
PaaS: Planning as a Service for reactive driving in
CARLA Leaderboard

Nhat Hao Truong, Huu Thien Mai, Tuan Anh Tran,
Minh Quang Tran, Duc Duy Nguyen, Ngoc Viet Phuong Pham

Abstract—End-to-end deep learning approaches have been
proven to be efficient in autonomous driving and robotics.
By using deep learning techniques for decision-making, those
systems are often referred to as a black box, and the result is
driven by data. In this paper, we propose PaaS (Planning as a
Service), a vanilla module to generate local trajectory planning
for autonomous driving in CARLA simulation. Our method is
submitted in International CARLA Autonomous Driving Leader-
board (CADL), which is a platform to evaluate the driving
proficiency of autonomous agents in realistic traffic scenarios.
Our approach focuses on reactive planning in Frenet frame under
complex urban street’s constraints and driver’s comfort. The
planner generates a collection of feasible trajectories, leveraging
heuristic cost functions with controllable driving style factor
to choose the optimal-control path that satisfies safe traveling
criteria. PaaS can provide sufficient solutions to handle well
under challenging traffic situations in CADL. As the strict
evaluation in CADL Map Track, our approach ranked 3rd out of
9 submissions regarding the measure of driving score. However,
with the focus on minimizing the risk of maneuver and ensuring
passenger safety, our figures corresponding to infraction penalties
dominate the two leading submissions by 20 percent.

Index Terms—autonomous driving, dynamic control, trajectory
planning, carla leaderboard, simulation

I. INTRODUCTION

A. Motivation

Autonomous driving is a rapidly growing field that has the
potential to revolutionize transportation by providing safer,
more efficient, and convenient transportation for people around
the world. One of the most critical aspects of autonomous
driving is motion planning, which involves determining the
optimal path for a vehicle to follow to reach its destination
while avoiding obstacles and adhering to traffic rules. Motion
planning is a complex task that requires sophisticated algo-
rithms, advanced sensors, and powerful computing resources.
Furthermore, with the rise of autonomous vehicles, there is
a growing need for robust and reliable algorithms that can
safely and efficiently navigate complex driving scenarios.
One of the key challenges in developing such algorithms is
the lack of a standardized evaluation platform that can be
used to compare the performance of different algorithms. The
CARLA (Car Learning to Act) Leaderboard Challenge [24]
is an open competition designed to address this challenge by
providing a common platform for evaluating the performance
of autonomous driving algorithms. The challenge is based on
the CARLA simulator [25], an open-source software platform
that enables researchers and developers to test and develop
their algorithms in a safe and controlled environment. In this

paper, our main focus is on the motion planning stage in
autonomous driving (see Section II). Moreover, we briefly
introduce our approaches applied in CADL in Section III.
Finally, the evaluation of our result on CADL challenge
compared to other competitors will be shown in Section IV.

B. Related work

Motion planning is a crucial component of autonomous
driving that involves generating a safe trajectory or path for the
vehicle to follow in order to navigate through the environment.
Many existing methods have been proposed to address this
task, each with its own strengths and limitations.

Sampling-based methods randomly sample the environment
and attempt to connect the samples, based on agent kinematics,
to create a path, known as probabilistic sampling-based algo-
rithms. Examples of these methods include Rapidly-exploring
Random Trees (RRT) [1], [2] and Probabilistic Roadmaps
(PRM) [3], [4]. Although the best path produced by these
algorithms is often far from optimal, in [5], the authors pro-
posed the Rapidly-exploring Random Graphs (RRG) algorithm
to ensure the returned solution is asymptotically optimal. The
authors introduced RRT*, which is based on RRG to construct
a tree from an existing graph, while also improving the cost-
to-come value of the neighbor vertices for sampling points
[6]. Although these methods are computationally efficient and
can handle unknown environments, their performance suffers
from random distribution, making them insufficient to apply in
well-defined environments, such as urban or highway driving.
To take advantage of structured environments, lattice planners
are introduced in reactive motion planning. These methods
produce a finite set of trajectories that sample over the spatio-
temporal evolution space, satisfying agent kinematics, dynam-
ics, and environmental constraints, such as obstacles, lane
markings, and traffic signals. In [7], [8], the authors decouple
lateral and longitudinal movements to generate a dynamics
profile under Frenét frame to generate a set of trajectories,
defined according to the driving state of the agent. Following
the generation of the trajectory set, obstacle representation
is a crucial aspect of ensuring safe and efficient navigation.
Obstacle representations, such as circular [9], triangular [10],
and rectangular [11], are proposed to improve coverage and
computational efficiency.

