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Abstract 

 
Verification and validation techniques often 

generate various forms of software development 
artifacts.  Change records created from verification 
and validation efforts show how files in the system tend 
to change together in response to fixes for identified 
faults and failures.  We propose a methodology for 
determining the impact of a new system modification 
by analyzing software change records through singular 
value decomposition. This methodology generates 
clusters of files that historically tend to change 
together to address faults and failures found in the 
code base.  We performed a post hoc case study using 
this technique on five open source software systems.  
We determined that our technique was effective in 
identifying impacted files in a system from an 
introduced change when the developers tended to make 
small, targeted updates to the source system regularly.  
We further compared our technique against two other 
impact analysis techniques (PathImpact and 
CoverageImpact) and found that our technique 
provided comparable results, while also identifying 
non-source files that could be impacted by the change. 
 
1. Introduction 
 

During development, testing, and maintenance, a 
modification made to a system can often have side 
effects.  We define a system modification as an action 
taken by a developer on the system to repair a fault or 
implement a feature change according to a given 
requirement. Developers can minimize adverse side 
effects and prevent fault injection resulting from the 
system modifications through impact analysis 
techniques [1]. However, current impact analysis 
techniques that utilize call graphs, dynamic executions 
of the system, or static code analysis often do not 
include files that are not part of the source code, such 
as media files, help files, and configuration files [5, 8, 
13, 16].  Additionally, current impact analysis 

techniques based upon semantic analysis may not 
consider trends in actual system usage or the fault-
proneness of the set of files impacted.  Without usage 
trends, the results of semantic impact analysis require 
more effort to determine exactly which areas of the 
system have the highest risk of containing a latent fault 
[12]. 

Our research objective is to provide an impact 
analysis methodology that uses historical change 
records for both executable and non-executable files in 
a software system to identify and prioritize potentially-
affected areas of a system modification based on risk.  
By utilizing change records, we can show what files 
tend to change together for development purposes or in 
response to repairing faults in the system. Analyzing 
revisions can provide an indication as to how files 
interact with one another to perform a system 
modification [2, 3].  We define a revision as any set of 
files changed together in a system modification for the 
specific purpose of repairing a fault or implementing a 
new feature in the system.   

Our methodology involves the generation of 
association clusters from a set of change records and 
then leveraging those clusters to guide impact analysis.  
The data from change records are compiled into a 
matrix that portrays the historically-based change 
relationship between sets of files.  A singular value 
decomposition (SVD) [6] is performed on the matrix to 
generate the association clusters.  The results of the 
SVD can then be utilized to identify the potential 
effects of a change.  Our hypothesis is that a 
methodology based upon singular value decomposition 
using historical change records can accurately surface 
additional files, including non-source files that may be 
impacted by a set of changes.   

To determine the efficacy of our technique, we 
examined the size of the impact sets and the accuracy 
of our impact technique with five open source Java 
projects.  Further, we compared our technique’s 
performance against two establish impact analysis 
techniques, PathImpact and CoverageImpact. 



In Section 2, we will discuss relevant background 
and related work.  Section 3 outlines the steps of our 
technique, while Section 4 describes our open source 
case study.  Section 5 provides a comparison between 
our technique and PathImpact and 
CoverageImpact.  Section 6 discusses our 
conclusions from this work. 

 
2. Background 
 

Current impact analysis research follows two 
different basic methods in determining the effect of a 
change: either a static or dynamic analysis of the code 
base [1].  Dynamic impact analysis techniques rely 
upon information gathered from a system during 
runtime, often gathered through execution of the 
system or test suites with an instrumented code base [8, 
13].  Orso et al. compare two such dynamic techniques, 
CoverageImpact and PathImpact, to determine 
the major differences in cost and effectiveness.  These 
two techniques examine call graphs and execution 
records from an instrumented execution of the system 
using a comprehensive test suite.  CoverageImpact 
utilizes the coverage information of each system 
execution with program slicing [21] to determine how 
components of the system are linked together.  
PathImpact uses similar information to build a 
directed acyclic graph of the system. Both techniques 
are considered safe, which means that the techniques 
will catch all of the impacted areas of the system [21], 
assuming that the tests are reliable and/or the execution 
of the test cases extensively uses the system.  If the 
system has little testing, or if that testing is inadequate, 
the efficacy of these techniques will be severely 
impaired.   

