
Empirical Software Change Impact Analysis using Singular Value
Decomposition

Mark Sherriff and Laurie Williams
University of Virginia, North Carolina State University

sherriff@cs.virginia.edu, williams@csc.ncsu.edu

Abstract

Verification and validation techniques often

generate various forms of software development
artifacts. Change records created from verification
and validation efforts show how files in the system tend
to change together in response to fixes for identified
faults and failures. We propose a methodology for
determining the impact of a new system modification
by analyzing software change records through singular
value decomposition. This methodology generates
clusters of files that historically tend to change
together to address faults and failures found in the
code base. We performed a post hoc case study using
this technique on five open source software systems.
We determined that our technique was effective in
identifying impacted files in a system from an
introduced change when the developers tended to make
small, targeted updates to the source system regularly.
We further compared our technique against two other
impact analysis techniques (PathImpact and
CoverageImpact) and found that our technique
provided comparable results, while also identifying
non-source files that could be impacted by the change.

1. Introduction

During development, testing, and maintenance, a
modification made to a system can often have side
effects. We define a system modification as an action
taken by a developer on the system to repair a fault or
implement a feature change according to a given
requirement. Developers can minimize adverse side
effects and prevent fault injection resulting from the
system modifications through impact analysis
techniques [1]. However, current impact analysis
techniques that utilize call graphs, dynamic executions
of the system, or static code analysis often do not
include files that are not part of the source code, such
as media files, help files, and configuration files [5, 8,
13, 16]. Additionally, current impact analysis

techniques based upon semantic analysis may not
consider trends in actual system usage or the fault-
proneness of the set of files impacted. Without usage
trends, the results of semantic impact analysis require
more effort to determine exactly which areas of the
system have the highest risk of containing a latent fault
[12].

Our research objective is to provide an impact
analysis methodology that uses historical change
records for both executable and non-executable files in
a software system to identify and prioritize potentially-
affected areas of a system modification based on risk.
By utilizing change records, we can show what files
tend to change together for development purposes or in
response to repairing faults in the system. Analyzing
revisions can provide an indication as to how files
interact with one another to perform a system
modification [2, 3]. We define a revision as any set of
files changed together in a system modification for the
specific purpose of repairing a fault or implementing a
new feature in the system.

Our methodology involves the generation of
association clusters from a set of change records and
then leveraging those clusters to guide impact analysis.
The data from change records are compiled into a
matrix that portrays the historically-based change
relationship between sets of files. A singular value
decomposition (SVD) [6] is performed on the matrix to
generate the association clusters. The results of the
SVD can then be utilized to identify the potential
effects of a change. Our hypothesis is that a
methodology based upon singular value decomposition
using historical change records can accurately surface
additional files, including non-source files that may be
impacted by a set of changes.

To determine the efficacy of our technique, we
examined the size of the impact sets and the accuracy
of our impact technique with five open source Java
projects. Further, we compared our technique’s
performance against two establish impact analysis
techniques, PathImpact and CoverageImpact.

In Section 2, we will discuss relevant background
and related work. Section 3 outlines the steps of our
technique, while Section 4 describes our open source
case study. Section 5 provides a comparison between
our technique and PathImpact and
CoverageImpact. Section 6 discusses our
conclusions from this work.

2. Background

Current impact analysis research follows two
different basic methods in determining the effect of a
change: either a static or dynamic analysis of the code
base [1]. Dynamic impact analysis techniques rely
upon information gathered from a system during
runtime, often gathered through execution of the
system or test suites with an instrumented code base [8,
13]. Orso et al. compare two such dynamic techniques,
CoverageImpact and PathImpact, to determine
the major differences in cost and effectiveness. These
two techniques examine call graphs and execution
records from an instrumented execution of the system
using a comprehensive test suite. CoverageImpact
utilizes the coverage information of each system
execution with program slicing [21] to determine how
components of the system are linked together.
PathImpact uses similar information to build a
directed acyclic graph of the system. Both techniques
are considered safe, which means that the techniques
will catch all of the impacted areas of the system [21],
assuming that the tests are reliable and/or the execution
of the test cases extensively uses the system. If the
system has little testing, or if that testing is inadequate,
the efficacy of these techniques will be severely
impaired.

Static impact analysis techniques do not involve the
execution of the code base. Techniques that can be
classified as static impact analysis methods work by
analyzing information from the software development
lifecycle [8] or the semantics of the source code itself
[1, 16, 22, 25]. Orso demonstrated that static impact
analysis techniques are “generally imprecise and tend
to overestimate the effect of a change” [12, 13]. Orso
and Huang both state that this imprecision, manifested
as a large number of false positives (up to 90%), comes
from the use of static source code with only
assumptions as to how the system is used and executed
[8, 12].