Optimization-based methods use optimization techniques
to find the optimal path that satisfies a set of constraints,
such as minimum time or energy consumption. Model Pre-
dictive Control (MPC) [11]–[13] and Differential Dynamic

ar
X

iv
:2

30
4.

08
25

2v
3

 [
cs

.R
O

]
 1

4
Ju

n
20

23

Programming [16], [17] are examples of optimization-based
methods. In urban driving scenarios, the automated vehicle
needs to solve a joint optimization of neighboring vehicles
(NV) costs over a receding horizon. To handle such task, a
mixed integer quadratic programming (MIQP) formulation of
the MPC is presented in [14] to handle the multi-input multi-
output (MIMO) control problem with indicator variables and
disjunctive constraint. Based on this idea, [15] suggests adap-
tive interactive mixed integer MPC (aiMPC), which captures
dynamics and collision avoidance constraints to predict the
trajectory of the ego and NV in MPC horizon.

AI-based methods are another category of motion planning
algorithms that use machine learning, deep learning, or re-
inforcement learning algorithms to learn mappings between
the current state of the vehicle, sensors, environments, and
the optimal action to take, namely end-to-end autonomous
driving. These methods can handle complex and dynamic
environments, but they require large amounts of data and time
to train. [18] vectorizes the sensors’ information with multiple
modalities, such as OpenDRIVE HD Map, Radar, LiDAR, and
front camera image, into same-sized inputs. With different
sensor domains, CNN-based fusion layers, or Transformer-
based ones [19]–[21], are proposed to offer a chance for these
sensor data to find relations with each other. [22], [23] offer
deep reinforcement learning (DRL) techniques that learn state-
action policies from offline replay buffer (RB) (recorded from
expert data) and online exploration agent from online RB.

II. MOTION PLANNING METHOD

In this section, the reactive motion planning task is for-
mulated in Frenét frame by the decoupling of lateral and
longitudinal movements to generate dynamics profiles for the
agent. Furthermore, the constraints in urban driving scenarios
are explained in detail.

A. Trajectory Planning in Frenét Frame

The work in this section is based on the proposal of
using Frenét Frame method in [7]. Following this paper, we
generate the trajectory sets using multiple terminal conditions
to follow the center lines on the road (reference lines), then the
conversion from Frenét frame to Cartesian frame is performed
to spatio-temporal collision checking with other surrounding
agents. As the most advantage of using Frenét frame in
the trajectory generation stage is that the reference lines are
standardized in the same form of a straight line with the
difference in road boundaries. Nevertheless, the side effects
of the usage of this method are mentioned in [26]. To avoid
those disadvantages, the sampling of trajectory set is executed
in Frenét frame using a simplified kinematic model and
driving comfort constraints, then the valid set is evaluated with
environment constraints (detailed in Section II-B) in Cartesian
space.

The Frenét frame is composed of the tangential and normal
vector to model the reference curve in Cartesian coordinate. In
motion planning using Frenét frame, the tracking problem is
composed of two factors: lateral and longitudinal offset along

the temporal dimension, namely d(t) and s(t) respectively.
The movement profiles of our agent are defined in lateral
direction D(t) = [d(t), ḋ(t), d̈(t),

...
d (t)] and longitudinal one

S(t) = [s(t), ṡ(t), s̈(t),
...
s (t)]. We use quintic polynomials for

the generation of D(t) in lateral space and S(t) in longitudinal
space within time interval T .

The generated trajectory needs to satisfy the jerk-optimal
constraints. Therefore, the total jerk is the accumulation of
jerk over the planning horizon, applied in both lateral jerk
polynomial ...

s (t) and longitudinal jerk
...
d (t)

Js =

∫ T

0

...
s 2(t)dt; Jd =

∫ T

0

...
d

2
(t)dt. (1)

Furthermore, to satisfy the comfort movement, the trajectory
must obey the conditions that

...
s (t) < Jmax,

...
d (t) < Jmax,∀t ∈ [0, T], (2)

where Jmax is the maximum comfort jerk.
In urban driving, many modes are selected and executed

while traveling to ensure the continuity of movement. These
modes, in descending order of aggressiveness, are merging,
following, velocity-keeping in free space, and stopping. The
behavior layer evaluates the consequences of mentioned modes
to make decisions. In the scope of this paper, we use solely
the total cost function to select the most optimal trajectory and
the driving style of our agent is configurable by parameters
regarding these functions.