Static impact analysis techniques do not involve the 
execution of the code base.  Techniques that can be 
classified as static impact analysis methods work by 
analyzing information from the software development 
lifecycle [8] or the semantics of the source code itself 
[1, 16, 22, 25].  Orso demonstrated that static impact 
analysis techniques are “generally imprecise and tend 
to overestimate the effect of a change” [12, 13].  Orso 
and Huang both state that this imprecision, manifested 
as a large number of false positives (up to 90%), comes 
from the use of static source code with only 
assumptions as to how the system is used and executed 
[8, 12].   

Our technique is a static impact analysis technique 
and addresses the concerns expressed by Orso and 
Huang.  Using SVD, our technique identifies 
association clusters of files that help alleviate the 
concern that static techniques generate a large amount 
of false positives.  These association clusters are 

generated using historical information regarding how 
files tend to change together in response to faults and 
field failures.  Thus, the association clusters represent 
general fault paths in the system under actual use.  
Further, our technique does not require the source code 
of the system.  Using software change records enables 
our technique to include non-executable files (such as 
images, documentation, and configuration files) in our 
impact analysis.  

Research is currently being performed in mining 
and analyzing data from source control systems to 
identify core components in a software system for use 
in impact analysis [2, 3, 7, 11, 24, 25].  Zimmerman et 
al. [25] have created an Eclipse plug-in that performs 
an impact analysis with regards to the area that a 
developer is currently modifying while the developer is 
in the act  of modifying the code.  The plug-in mines 
source revision records and creates a set of tuples that 
indicates what file was modified, what type of object 
within that file was modified (e.g. field, method, class, 
etc.), and the name of the object.  The plug-in then 
converts these sets of tuples into transaction rules, 
indicating areas of the system that tend to change 
together. With a relatively stable code base, 
Zimmerman reports that 44% of related files can be 
predicted. However, for evolving systems, the 
predictions could not work well since the prediction 
would have to take into account new functions being 
added constantly [25]. Further, there is also work on 
creating a “fault architecture” by von Mayrhauser, in 
which fault-prone components are identified by past 
defect records [23]. Our technique is similar to these 
methods in that we are leveraging change records in a 
like manner, except we use SVD as a clustering 
algorithm to determine the connections between files. 

We have performed other work using SVD to 
gather information from software development 
artifacts.  Using change records and static analysis 
information, we prioritized static analysis alerts by 
forming association clusters that linked types of alerts 
to areas of the system that contained failures 
previously [17-19].  In an industrial case study using a 
system from IBM, we determined that using SVD as a 
method for prioritizing alerts reduced developer effort 
in analyzing static analysis alerts by 60%.  We have 
also applied our SVD methodology to regression test 
prioritization [20].  Using the data from our impact 
analysis technique along with test coverage data 
through change records, we can drive test selection 
based upon empirical, historical evidence as to which 
areas of the system have had the most severe problems. 
 
 
 
 



 
3. Empirical software change impact 
analysis 
 

Our technique derives associations using SVD 
based upon a set of change records from testing and 
field failures.  These association clusters of files 
portray an underlying structure in the system indicating 
how files tend to be executed, tested, and changed 
together.   In this section, we describe the seven steps 
of our technique with regards to the goal of impact 
analysis, which includes deriving the association 
clusters from change records and interpreting the 
results of the analysis.  An overview of the algorithm is 
presented in Figure 1. 

 
1  Create matrix M where the values in 
the matrix indicate the number of times 
two files have changed together. 
2  [U, S, V] = svd(M); 
3  for i:size of U 
4    Gather cluster i information 
5    for j:size of U 
6       if |U(j, i)| > threshold 
7          Gather element of cluster i 
8       end 
9    end 
10 end 
11 
12 X = list of files under change 
13 Compare contents of X with each 
cluster to find exact matches 
14 if perfect matches found 
15    return matched files 
16 Search clusters for any files from X 
for any cluster match 
17 return any matched files 

Figure 1.  Psuedo-code for SVD-based impact 
analysis 

 
 
3.1. Step 1: Gather data and build M matrix 

 
The first step is to generate an analysis matrix that 

contains the system’s files along each axis. The values 
in the matrix represent the number of times that each 
file appeared in a revision with another file and show 
how the files are connected through change records.  
For illustrative purposes on how to build the analysis 
matrix, we will use a set of sample data to generate an 
analysis matrix.  