Our technique is a static impact analysis technique
and addresses the concerns expressed by Orso and
Huang. Using SVD, our technique identifies
association clusters of files that help alleviate the
concern that static techniques generate a large amount
of false positives. These association clusters are

generated using historical information regarding how
files tend to change together in response to faults and
field failures. Thus, the association clusters represent
general fault paths in the system under actual use.
Further, our technique does not require the source code
of the system. Using software change records enables
our technique to include non-executable files (such as
images, documentation, and configuration files) in our
impact analysis.

Research is currently being performed in mining
and analyzing data from source control systems to
identify core components in a software system for use
in impact analysis [2, 3, 7, 11, 24, 25]. Zimmerman et
al. [25] have created an Eclipse plug-in that performs
an impact analysis with regards to the area that a
developer is currently modifying while the developer is
in the act of modifying the code. The plug-in mines
source revision records and creates a set of tuples that
indicates what file was modified, what type of object
within that file was modified (e.g. field, method, class,
etc.), and the name of the object. The plug-in then
converts these sets of tuples into transaction rules,
indicating areas of the system that tend to change
together. With a relatively stable code base,
Zimmerman reports that 44% of related files can be
predicted. However, for evolving systems, the
predictions could not work well since the prediction
would have to take into account new functions being
added constantly [25]. Further, there is also work on
creating a “fault architecture” by von Mayrhauser, in
which fault-prone components are identified by past
defect records [23]. Our technique is similar to these
methods in that we are leveraging change records in a
like manner, except we use SVD as a clustering
algorithm to determine the connections between files.

We have performed other work using SVD to
gather information from software development
artifacts. Using change records and static analysis
information, we prioritized static analysis alerts by
forming association clusters that linked types of alerts
to areas of the system that contained failures
previously [17-19]. In an industrial case study using a
system from IBM, we determined that using SVD as a
method for prioritizing alerts reduced developer effort
in analyzing static analysis alerts by 60%. We have
also applied our SVD methodology to regression test
prioritization [20]. Using the data from our impact
analysis technique along with test coverage data
through change records, we can drive test selection
based upon empirical, historical evidence as to which
areas of the system have had the most severe problems.

3. Empirical software change impact
analysis

Our technique derives associations using SVD
based upon a set of change records from testing and
field failures. These association clusters of files
portray an underlying structure in the system indicating
how files tend to be executed, tested, and changed
together. In this section, we describe the seven steps
of our technique with regards to the goal of impact
analysis, which includes deriving the association
clusters from change records and interpreting the
results of the analysis. An overview of the algorithm is
presented in Figure 1.

1 Create matrix M where the values in
the matrix indicate the number of times
two files have changed together.
2 [U, S, V] = svd(M);
3 for i:size of U
4 Gather cluster i information
5 for j:size of U
6 if |U(j, i)| > threshold
7 Gather element of cluster i
8 end
9 end
10 end
11
12 X = list of files under change
13 Compare contents of X with each
cluster to find exact matches
14 if perfect matches found
15 return matched files
16 Search clusters for any files from X
for any cluster match
17 return any matched files

Figure 1. Psuedo-code for SVD-based impact
analysis

3.1. Step 1: Gather data and build M matrix

The first step is to generate an analysis matrix that

contains the system’s files along each axis. The values
in the matrix represent the number of times that each
file appeared in a revision with another file and show
how the files are connected through change records.
For illustrative purposes on how to build the analysis
matrix, we will use a set of sample data to generate an
analysis matrix.

We have built an example analysis matrix M,
shown below in Equation 1. For example, matrix M
shows that File 2 has appeared in a revision 10 times
together with File 1, 21 times together with File 3, and
0 times by itself (since M(2,2) = M(2,1) + M(2,3)).

Similarly, File 3 has changed 21 times with File 2 and
3 times by itself.

!
!
!
!
!
!

"

#

$
$
$
$
$
$

%

&

=

1712000

1215000

0024210

00213110

0001025

5

4

3

2

1

54321

F

F

F

F

F

M

FFFFF

 (1)

Upon initial examination of this matrix, we note

that Files 4 and 5 change together or by themselves.
Based on this, it appears that Files 4 and 5 are strongly
linked in isolation from the rest of the system.
Similarly, Files 1, 2, and 3 are also linked, with Files 2
and 3 having the strongest bond of the three.