Each mode has two cost functions related to lateral and
longitudinal space in Frenét frame. The start condition is the
current state of the ego agent, which is retrieved from sensors
(explained in Section III-A). The longitudinal and lateral
terminal condition is given on the selected mode, namely
TC . The evaluation of trajectory corresponding to terminal
condition is formulated by cost function C.

We define the common terminal state and cost function for
longitudinal trajectory generation as

TC ij = [sj , ṡj , s̈j , Ti], (3)

Cs = kjJs + ktTi + ks(sd − sj)2, (4)

with sd is the target distance in the longitudinal frame.
In the stopping mode, the agent has to stop its movements

before the longitudinal position of the traffic sign (or red light),
which is sd. Following (3), the terminal condition with the
longitudinal difference ∆sj is

TC ij = [sj , ṡj , s̈j , Ti] = [sd −∆sj , 0, 0, Ti]. (5)

In following mode or cruise control, we maintain a safe
distance from the preceding vehicle. The state corresponding
to the preceding vehicle Spv = [spv(t), ṡpv(t), s̈pv(t)]. We
define the predicted terminal state of the target vehicle in
the prediction horizon as Ŝpv(T) = [ŝpv(T), ˆ̇spv(T), ˆ̈spv(T)],
which is retrieved from the Trajectory Prediction module
(detailed in Section III-C). Applying into (3), the desired states
of our agent are as follows

sj = ŝpv(T)−
[
D0 + τ ˆ̇spv(T)

]
,

ṡj = ˆ̇spv(T)±∆ṡj − τ ˆ̈spv(T),
s̈j = ˆ̈spv(T),

(6)

with D0 is the constant safety distance with the other agent,
followed by the gap defined by constant time-to-collision τ .

In merging mode, it requires the agent to keep an appropri-
ate distance from both preceding and following vehicles. Using
the predicted trajectories of preceding Ŝpv(t) and following
Ŝfv(t) vehicles, we can define the target point in the terminal
condition (3) as

sj =
1

2
[ŝpv(T) + ŝfv(T)] . (7)

Corresponding to velocity-keeping mode, we keep our agent
to maintain its velocity without specific sd. Therefore, we use
quartic polynomials for the generation of S(t) as shown in Fig.
1. The terminal state, without target longitudinal distance, is
formulated as follows, where ṡd is the desired velocity

TC ij = [ṡd ±∆ṡj , 0, Ti], (8)

Cv = kjJs + ktTi + ks(ṡd − ṡj)2. (9)

(a) Longitudinal velocity (b) Longitudinal distance

Fig. 1. The longitudinal profile based on velocity tracking is shown as (a)
longitudinal velocity, (b) corresponding longitudinal distance. Each solution
is color-mapped by its longitudinal target velocity ṡj . ∆v = 5km/h =
1.38m/s and ∆T = 0.2s

Regarding lateral space, we generate the trajectory set in
lateral space with multiple offset dj (with the difference ∆d)
and time interval Ti in the terminal condition. The final state
is when our agent successfully tracks the reference line (dT =
0). The movement profiles of lateral movement are shown in
Fig. 2. Similar to longitudinal space, the terminal condition is
defined as

TC ij = [dj , 0, 0, Ti], (10)

Cd = kjJd + ktTi + ksd
2
j . (11)

(a) Lateral movement (b) Lateral velocity

Fig. 2. Illustrations of (a) lateral movement, (b) corresponding lateral velocity.
The green line is the target lateral offset with the reference line (at zero).
Multiple solutions in (a) are generated with multiple lateral and time interval
differences, with ∆d = 1m and ∆T = 0.2s respectively, color-mapped by
its lateral offset dj .

B. Environment Constraints

In our urban driving task, the constraints include the colli-
sion boundaries of NV and pedestrians, road barriers, traffic
lights, and road signs.

First of all, in CARLA simulation, traffic lights and road
signs’ positions can be retrieved from the provided map.
However, the state of the traffic light (green, yellow, red)
can only be identified visually by the cameras (by methods
explained in Section III-B). We convert the queried positions
on the global frame and their states as terminal conditions in
Frenét frame in the motion planning module, as described in
the previous section.