We have built an example analysis matrix M, 
shown below in Equation 1.  For example, matrix M 
shows that File 2 has appeared in a revision 10 times 
together with File 1, 21 times together with File 3, and 
0 times by itself (since M(2,2) = M(2,1) + M(2,3)).  

Similarly, File 3 has changed 21 times with File 2 and 
3 times by itself.   
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Upon initial examination of this matrix, we note 

that Files 4 and 5 change together or by themselves.  
Based on this, it appears that Files 4 and 5 are strongly 
linked in isolation from the rest of the system.  
Similarly, Files 1, 2, and 3 are also linked, with Files 2 
and 3 having the strongest bond of the three.   
 
3.2. Step 2: Perform SVD on matrix M 
  

To determine the strength of the associations 
between files and to generate the association clusters, 
we perform a SVD of matrix M.  The strength of the 
association is determined by the frequency of time the 
files changed together.  A SVD of matrix M provides 
the following matrices, shown in Equations 2 and 3: 

 

!
!
!
!
!
!

"

#

$
$
$
$
$
$

%

&

'

''

''

'''

'

==

68.0074.0

74.0068.0

069.43.059.

056.02.076.

031.9.029.

VU

         (2) 

 

!
!
!
!
!
!

"

#

$
$
$
$
$
$

%

&

=

9.30000

01.4000

008.2400

0004.280

00001.51

S

                           (3) 

 
The U and V matrices provide information as to the 

structure of the association clusters.  The singular 
values from the S matrix represent the amount of 
variability each association cluster contributes to the 
original analysis matrix.  Note that U and V are equal, 
because M is a symmetric matrix.  

A cluster’s strength, represented by the size of the 
singular value from matrix S coupled with it, indicates 
the amount of variability that the association cluster 
provides to the original analysis matrix.  The relative 
variability indicated by the magnitude of the singular 
value provides direct evidence as to how important that 
cluster is to the overall system.  The more important 
the cluster is, the more risk that is associated with that 



cluster, as evidenced by its velocity of change in 
previous system modifications. 

Dividing a cluster’s singular value by the sum of all 
the singular values provides the percentage of how 
representative the cluster is of the original matrix.  For 
instance, the second cluster in this set represents 
approximately 25% of the variability (28.4/(51.1+ 
28.4+24.8+4.1+3.9)) of the original matrix M. These 
percentages show that the first cluster defines the 
majority of the information regarding these files.  
Clusters three and four are, in effect, sub-clusters of the 
first cluster because they contain a similar set of files.  
Using change records as the development artifact, a 
high singular value indicates that that association 
cluster is more prominent in the analysis matrix due to 
a greater number of changes that have occurred to that 
set of files.  A high singular value could be indicative 
of a particularly problematic section of code or a new 
feature that has just been introduced into the system 
and is experiencing its first rigorous testing. 
 
3.3. Step 3: Gathering the clusters of files 
  

The values in the U matrix correspond to the 
composition of each association cluster.  In Equation 2, 
there are five association clusters because the rank of 
M is five.  The first column of U, representing the 
structure of the first association cluster, is coupled with 
the first singular value in S, representing the strength of 
that association cluster.  Since it is coupled with the 
largest singular value, the first association cluster 
represents the greatest amount of variability in the 
original analysis matrix and is the most prominent 
association cluster.  From the U matrix, we see that the 
first association cluster is comprised of Files 1, 2, and 
3, indicated by the fact that the three files all have 
values with a similar sign.   Values with a similar sign 
(either positive or negative) indicates that the change 
vectors are moving in the same direction and are thus 
related in some way.  Further, each of these values has 
a larger magnitude than .1, the threshold we used in 
our research.  A threshold is used when selecting 
cluster members so that only files with a strong 
association to the other files are included in the cluster. 
In the third cluster, we see that File 1 is its own cluster 
that can, at times, change without Files 2 and 3.  So, in 
effect, we get two associations out of the third cluster, 
one with File 1 by itself and one with Files 2 and 3 
together. 

