disruptions to components. This approach allows us to 
derive a distribution of disruption impacts. The process for 
risk assessment is described below: 

1. We devise a disruption generator, which induces a 

disruption in a single infrastructure system, at random 

points throughout this system. 

2. We execute the simulation with the disruption 

generator applied and collect the data on the impact 

of each induced disruption. To simplify this process, 

we assume that probabilities of disruptions to 

different points within this infrastructure system are 

uniformly distributed, which is normally not the case 

as different components of a single system have 

different failure probabilities. 

3. We repeat Step 2  times until convergence, e.g. 

( ). 

4. After collecting the results from Step 3 we obtain a 

distribution of impacts on the modeled area of a 

disruption to the single infrastructure system. 
The above method allows us to assess risk of the 

system by estimating the value at risk of the simulated area 
where we can postulate with a certain confidence what is 
the largest possible impact of a disruption to the single 
infrastructure system on the modeled area. Furthermore, 
we can focus on detecting components of individual 
infrastructure system whose failures are responsible for 
substantially large impacts on the modeled area. Such 
information can be used to prioritize mitigation of 
disruptions based for example on a risk matrix approach. 

III. SIMULATION EXPERIMENT 

A. Experiment Design 

In this study, we applied the model described in the 
previous section to a physical area. We focused on multi-
IO model as the high-level model for interdependencies 
between infrastructure systems, businesses, and 
households. Moreover, we included a physical, low-level 
model of a transportation system and water supply system. 
In the study, we consider 5 different types of resources: 
water, power, business goods, consumer goods and human 
capital. We assumed that transportation system is based on 
roads, and these are shared between business goods, 
consumer goods, and human capital. The model was 
applied to region of Clementi neighborhood in Singapore 
and networks were devised based on expert knowledge 
about the systems in the area and publicly available data 
about the network of roads and map of the area obtained 
from OpenStreetMap [13]. 

The simulation experiment SoS consisted of a multi-IO 
model; a water supply model; a transportation model 
covering the transport of 3 resources: business goods, 
consumer goods, and human capital; and a disruption 
generator. For the experiment, the disruption generator 
used was a stochastic disruption generator introducing 
disruptions randomly to one of the edges of the 
infrastructure system network. The distribution of 
disruptions across the edges for each individual 
infrastructure system was uniform. Thus, it was equally 
likely that any edge in the infrastructure system would fail. 
An introduction of a disruption to the edge resulted in a 
full removal of the edge from the network, thus no 
resources could be transferred over the disrupted edge. 



For each infrastructure system, we executed the 
simulation for 100 iterations in line with the risk 
assessment procedure described in the previous section. 
We executed the simulation for each of the 5 infrastructure 
systems. Such approach allowed us to compare disruptions 
to individual systems to see disruptions which have the 
most negative impact on the system. Such analysis could 
aid in decision making regarding mitigation measures, as 
well as in analysis of the systems to identify their most 
vulnerable components and what interdependencies 
vbetween the systems contribute to the cascading effects of 
disruptions the most. 

 

B. Disruption Metric 

The metric we used to measure impact of disruption on 
the SoS model is the disruption cost. To find the disruption 
cost, we find the base cost of satisfying the system in an 
area without any disruptions, and subsequently, we 
introduce disruptions following the disruption generator 
mechanism. After each disruption is introduced, we 
evaluate the total cost of satisfying the system. The 
disruption cost is the difference between the cost of 
satisfying the system with disruption present and the cost 
of satisfying the system without any disruption present. 
We collect these values across 100 iterations for each 
resource. 

To assess systemic risk, we can compare profiles of  
distributions of disruption costs originating in various 
infrastructure systems. This allows us to see, which 
system, when disrupted, has the most serious impact on the 
overall urban area. Similarly, we can assess systemic risk 
then by looking at 95% or 99% percentile of such 
distribution of costs, as this might help us to estimate the 
value at risk (VaR) of the urban area. The comparison of 
VaR values allows us to notice what is the systemic risk in 
the area associated with disruptions to each individual 
infrastructure system. This is a direct measure of systemic 
risk present in the urban area in question under given 
simulation parameters. This can be used as a measure of 
reliability and safety of the urban systems in the area. 

C. Experiment Results 

We have introduced disruptions to 3 infrastructure 
systems covering 5 types of resources. We present the 
results for each resource, treating each resource as a 
separate infrastructure system for the purpose of this study. 
For each of these infrastructure systems, we run 100 
iterations of random disruptions applied to assess systemic 
risk of the overall SoS model representing the modeled 
urban area. Depending on the infrastructure system, these 
resulted in some cases in total collapse of the system if a 
critical link of the system was targeted by the generated 
disruption. By collapse here we mean a situation where 
system could not self-organize to adapt to a disruption to 
still satisfy the system even at a higher cost. In other 
words, the system and normal demand could not be 
satisfied at any cost after such collapse-inducing disruption 
was introduced. 