Furthermore, we execute collision checking on the sampling
set of trajectories on Cartesian space. Each trajectory is
denoted by χ = [x(t), y(t), θ(t), v(t), a(t)], where [x(t), y(t)]
denotes the position, θ(t) represents the orientation angle, v(t)
indicates the velocity and a(t) corresponds the acceleration
of trajectory points with reference to (w.r.t) our ego agent.
Through collision checking, we assess a set of feasible trajec-
tories denoted as Φ, resulting in the formation of a collision-
free set known as Φ∗.

In order to enhance the computational efficiency of collision
checking, we adopt a circle representation that encompasses
the rectangular shape of the vehicles, including our agent.
This approach involves employing an odd number of circles,
denoted as n, to cover the overall shape. As illustrated in
Fig. 3, there are two types of representation that are being
used for collision checking: three-disk and five-disk models.
While both models are able to cover the whole rectangular
section, there is a trade-off between computational efficiency
by using the three-disk model and precise representation by
using the latter model, which has smaller circle coverage by
9.02%. Based on our experiment, we decide to use the three-
disk model to have the computational advantage, with time
complexity being O(nn). Each disk in the model could be
constructed by 2D center point and radius by D = [x, y,R]
in the relative coordinate of the vehicle. Therefore, we define

that
D1 = [0, 0, Rmax] , D2,3 =

[
± l
3
, 0, Rmax

]
, (12)

where D1,D2,D3 are the models of center, front, and back
disks respectively. w is width, l is length of the vehicle, and
Rmax =

(
w2

4 + l2

36

)
.

Within 2D space, the collision is violated when

||piego − pjnv|| < Rego +Rnv, i, j = 1, . . . , 3, (13)

with piego is the center location of ith disk of ego vehicle and
pjnv is the center location of jth disk of NV. Rego, Rnv are
disk radiuses of ego vehicle and NV respectively.

(a) Three-disk model (b) Five-disk model

Fig. 3. Disk representation (purple) of the rectangular vehicle (orange).
By using more disks, the rectangular could be represented more precisely.
However, there will be computational overhead in the collision-checking
process.

In real scenarios, the collision needs to be checked in three
dimensions, including 2D space and additional dimension of
time, within the planning time horizon th. At every future
timestep tk over th, (13) must not be satisfied to consider a
trajectory collision-free. The formulation of collision violation,
in this case, is defined as

||pi,tkego − pj,tknv || < Rego +Rnv,∀tk ∈ [0, th], i, j = 1, . . . , 3.
(14)

Following that, by utilizing the collision-free set Φ∗, we
ensure the executability of all feasible trajectories for the
ego vehicle. Next, we determine the optimal solution χ∗ by
considering the trajectory with the lowest cost value. It is
important to note that in this particular case, the term ”op-
timal” does not refer to the concept of optimality in trajectory
optimization problems. Instead, it signifies the selection of
the most favorable feasible trajectory from the set of sampled
trajectories. By continually replanning the optimal trajectory
within a fixed time interval, the module guarantees consistency
in the resulting trajectory over time.

III. CARLA LEADERBOARD APPROACH

In CADL, there are two tracks to submit the solution,
namely SENSORS and MAPS tracks. In SENSORS, the set
of sensors provided includes GNSS, IMU, LiDAR, RADAR,

RGB camera (limit to 4 units), and Speedometer. Similarly,
the MAPS track provides the same set with an additional
OpenDRIVE map. Our approach is tested and submitted on
MAPS track. In this section, because of the limited scope of
this paper, we briefly introduce the methods, without digging
into details, that we use to handle the sensor signals.

The flow of PaaS, which includes the Motion Planning
module in Section II, as well as the Localization, Perception,
and Trajectory Prediction modules described in this section,
is presented in Algo. 1. The initial steps involve extracting
semantic information about the surrounding environment (Line
1 to 4). This extracted information is then utilized in the
motion planning modules, resulting in the generation of a set
of feasible and collision-free trajectories (Line 5 to 6). Finally,
each trajectory is evaluated using the cost function, leading to
the selection of the optimal trajectory (Line 7).

Algorithm 1 Process of PaaS in CADL
Inputs: Navigational sensor signals Ψ; Camera images I;

Point cloud PC; Reference path ξ
Output: χ∗ //optimal trajectory

1: Smo ← MovingObjectDetection(PC)
2: Zego ← TrafficSignDetection(I)
3: X̂ ← Localization(Ψ)
4: Π̂← TrajectoryPrediction(Smo)
5: Φ← MotionPlanning(ξ, X̂, Zego)
6: Φ∗ ← CollisionCheck(Φ, Π̂)
7: χ∗ ← min(Φ∗) //select path with lowest cost

A. Localization

To retrieve an estimated state of ego vehicle

X̂ = [x̂, ŷ, θ̂, v̂, â], (15)

the method [28] relies on Kalman Filtering (KF), which uses
navigational sensor signals

Ψ = [λ, ϕ, φ, vax, vay, vaz, alx, aly, alz, ψ], (16)

where latitude λ, longitude ϕ, altitude φ are obtained from
GNSS information, angular velocity [vax, vay, vaz], linear
acceleration [alx, aly, alz], yaw compass ψ are derived from
IMU sensor.