3.2. Step 2: Perform SVD on matrix M

To determine the strength of the associations
between files and to generate the association clusters,
we perform a SVD of matrix M. The strength of the
association is determined by the frequency of time the
files changed together. A SVD of matrix M provides
the following matrices, shown in Equations 2 and 3:

!
!
!
!
!
!

"

#

$
$
$
$
$
$

%

&

'

''

''

'''

'

==

68.0074.0

74.0068.0

069.43.059.

056.02.076.

031.9.029.

VU

 (2)

!
!
!
!
!
!

"

#

$
$
$
$
$
$

%

&

=

9.30000

01.4000

008.2400

0004.280

00001.51

S

 (3)

The U and V matrices provide information as to the

structure of the association clusters. The singular
values from the S matrix represent the amount of
variability each association cluster contributes to the
original analysis matrix. Note that U and V are equal,
because M is a symmetric matrix.

A cluster’s strength, represented by the size of the
singular value from matrix S coupled with it, indicates
the amount of variability that the association cluster
provides to the original analysis matrix. The relative
variability indicated by the magnitude of the singular
value provides direct evidence as to how important that
cluster is to the overall system. The more important
the cluster is, the more risk that is associated with that

cluster, as evidenced by its velocity of change in
previous system modifications.

Dividing a cluster’s singular value by the sum of all
the singular values provides the percentage of how
representative the cluster is of the original matrix. For
instance, the second cluster in this set represents
approximately 25% of the variability (28.4/(51.1+
28.4+24.8+4.1+3.9)) of the original matrix M. These
percentages show that the first cluster defines the
majority of the information regarding these files.
Clusters three and four are, in effect, sub-clusters of the
first cluster because they contain a similar set of files.
Using change records as the development artifact, a
high singular value indicates that that association
cluster is more prominent in the analysis matrix due to
a greater number of changes that have occurred to that
set of files. A high singular value could be indicative
of a particularly problematic section of code or a new
feature that has just been introduced into the system
and is experiencing its first rigorous testing.

3.3. Step 3: Gathering the clusters of files

The values in the U matrix correspond to the
composition of each association cluster. In Equation 2,
there are five association clusters because the rank of
M is five. The first column of U, representing the
structure of the first association cluster, is coupled with
the first singular value in S, representing the strength of
that association cluster. Since it is coupled with the
largest singular value, the first association cluster
represents the greatest amount of variability in the
original analysis matrix and is the most prominent
association cluster. From the U matrix, we see that the
first association cluster is comprised of Files 1, 2, and
3, indicated by the fact that the three files all have
values with a similar sign. Values with a similar sign
(either positive or negative) indicates that the change
vectors are moving in the same direction and are thus
related in some way. Further, each of these values has
a larger magnitude than .1, the threshold we used in
our research. A threshold is used when selecting
cluster members so that only files with a strong
association to the other files are included in the cluster.
In the third cluster, we see that File 1 is its own cluster
that can, at times, change without Files 2 and 3. So, in
effect, we get two associations out of the third cluster,
one with File 1 by itself and one with Files 2 and 3
together.

Note that the values in each association cluster’s
column vector represents the degree to which that file
is likely to change in that cluster. In this way, each file
is weighted within that association cluster as to its
degree of participation. For example, the first
association cluster is primarily composed of File 2 and

File 3 due to their higher values. File 1 is a minor
participant in this association cluster. If we reexamine
the original analysis matrix M, we can see the strong
correlation between Files 2 and 3 with a somewhat
looser correlation with File 1, since these files only
tend to change together and not at all with Files 4 and
5. The association cluster in the second column
portrays the next most significant cluster, comprised of
Files 4 and 5. At this step in our technique, the matrix
U can provide information about the likelihood of a
change in an association cluster based upon previous
change information.

3.4. Step 4: Applying the clusters

Using the U and S matrices generated from our
technique, we can determine the possible impact that a
new revision might have on the system. We can
compare the associations gathered from the U matrix
with a new revision. If all the files in a new revision
are present in a previously-determined association
cluster, we know that there is a strong relationship
between the changed files and the other files in the
cluster and that these files would be the most likely
files to be affected by this change. Further, the
magnitude of the corresponding singular value in S
indicates which cluster has churned more within the
data set under examination. If the files in a new
revision do not all appear in the same cluster, then they
represent a new execution path through the system. In
this instance, files that are associated with each
changed file separately can possibly be affected by this
change. Finally, the files may have never changed
before within the data set that was used to build the U
matrix. In this instance, no historical evidence exists
as to how these files may affect the system, and a new
association cluster is will form to represent this new set
of changes in a future analysis.