Note that the values in each association cluster’s 
column vector represents the degree to which that file 
is likely to change in that cluster.  In this way, each file 
is weighted within that association cluster as to its 
degree of participation.  For example, the first 
association cluster is primarily composed of File 2 and 

File 3 due to their higher values.  File 1 is a minor 
participant in this association cluster.  If we reexamine 
the original analysis matrix M, we can see the strong 
correlation between Files 2 and 3 with a somewhat 
looser correlation with File 1, since these files only 
tend to change together and not at all with Files 4 and 
5.  The association cluster in the second column 
portrays the next most significant cluster, comprised of 
Files 4 and 5.  At this step in our technique, the matrix 
U can provide information about the likelihood of a 
change in an association cluster based upon previous 
change information.  
 
3.4. Step 4: Applying the clusters 
 

Using the U and S matrices generated from our 
technique, we can determine the possible impact that a 
new revision might have on the system.  We can 
compare the associations gathered from the U matrix 
with a new revision.  If all the files in a new revision 
are present in a previously-determined association 
cluster, we know that there is a strong relationship 
between the changed files and the other files in the 
cluster and that these files would be the most likely 
files to be affected by this change.  Further, the 
magnitude of the corresponding singular value in S 
indicates which cluster has churned more within the 
data set under examination.  If the files in a new 
revision do not all appear in the same cluster, then they 
represent a new execution path through the system.  In 
this instance, files that are associated with each 
changed file separately can possibly be affected by this 
change.  Finally, the files may have never changed 
before within the data set that was used to build the U 
matrix.  In this instance, no historical evidence exists 
as to how these files may affect the system, and a new 
association cluster is will form to represent this new set 
of changes in a future analysis. 

This technique is similar to the cluster rank 
algorithm used by Osinski et al. in their SVD-based 
search term clustering algorithm [14].  Osinski 
multiplied their document matrix by a modified U 
matrix from the SVD to derive the impact that each 
search term had on a given document.  In this fashion, 
the values from the result vector were used to assign a 
document to its closest-matching search term cluster 
[14]. 
 
3.5. Limitations 

 
The association clusters are based upon the change 

records that may or may not be accurate because of 
opportunistic changes.  We define an opportunistic 
change as any change that is made in conjunction with 



a set of changes that addresses a specific fault or 
requirement but is actually not associated with that set 
in any way except for being changed at the same time.  
An example of this would be a developer that is 
repairing a fault in the system and then also makes an 
additional change to the system and then checks all the 
changed code in together on the same failure report.  
Excessive opportunistic changes can have an adverse 
affect on the ability of the SVD to identify related 
system components.  The extra opportunistic changes 
artificially inflate the strength of the relationship 
between components when in actuality the link is much 
weaker. 

Another limitation is that our technique is not 
guaranteed to be safe.  If there is no historical data 
regarding a set of files, our technique cannot provide 
guidance as to where the effects may be. However, our 
technique may be more practical for a system that 
contains numerous non-executable files.  In our 
previous industrial research, we analyzed systems 
using an SVD-based technique where 25% of the files 
were non-source files [18, 19].  Dynamic techniques 
might not be able to find the same dependencies that 
our technique finds among these files since dynamic 
techniques operate primarily on source files. 

Current impact analysis techniques typically 
calculate the impact of a proposed change at the 
function or line of code level, while our technique is 
currently being used at the file level.  Using a 
technique that has a granularity level down to a line of 
code can be beneficial if a source file is large in size, 
since a line of code granularity would limit the area 
that a developer would have to analyze to find the 
affected code.  However, since our technique is also 
focusing on non-executable parts of the system, the file 
level is the most effective granularity level for our 
purposes.  In most cases, change information does not 
exist to the line level of some non-executable files, 
such as help files.  Further, the file level is effectively 
the only appropriate granularity for media files that are 
included in a system. 
 