B. Perception

First of all, we use the point cloud data PC from the LiDAR
sensor to handle the detection of surrounding vehicles and
pedestrians. The whole process is described as Moving Object
Detection. We apply a pre-trained model from [29] to predict
the bounding boxes of surrounding vehicles and pedestrians,
called moving obstacles. The detection outputs are objects’
3D shapes [hmo, wmo, lmo], 3D positions [xmo, ymo, zmo], yaw
angles ψmo, and the detection confidences. Subsequently, we
apply the KF to track and predict velocity vmo, acceleration
amo of the moving obstacles. The state that describes a moving
obstacle is

Smo = [xmo, ymo, ψmo, vmo, amo]. (17)

On the other hand, the detection and recognition of traffic
lights, and traffic signs are executed from the front camera’s
images, following the detection model in [30]. Firstly, we col-
lect the training images from our test run in CARLA simulator.
Secondly, we re-train the model using the approach of transfer
learning. Eventually, with the output of the trained model,
which are 2D location including coordinates and dimensions
Pim = [x, y, w, h] on image and the recognition of traffic light
state, traffic sign Ssign, we are able to map Pim in image
coordinate into Pego, which is the relative position w.r.t ego
vehicle’s coordinate, using simple kinematic transformation
and OpenDRIVE map. The final output state of the traffic
light/sign w.r.t the ego vehicle will be

Zego = [Pego, Ssign]. (18)

Furthermore, to improve efficiency, we extend the model
to detect junctions that contain traffic lights to avoid false
positive detections. Illustrated in Fig. 4, our autonomous
vehicle advances towards the intersection, identified by the
blue bounding box and in conjunction with the detected
traffic light. Incorporating this comprehensive information,
the algorithm effectively executes trajectory planning while
ensuring compliance with traffic regulations.

C. Trajectory Prediction

Based on the dynamic state of the moving obstacle Smo and
OpenDRIVE map given in CARLA simulator, we can predict
its future trajectory in the planning horizon.

The original map topology in CARLA contains the tuple of
pairs of waypoints located either at the beginning or end point
of a road. Because each road has a different length, we create
a dense graph to represent the given topology with a fixed
sampling distance. An R-Tree is additionally used for graph
index querying in spatial dimensions. At first, we assume that
other vehicles in the simulation strictly follow the road center
without any deviation. Based on the target vehicle’s position,
the corresponding node in the dense graph is queried using
R-Tree indexing. Then, the Breadth-First Search algorithm
is applied to the dense graph to extract the possible paths
that have their length closed to a desired distance, which is
approximated by the current vehicle dynamic states. Finally,
a set of predicted trajectories Π̂ is generated using the Pure
Pursuit algorithm.

IV. RESULT AND DICUSSION

A. Metrics

In the CADL challenge, a set of metrics is provided to
describe the driving proficiency of an agent. The main metrics
are as follows

• Route completion is the percentage of the route distance
completed by an agent. The evaluation stops for each
scenario when the violation occurs, such as collision and
agent being blocked for a specific interval (180 seconds).

• Infraction penalty is the metric used to show how safe
the maneuver is. The value will decay for each time the

agent commits a violation, based on the corresponding
ratio. This metric value is in the range of [0, 1].

• Driving score is the main metric of the CADL, which
is used to rank the participants. It is the product between
the route completion ratio and the infraction score. Unit
is %.

In CADL, there are several types of infractions, such as
Collisions with pedestrians, Collisions with vehicles, Colli-
sions with layout, Running a red light, Route deviation, and
Agent blocked. Each type of infraction has a specific penalty
coefficient that impacts the overall score of the infraction
penalty.

B. Evaluation / Result on CADL

When evaluating the results of our approach on CADL, we
compared our method with other participants in the MAPS
track of the CADL challenge [24]. The results of running test
set provided by CADL are shown in Table I. Our PaaS ranks
third on the leaderboard, achieving a driving score of 48.24.
However, our approach has the highest infraction penalty of
0.84, indicating that our agent can navigate safely throughout
the given scenarios in the CADL challenge.