In our experiment, the above situation happened only 
to water supply network and power grids, which are less 
reconfigurable than transportation networks. This is in line 
with what we had expected from a less reconfigurable 

system such as water or power supply as compared with 
road network.  

To assess disruptions impacts, we analyze the 
distribution of disruption costs to the overall system. This 
is presented on Figure 5, where we can see a percentile 
graph of disruption costs for disruptions originating in 
different infrastructure systems. Here transportation system 
is divided into 3 categories of transported goods: 
consumer, business, and human capital. 

From Figure 5, we can see that the disruption to water 
supply system results in the most impactful disruptions. 
The lines for power and water systems cut off where the 
cost reaches infinity, this is when the collapse happens and 
the overall system cannot be satisfied anymore. From the 
diagram, we can see that the water supply is the most 
impactful if disrupted. This is closely followed by the 
power system, which also causes costly disruptions and 
results in a collapse of the overall system quickly. This is 
because power grid and water supply networks have low 
reconfigurability and cannot be adjusted easily in response 
to disruptions. On the other hand, the transportation system 
is highly reconfigurable, and can respond to any 
disruptions by rerouting goods that are transported over the 
transportation system. There are many redundancies and 
opportunities for reconfigurability. As a result, the 
transportation system never collapses, and results in lower 
costs of its disruptions, when only one link is disrupted. 
Similarly, we can see that business and human capital 
transportation causes more impact than disruptions to 
consumer goods transportation. This is in line with our 
expectations, as consumer goods are not as critical 
compared to business goods and human capital in 
production processes. Furthermore, the demand for 
consumer goods is more limited and more disbursed 
around the area, so a single impact to the network is not as 
impactful as it is the case with business goods or human 
capital transportation. 

Another interesting point stemming from the analysis 
of the graph is that the distribution of disruptions seems to 
follow power law, where most disruptions do not result in 
a very large impact or do not have impact at all, while very 
limited number of infrequent disruptions results in massive 

Fig. 2. Percentile graph of disruption costs by originating infrastructure 

system. The lines cut off for water and power systems, where disruptions 
start causing collapse of the overall SoS system i.e. the cost reaches infinity 

from that point as the system cannot be satisfied at any cost. For 

transportation larger impact begins only from 90th percentile. 



impacts. This is especially true for the transportation 
system in our study, where the lines grow sharply beyond 
the 95th percentile. The probability distribution of costs of 
the impacts of disruption might have a separate distribution 
for its tail, where infrequent events result in large impacts.  

IV. CONCLUSIONS 

The modeling framework was extended to include 
components with various level of detail and adapted to an 
urban area. A method for risk assessment was described, 
presented, and applied. We have applied a high-level 
multi-IO model together with a low-level physical level 
models of transportation system and water supply system 
to an urban area and considered flow of 5 resources 
throughout the area: water, power, consumer goods, 
business goods, and human capital. This is novel in this 
study. A Monte Carlo simulation approach was described 
and performed to assess systemic risk assessing reliability 
and safety of the urban system due to interdependencies 
between infrastructure systems, households, and 
businesses.  

The study resulted in the following findings: 

• Low reconfigurability infrastructure systems, such 
as water or power supply, exhibit greater risk than 
higher reconfigurability systems, such as 
transportation system.  

• Water and power systems can instigate critical 
disruptions that cause collapse of the urban system, 
where the system cannot be satisfied at any cost. 

• Transportation system can self-adjust well to 
maintain level of performance required. Disruptions 
to transportation system never caused the urban 
system collapse under our experiment for all types 
of transportation resources: consumer goods, 
business goods, and human capital. 

• Disruption impact distributions follow power law, 
where the small amount on infrequent disruptions 
results in a disproportionately large cost of these 
disruptions. 

The findings are consistent with our expectations and 
previous studies, where disruptions to lower 
reconfigurability systems exhibit larger impacts due to 
more difficulties with recovering and readjusting these 
systems [14]. Similarly, the power law features of 
disruption impacts are consistent with literature on the 
distribution of disruption impacts on infrastructure systems 
[15]. The method allows to estimate VaR of the urban area 
in terms of infrastructure systems in general, as well as 
with regards to disruptions originating in each individual 
system and propagating to other systems. The model 
allows to assess reliability and safety of the systems in 
urban areas. 

Future work on this topic can involve conducting the 
study for a more diverse range of areas, resources, and 
with more low-level infrastructure system models. 
Disruptions originating in several systems at the same time 
can be attempted, which was outside of the scope of this 
study. Integrating the presented model with financial and 
economic models to represent the costs of production more 
accurately, as well as with AI approaches, which could be 

used to better characterize constituent systems of the SoS 
model and disruptions can be attempted. 
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