4. Open source project case study 
 

In this section, we discuss the application of our 
technique to five open source projects obtained from 
SourceForge (http://www.sourceforge.net), an open 
source change management and resource site.   
 
4.1. Case study setup 

 
On SourceForge, projects are tracked and rated 

based upon various activity metrics, ranging from the 
frequency of code modifications to how often people 

download active projects.  Using these metrics, we can 
gauge whether a project is currently under active 
development and if the project is considered 
worthwhile by the community.  The selection criteria 
for inclusion in our study are as follows:   
• download ranking of 85% or higher, showing that 

the project is used; 
• development stage 4 or higher, showing that the  

project is stable; and, 
• use of Subversion change management software to 

gather change records.  
Using the criteria above, we selected the five open 
source projects outlined in Table 1. 

 
Table 1: Selected open source projects 

Project Type of 
software 

# Files # Revs 

Abbot1 Java GUI 
testing 
framework 

6282 2460 

Grinder2 Java load 
testing 
framework 

3260 3520 

HTTPUnit3 Web site unit 
testing 

697 779 

jFreeChart4 Java 
graphical/cha
rting library 

1245 135 

StatSVN5 Gathers 
Subversion 
metrics 

595 342 

 
We used Matlab 7.2 R2006a as our SVD tool.  We 

first determined the size of the impact sets returned by 
our technique, and then we investigated the accuracy of 
those impact sets.  We measured the size of the impact 
sets generated by our technique to determine how 
much our technique minimized the impact set.  A 
random data splitting technique was used with each 
open source project in this investigation to create our 
data sets.  We began by randomly selecting two-thirds 
of the revisions for each release as the “historical data” 
for our training set, from which we generated a set of 
association clusters.  The remaining one-third of the 
revisions was then used as our “future set,” which 
would simulate incoming revisions made to perform a 
system modification.  We performed this data splitting 
exercise ten separate times for each project. 

                                                           
1 http://abbot.sourceforge.net/ 
2 http://grinder.sourceforge.net/ 
3 http://httpunit.sourceforge.net/ 
4 http://www.jfree.org/jfreechart/ 
5 http://www.statsvn.org/ 



The impact analysis techniques used by Orso et al. 
[12] and Law and Rothermel [10] are considered safe.  
As a result, these researchers showed the efficacy of 
their impact analysis technique by comparing the size 
of the impact set against that of other impact analysis 
techniques.  A smaller impact set for a safe technique 
shows that there are fewer false positives while still 
retaining the full set of true positive results.  We 
utilized a similar methodology to first investigate the 
relative reduction of the impact set. Similar to our 
previous work [17], we gathered impact sets from the 
system modification in the future set using three 
different impact methods, two using our technique 
(Impact Methods 1 and 2) and another as a baseline 
(Impact Method 3): 

• Impact Method 1:  Gather all the files that 
appear in clusters in which all of the newly-
changed files appear.  For example, if a new 
track contains files A, C, and Q, a file is 
considered in the impact set if it appears in a 
cluster in which A, C, and Q all appear together. 

• Impact Method 2:  Gather all the files that 
appear in clusters in which any of the newly-
changed files appear.   For example, if a new 
track contains files A, C, and Q, a file is 
considered in the impact set if it appears in any 
cluster that contains at least one of files A, C, or 
Q. 

• Impact Method 3: Gather all the files that have 
changed in the “historical data” with any of the 
newly-changed files and does not use any 
clustering technique.  For example, if a new 
track contains files A, C, and Q, a file is 
considered part of the impact set if that file has 
been modified in conjunction with either A, C, or 
Q in a system modification in the historical data. 

 
4.2 Case study results 

 
We applied the three impact methods to each of the 

ten random data splits for each of the five open source 
projects. The results of the three impact methods are 
shown in Table 2.  We observed a decrease in impact 
size when we looked at files identified as being related 
to changed files through the association clusters. We 
then examined the efficacy of Impact Method 1 by 

investigating its true positive rate.  The results of this 
examination are shown in Table 3. 

 
Table 2: Impact method size summary 

Project Method 1 
Avg./Med 

Method 2 
Avg./Med. 

Method 3 
Avg./Med. 