By examining the details of infractions and the behavior
of our ego agent in typical scenarios depicted in Fig. 5, we
can conclude that our agent successfully avoids the violations
encountered in CADL. Regarding infractions involving dy-
namic or surrounding agents, our figure for Collision with
vehicles ranks first. This clearly demonstrates that our agent
is capable of performing safe maneuvers. For instance, in Fig.
5a, the preceding vehicle stops at a red light, and our ego
agent plans a trajectory to stop and maintain a safe distance
from it. Additionally, in Fig. 5b, our agent effectively navigates
through a junction with many pedestrians by incorporating
spatial-temporal trajectory prediction, while maintaining good
tracking performance with the reference path.

Another notable example is shown in Fig. 5c, where our ego
agent confidently executes a right turn at a junction, knowing
that the nearby vehicle will not obstruct its path. Similarly in
Fig. 5d, the ego agent considers the predicted trajectory of
a crossing pedestrian but still makes a prudent decision by
maintaining a low speed for forward acceleration, ultimately
avoiding collisions with moving obstacles.

In terms of adhering to traffic rules, our agent ranks second
in red light infractions, which is primarily influenced by the
performance of the Perception module. Moreover, we achieve
perfect scores in Route deviations and Collision layout metrics,
indicating a decent tracking performance with the reference
path.

However, the number of pedestrian collisions in our ap-
proach is higher compared to the participants ranking first
and second. This can be attributed to a few factors. Firstly,
the effectiveness of LiDAR in detecting pedestrians is limited
due to the small size of humans relative to the sensor’s
resolution. Secondly, the predicted trajectories of pedestrians
do not always align with their actual behavior in the CADL
environment. Furthermore, there are instances in CADL where

(a) (b) (c)

Fig. 4. Illustrations of traffic light detections captured from our vehicle’s front camera. The vehicle encounters different states as it approaches the traffic
light: (a) yellow - the planned trajectory is stopped before the pole; (b) red - no planning is executed; (c) green - the planned trajectory making a left turn.
The approximate traffic light positions are mapped from the OpenDRIVE map, shown as a red circle in the images.

(a) (b) (c) (d)

Fig. 5. Illustrations of our ego vehicle maneuvering through typical scenarios. The Localization module determines the position of our system relative to
the map. The Perception module identifies moving obstacles, such as vehicles and pedestrians, within the LiDAR’s field of view and represents them with
blue bounding boxes. The green paths illustrate the predicted trajectories of these obstacles. The reference path is visualized as a black dotted line. Using
this information, the Motion Planning module generates the optimal trajectory for our agent, which is color-coded based on velocity: blue represents stopping
speed, orange indicates low speed, and red represents high speed.

pedestrians unexpectedly cross the road from the blind spots
of our agent, and we were unable to react promptly to such
behavior. Unfortunately, the testing scenarios only provide
metrics and do not include visual images from cameras,
making it more challenging to analyze the root cause.

As discussed in Section II-A, our approach relies solely on
the cost function of the trajectory to determine the most opti-
mal path. However, in certain specific scenarios, selecting the
trajectory with the lowest cost does not always lead to the best
overall solution. This phenomenon, known as local minima, is
particularly prevalent in dense traffic situations. Consequently,
our figure of Agent blocked infractions is unusually high
compared to the performance of other participants.

V. CONCLUSION AND FUTURE WORKS

In this paper, we propose the trajectory planning method for
autonomous driving in urban environments and our solutions
to conquer the CADL challenge. The trajectory generator
produces a reliable and safe maneuver over the planning
horizon. However, in several complex cases, the planner is
not able to compose the most optimal path due to the fact that
the parameters of the cost function are fixed during different
scenarios.

To solve this circumstance, adaptive cost functions could
be added to the current approach, which requires an extensive
review of the scenarios in the challenge. Furthermore, adding
a behavior layer would fill the gap in the decision-making
problem in our current approach. By applying the Partially
observable Markov decision process and its alternatives, we
can further increase the reasoning capability of our agent.

REFERENCES

[1] J. J. Kuffner, S. Kagami, K. Nishiwaki, M. Inaba, and H. Inoue,
“Dynamically-Stable Motion Planning for Humanoid Robots,” Au-
tonomous Robots, vol. 12, no. 1, pp. 105–118, Jan. 2002.

[2] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in Proceedings 2000 ICRA. Millennium
Conference. IEEE International Conference on Robotics and Automa-
tion. Symposia Proceedings (Cat. No.00CH37065), Apr. 2000, pp.
995–1001 vol.2.

[3] L. E. Kavraki, M. N. Kolountzakis, and J.-C. Latombe, “Analysis
of probabilistic roadmaps for path planning,” IEEE Transactions on
Robotics and Automation, vol. 14, no. 1, pp. 166–171, Feb. 1998.

[4] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12, no.
4, pp. 566–580, Aug. 1996.

[5] S. Karaman and E. Frazzoli, “Sampling-based motion planning with
deterministic µ-calculus specifications,” in Proceedings of the 48h IEEE
Conference on Decision and Control (CDC) held jointly with 2009 28th
Chinese Control Conference, Dec. 2009, pp. 2222–2229.

TABLE I
TEST-SET EVALUATION RESULT ON CARLA LEADERBOARD CHALLENGE

Rank Name Driving
score

Route
compl.

Infrac.
penalty

Collision
pedes.

Collision
vehicle

Collision
layout

Red light
infrac.

Route
deviations

Agent
blocked

%, ↑ %, ↑ [0, 1], ↑ #/km, ↓ #/km, ↓ #/km, ↓ #/km, ↓ #/km, ↓ #/km, ↓
1 Map TF++ 61.17 81.81 0.70 0.01 0.99 0.00 0.08 0.00 0.55
2 MMFN+ [18] 59.85 82.81 0.71 0.01 0.59 0.00 0.51 0.00 0.06
3 PaaS (ours) 48.24 60.68 0.84 0.10 0.23 0.00 0.13 0.00 4.13
4 GRI-based DRL [22] 33.78 57.44 0.57 0.00 3.36 0.50 0.52 1.47 0.80
5 MMFN [18] 22.80 47.22 0.63 0.09 0.67 0.05 1.07 0.00 1003.88
6 Techs4AgeCar+ 18.75 75.11 0.28 1.52 2.37 1.27 1.22 0.17 1.28
7 Pylot 16.70 48.63 0.50 1.18 0.79 0.01 0.95 0.44 3.30
8 CaRINA [27] 15.55 40.63 0.47 1.06 3.35 1.79 0.28 0.34 7.26
9 Techs4AgeCar 12.63 61.59 0.33 2.25 0.63 0.00 0.96 0.02 1.34

↑ : Higher is better. ↓ : Lower is better. #/km : number of infractions per kilometer.

[6] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research, vol.
30, no. 7, pp. 846–894, Jun. 2011.

[7] M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal Trajectory
Generation for Dynamic Street Scenarios in a Frenét Frame,” presented
at the Proceedings - IEEE International Conference on Robotics and
Automation, Jun. 2010, pp. 987–993.

[8] M. Werling, S. Kammel, J. Ziegler, and L. Gröll, “Optimal trajectories
for time-critical street scenarios using discretized terminal manifolds,”
The International Journal of Robotics Research, vol. 31, no. 3, pp.
346–359, Mar. 2012.

[9] H. Mouhagir, R. Talj, V. Cherfaoui, F. Aioun, and F. Guillemard,
“Integrating safety distances with trajectory planning by modifying the
occupancy grid for autonomous vehicle navigation,” in 2016 IEEE 19th
International Conference on Intelligent Transportation Systems (ITSC),
Nov. 2016, pp. 1114–1119.

[10] J. Nilsson, J. Fredriksson, and E. Coelingh, “Trajectory planning with
miscellaneous safety critical zones **This work was supported by FFI
- Strategic Vehicle Research and Innovation.,” IFAC-PapersOnLine, vol.
50, no. 1. Elsevier BV, pp. 9083–9088, Jul. 2017.

[11] X. Yang and H. Li, “Model Predictive Motion Planning for Autonomous
Vehicle in Mid-high Overtaking Scene,” 2020 IEEE 91st Vehicular
Technology Conference (VTC2020-Spring), pp. 1–5, May 2020.

[12] H. Wang, Y. Huang, A. Khajepour, Y. Zhang, Y. Rasekhipour, and D.
Cao, “Crash Mitigation in Motion Planning for Autonomous Vehicles,”
IEEE Transactions on Intelligent Transportation Systems, vol. 20, no. 9,
pp. 3313–3323, Sep. 2019.

[13] S. Dixit et al., “Trajectory Planning for Autonomous High-Speed
Overtaking in Structured Environments Using Robust MPC,” IEEE
Transactions on Intelligent Transportation Systems, vol. 21, no. 6, pp.
2310–2323, Jun. 2020.