Abbot 3.5 / 3 5.5 / 4 14.3 / 13 
Grinder 2.6 / 3 3.1 / 3 12.2 / 10 
HTTPU. 4.4 / 4 5.1 / 6 10.6 / 8 
jFreeC. 9.4 / 5 15.1 / 11 30.4 / 31 
StatSVN 8.5 / 5 10.4 / 8 14.4 / 13 

 
Note that the efficacy of our technique in terms of 

true positive rate is correlated with both the average 
revision size and the number of overall revisions.  With 
a smaller number of overall revisions (135) and larger 
average revision size (14.8 files), jFreeChart had the 
least success with our technique.  We believe that this 
particular project is a good example of a project in 
which there are more opportunistic changes than the 
other projects.  The larger average revision size along 
with fewer total revisions could be an indication of 
more development effort taking place before the 
developer checks in their work Subversion.  Note that 
in these instances the developer may have implemented 
more than one feature change to the system, given that 
there are fewer instances of source code revisions and 
the higher number of files revised at a given time.  
Thus, the signal to noise ratio, where the signal is 
related files changing together and noise is unrelated 
files being checked in together, is much higher than 
that of the other open source projects we examined. 

At the other end of the spectrum is the project 
Abbot.  This project had a much smaller average 
revision size (usually between two to five files) and 
had a factor of ten more revisions than jFreeChart.  We 
hypothesize that in this project, developers made 
smaller, directed revisions to the code and checked in 
the changes immediately, thus reducing the number of 
opportunistic changes without the need for a rigorous 
process. From examining the results of our 
investigation, we could infer that any development 
methodology or project that supports small, targeted 
revisions to the code as opposed to larger ones would 
receive the most benefit from our technique.  Through 
such a methodology, opportunistic changes could be 

Table 3: Investigation summary 
Project Confirmed True 

Positive Rate 
% Non-Source 
Files 

Avg. Revision Size Avg. Size of 
Impact Set 

Abbot 52.4% 3.2% 7.25 3.5  
Grinder 43.2% 2.2% 3.74 2.6  
HTTPUnit 41.1% 5.9% 5.2  4.4  
jFreeChart 19.5% 0.5% 14.8 9.4  
StatSVN 35.5% 5.3% 5.4 8.5 



minimized regardless of the commercial nature of the 
project. 

 
5. Comparison to other techniques 
 

During this investigation, we compare the results 
from two sets of experiments run by Orso et al. and by 
Breech et al. on the performance of 
CoverageImpact and PathImpact, along with 
the results of our technique using the a large open 
source project, gcc.  Further, we compare the time and 
resources required for each technique.  We used the 
algorithms provided by Rothermel and Orso in the 
recreation of CoverageImpact and PathImpact 
for our study. We continue to use the same version of 
Matlab from our previous studies.  Further, we 
followed some of the methodology provided in Orso 
and Breech as to how to compare impact analysis 
techniques [4, 13]. 

We believe the advantage to using our technique is 
three-fold.  First, we believe that our technique 
requires fewer system resources and less time to 
execute than other techniques due to the use of change 
records as opposed to dynamic path or coverage 
information.  If a development team is trying to 
balance speed with effectiveness, our technique may be 
more advantageous.  Another advantage that has an 
effect on speed and directed effort is the use of 
historical data.  Using historical data, our technique 
identifies which impacted files have been under the 
most change or reported as problematic from the field.  
Weyuker suggests that most software faults are 
localized within a system [15], and historical evidence 
would help identify these areas of code easily.  Finally, 
by using empirical change records as opposed to 
semantic information, our technique can determine the 
impact that a non-source, non-executable file can have 
on the project. 
 
5.1. Algorithmic complexity 

 
The first advantage that our technique has over 

other impact analysis techniques is in the cost of 
system resources and the amount of time needed to 
perform the analysis.  A key component in this analysis 
is in how complex the algorithm is and how the 
algorithm scales to larger programs.  For this section, 
we define the following variables: 

• f is the number of functions affected by a new 
change set introduced into the system; 

• F is the number of files in a given system;  

• T is the size of the call trace generated by the f 
functions; 

• R is the number of revisions recorded in the 
change repository;  

• A is the average number of files affected in a 
revision;  

• C is the number of association clusters 
generated by the SVD; and, 

• L is the number of lines of code in the system. 
PathImpact operates by first instrumenting the 

code base and executing the entire system using a test 
suite.  A call trace is gathered from the instrumented 
system during execution, and can be compressed using 
the SEQUITUR algorithm [13] so that the data is not 
too large to store on a single machine.  Running 
SEQUITUR is not always necessary, however, the size 
of the call graph generated from the call trace can be so 
large as to exceed system memory [4].  Once system 
execution and SEQUITUR have finished, 
PathImpact determines the impact of a changed 
function by looking forward and backward through the 
DAG.  Examining the DAG is proportional to T to 
examine the impact of a single function change.  Thus, 
if multiple functions are affected by a given new 
revision, then the total complexity for a full change set 
is O(f*T). 

CoverageImpact also begins by instrumenting 
the code base and running the entire testing suite.  
CoverageImpact uses a single bit vector to record 
how the functions are exercised during the test run.  
Static program slicing with a control flow graph is then 
used to determine the impact of the change of a single 
function.  Since that function could possibly travel 
through the entire program, in the worst case the 
complexity for this step is O(L).  Thus, as with 
PathImpact, if a new revision contains more than 
one affected function, the total complexity of this step 
is O(f*L).   

Our technique begins with the gathering of change 
records from a source repository.  The time it takes to 
gather these records is proportional to the amount of 
activity the repository has had over time, or O(R*A).  
Once the records are gathered and placed in the matrix 
M as described in earlier sections of this paper, a sparse 
SVD is performed on the matrix.  A sparse SVD is 
performed because most files in the system will not 
change with every other file in the system, thus making 
M a sparse matrix.  The complexity of a sparse SVD is 
O(F log F).  After the SVD has been completed, the 
impact of the new revision is done by comparing the 
changed files to the cluster set, which is O(F*C). 



The three algorithms’ steps and algorithmic 
complexities are shown in Tables 4 and 5.  Looking at 
PathImpact and CoverageImpact, the main 
time and validity issues arise from the use of the test 
suite.  PathImpact and CoverageImpact are 
both reliant on comprehensive testing suites that 
exercise the entire code base.  If there is no automated 
way to run the system to gather either a call trace or 
coverage data, the effectiveness of PathImpact and 
CoverageImpact decreases.  Assuming that a 
system does have a comprehensive test suite, running 
that test suite could take a great deal of time, 
depending on the nature of the tests and the software 
itself.  Having any test suite that requires excessive 
manual intervention increases the overall cost of using 
the technique. 

Depending on the scope of the software system, the 
system could have a comprehensive test suite that is 
not overly expensive to run to gather execution data.  
Even with a good test suite, the building of a call trace 
for PathImpact has been shown to be infeasible in 
some circumstances as it does not scale well to larger 
programs [4].  Breech performed a study comparing 
PathImpact and CoverageImpact with his own 
impact analysis technique and showed that from a set 
of eight systems selected for experimentation, five of 
the systems selected could not use PathImpact 
effectively due to resource constraints that stemmed 
from the size of the system [4].  The overhead for 

gathering and storage requirements for the call trace 
resulted in either excessive time allotted for the 
experiment (two hours) or data sets that exceeded the 
remaining space on the machine (15GB).  

We used our technique on the system that had the 
worst performance for PathImpact to determine 
whether our technique could handle the systems that 
PathImpact could not.  The system that exemplified 
the worst case scenario for PathImpact was gcc, 
which took over 15GB of storage space and could not 
be completed due to excessive resource requests.  The 
total space required while using our technique was 
60MB, and the impact of a new revision could be 
calculated in approximately two seconds on a 2.2 Ghz 
computer.  The initial time to seed the M matrix with 
the revisions was large (over four hours) due having to 
process 127,051 total revisions to the system.  
However, ideally the M matrix would be updated 
periodically during the course of development, which 
would minimize this time, taking no longer than 30 
seconds for a given revision. 