[14] R. A. Dollar and A. Vahidi, “Predictively Coordinated Vehicle Accel-
eration and Lane Selection Using Mixed Integer Programming,” ASME
2018 Dynamic Systems and Control Conference, American Society of
Mechanical Engineers Digital Collection, Nov. 2018.

[15] V. Bhattacharyya and A. Vahidi, “Automated Vehicle Highway Merging:
Motion Planning via Adaptive Interactive Mixed-Integer MPC,” unpub-
lished, 2022.

[16] J. van den Berg, S. Patil, and R. Alterovitz, “Motion Planning Under
Uncertainty Using Differential Dynamic Programming in Belief Space,”
in Robotics Research: The 15th International Symposium ISRR, H.
I. Christensen and O. Khatib, Eds., in Springer Tracts in Advanced
Robotics. Cham: Springer International Publishing, 2017, pp. 473–490.

[17] H. Li and P. M. Wensing, “Hybrid Systems Differential Dynamic
Programming for Whole-Body Motion Planning of Legged Robots,”
IEEE Robot. Autom. Lett., vol. 5, no. 4, pp. 5448–5455, Oct. 2020.

[18] Q. Zhang, M. Tang, R. Geng, F. Chen, R. Xin, and L. Wang, “MMFN:
Multi-Modal-Fusion-Net for End-to-End Driving,” IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), Oct. 2022,
pp. 8638–8643.

[19] A. Prakash, K. Chitta, and A. Geiger, “Multi-Modal Fusion Transformer
for End-to-End Autonomous Driving,” 2021 IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), pp. 7073–7083, Jun.
2021.

[20] K. Chitta, A. Prakash, B. Jaeger, Z. Yu, K. Renz, and A. Geiger, “Trans-
Fuser: Imitation with Transformer-Based Sensor Fusion for Autonomous
Driving,” Pattern Analysis and Machine Intelligence (PAMI), 2022.

[21] H. Shao, L. Wang, R. Chen, H. Li, and Y. Liu, “Safety-Enhanced
Autonomous Driving Using Interpretable Sensor Fusion Transformer,”
Conference on Robot Learning (CoRL), 2022.

[22] R. Chekroun, M. Toromanoff, S. Hornauer, and F. Moutarde, “GRI:
General Reinforced Imitation and its Application to Vision-Based
Autonomous Driving,” Conference on Neural Information Processing
Systems (NeurIPS) 2021, Machine Learning for Autonomous Driving
Workshop, Dec 2021.

[23] D. Chen, V. Koltun, and P. Krahenbuhl, “Learning to drive from a world
on rails,” 2021 IEEE/CVF International Conference on Computer Vision
(ICCV), IEEE, Oct. 2021.

[24] CARLA. Autonomous driving leaderboard. [Online]. Available:
https://leaderboard.carla.org/leaderboard

[25] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An Open Urban Driving Simulator,” arXiv, Nov. 10, 2017.

[26] B. Li, Y. Ouyang, L. Li, and Y. Zhang, “Autonomous Driving on Curvy
Roads Without Reliance on Frenet Frame: A Cartesian-Based Trajectory
Planning Method,” IEEE Transactions on Intelligent Transportation
Systems, vol. 23, no. 9, pp. 15729–15741, Sep. 2022.

[27] L. A. Rosero et al., “A Software Architecture for Autonomous Vehicles:
Team LRM-B Entry in the First CARLA Autonomous Driving Chal-
lenge,” 2020, unpublished.

[28] J. H. Ryu, G. Gankhuyag, and K. T. Chong, “Navigation System Heading
and Position Accuracy Improvement through GPS and INS Data Fusion,”
Journal of Sensors, vol. 2016, p. e7942963, Jan. 2016.

[29] S. Shi et al., “PV-RCNN: Point-Voxel Feature Set Abstraction for 3D
Object Detection,” 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), Jun. 2020.

[30] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “YOLOX: Exceeding YOLO
Series in 2021,” Aug., 2021, unpublished.

	Introduction
	Motivation
	Related work

	MOTION PLANNING METHOD
	Trajectory Planning in Frenét Frame
	Environment Constraints

	CARLA LEADERBOARD APPROACH
	Localization
	Perception
	Trajectory Prediction

	RESULT AND DICUSSION
	Metrics
	Evaluation / Result on CADL

	CONCLUSION AND FUTURE WORKS
	References