CoverageImpact scales better to larger systems 
than PathImpact does, mainly because the coverage 
vector is significantly smaller and less computationally 
intensive to maintain than the call trace required for 
PathImpact.  CoverageImpact’s complexity is 
not based on the depth of the call structure, but rather 
on the number of functions overall in the system, and 
thus does not increase in complexity as quickly as 

Table 4: Time and resource concerns for impact analysis algorithms 
 Pre-Processing Impact of Change Set Post-Processing 
PathImpact Running entire test suite O(f*T) Running entire test suite 
CoverageImpact Running entire test suite O(f*L) Running entire test suite 
Our Technique SVD (O(F log F)) O(F*C) Occasional re-run of SVD 

Table 5: Impact analysis algorithm steps 
 Pre-Processing Impact of Change Set Post-Processing 
PathImpact 1. Instrument code 

2. Run entire test suite 
3. Gather call trace 
4. Compress using 
SEQUITUR 

For each function that 
changes, follow the 
DAG forward and 
backwards 

If test cases change or are 
added, reinstrument code base 
and run entire test suite again.  
The entire suite must be 
executed so that a full call 
graph is generated.  

CoverageImpact 1. Instrument code 
2. Run entire test suite 
3. Gather coverage 
information 

For each function that 
changes, perform static 
slicing and compare 

If test cases change or are 
added, reinstrument code base 
and run entire test suite again.   
The entire suite must be 
executed so that a full call 
graph is generated. 

Our Technique 1. Gather change 
records 
2. Perform SVD 

Compare all changed 
files simultaneously 
with cluster set 

After a significant number of 
revisions (several days of 
revisions for a mature project, 
one day for early stages), add 
new revision numbers to M 
and perform SVD again 



PathImpact. CoverageImpact, however, also 
could not be run effectively on gcc due to problems 
with creating static slices of the system [4]. 
 
5.2. Non-source files 

 
In our case study, we examined a system that had a 

large number of non-source files.  We note that the 
impact of changing these files cannot be determined 
through the use of PathImpact or 
CoverageImpact due to their use of dynamic 
means or require manual intervention to examine the 
file, thus making the techniques more costly.  Further, 
in some of the open source studies performed by 
Breech and Orso, similar non-source files are also 
present.  For example, change log files, which are 
maintained by open source developers to let system 
users know what has changed in a given revision, are 
also maintained in the source control system for a 
number of these programs.  While not modifying a 
change log file may not be a critical failure in some 
instances, in others it could lead a system user to 
misinterpret the functionality of the system, and thus 
use it in an improper way leading to a perceived 
failure.  
 
6. Conclusions 

 
Our technique makes use of the information in 

change records to discover and define relationships 
between files within the system.  The novel aspect of 
our technique as compared to other impact analysis 
techniques is the use of SVD with change records to 
drive an impact analysis that requires no access to the 
source code itself and also can incorporate all files in a 
system, even non-source files.  In some systems, faults 
in non-source files can be just as severe as those in the 
code base [9].  Further, our technique utilizes 
historical, empirical evidence as to areas of the system 
currently under change to highlight files that are most 
likely to change together.  By utilizing empirical 
change data, our technique can effectively prioritize 
which areas of the system require more developer 
attention due to system modifications, thus helping to 
mitigate the risks associated with software revisions. 

To examine the efficacy of our technique, we 
performed a case study with five open source projects.  
The generated association clusters from the analysis 
were identifiable and directly relatable to specific 
requirements for each release or for an identified 
internal system component.  The association clusters 
specifically illuminated areas of the code base where 
cross-component dependencies existed and 
components that included files that would not normally 

be examined in an analysis that used execution-based 
files, such as help files and configuration files. With 
enough information about how files change together, 
our technique has a confirmed true positive rate of 
around 60%.  The other files in the impact set that are 
not confirmed true positives are either unconfirmed 
true positives or false positives. 

In our comparative study between PathImpact, 
CoverageImpact, and our technique, we found that 
the system resource requirements for our technique 
were significantly less than those of PathImpact. 
CoverageImpact’s algorithm is as efficient as ours, 
however CoverageImpact and PathImpact both 
require instrumented execution information from either 
a set of test cases or from users of the system.  
Gathering this execution information could be time and 
resource consuming depending on the complexity of 
the test suite and/or system, and even then the test suite 
must be comprehensive to be of effective use.  
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