This technique is similar to the cluster rank
algorithm used by Osinski et al. in their SVD-based
search term clustering algorithm [14]. Osinski
multiplied their document matrix by a modified U
matrix from the SVD to derive the impact that each
search term had on a given document. In this fashion,
the values from the result vector were used to assign a
document to its closest-matching search term cluster
[14].

3.5. Limitations

The association clusters are based upon the change

records that may or may not be accurate because of
opportunistic changes. We define an opportunistic
change as any change that is made in conjunction with

a set of changes that addresses a specific fault or
requirement but is actually not associated with that set
in any way except for being changed at the same time.
An example of this would be a developer that is
repairing a fault in the system and then also makes an
additional change to the system and then checks all the
changed code in together on the same failure report.
Excessive opportunistic changes can have an adverse
affect on the ability of the SVD to identify related
system components. The extra opportunistic changes
artificially inflate the strength of the relationship
between components when in actuality the link is much
weaker.

Another limitation is that our technique is not
guaranteed to be safe. If there is no historical data
regarding a set of files, our technique cannot provide
guidance as to where the effects may be. However, our
technique may be more practical for a system that
contains numerous non-executable files. In our
previous industrial research, we analyzed systems
using an SVD-based technique where 25% of the files
were non-source files [18, 19]. Dynamic techniques
might not be able to find the same dependencies that
our technique finds among these files since dynamic
techniques operate primarily on source files.

Current impact analysis techniques typically
calculate the impact of a proposed change at the
function or line of code level, while our technique is
currently being used at the file level. Using a
technique that has a granularity level down to a line of
code can be beneficial if a source file is large in size,
since a line of code granularity would limit the area
that a developer would have to analyze to find the
affected code. However, since our technique is also
focusing on non-executable parts of the system, the file
level is the most effective granularity level for our
purposes. In most cases, change information does not
exist to the line level of some non-executable files,
such as help files. Further, the file level is effectively
the only appropriate granularity for media files that are
included in a system.

4. Open source project case study

In this section, we discuss the application of our
technique to five open source projects obtained from
SourceForge (http://www.sourceforge.net), an open
source change management and resource site.

4.1. Case study setup

On SourceForge, projects are tracked and rated

based upon various activity metrics, ranging from the
frequency of code modifications to how often people

download active projects. Using these metrics, we can
gauge whether a project is currently under active
development and if the project is considered
worthwhile by the community. The selection criteria
for inclusion in our study are as follows:
• download ranking of 85% or higher, showing that

the project is used;
• development stage 4 or higher, showing that the

project is stable; and,
• use of Subversion change management software to

gather change records.
Using the criteria above, we selected the five open
source projects outlined in Table 1.

Table 1: Selected open source projects

Project Type of
software

Files # Revs

Abbot1 Java GUI
testing
framework

6282 2460

Grinder2 Java load
testing
framework

3260 3520

HTTPUnit3 Web site unit
testing

697 779

jFreeChart4 Java
graphical/cha
rting library

1245 135

StatSVN5 Gathers
Subversion
metrics

595 342

We used Matlab 7.2 R2006a as our SVD tool. We

first determined the size of the impact sets returned by
our technique, and then we investigated the accuracy of
those impact sets. We measured the size of the impact
sets generated by our technique to determine how
much our technique minimized the impact set. A
random data splitting technique was used with each
open source project in this investigation to create our
data sets. We began by randomly selecting two-thirds
of the revisions for each release as the “historical data”
for our training set, from which we generated a set of
association clusters. The remaining one-third of the
revisions was then used as our “future set,” which
would simulate incoming revisions made to perform a
system modification. We performed this data splitting
exercise ten separate times for each project.

1 http://abbot.sourceforge.net/
2 http://grinder.sourceforge.net/
3 http://httpunit.sourceforge.net/
4 http://www.jfree.org/jfreechart/
5 http://www.statsvn.org/

The impact analysis techniques used by Orso et al.
[12] and Law and Rothermel [10] are considered safe.
As a result, these researchers showed the efficacy of
their impact analysis technique by comparing the size
of the impact set against that of other impact analysis
techniques. A smaller impact set for a safe technique
shows that there are fewer false positives while still
retaining the full set of true positive results. We
utilized a similar methodology to first investigate the
relative reduction of the impact set. Similar to our
previous work [17], we gathered impact sets from the
system modification in the future set using three
different impact methods, two using our technique
(Impact Methods 1 and 2) and another as a baseline
(Impact Method 3):

• Impact Method 1: Gather all the files that
appear in clusters in which all of the newly-
changed files appear. For example, if a new
track contains files A, C, and Q, a file is
considered in the impact set if it appears in a
cluster in which A, C, and Q all appear together.

• Impact Method 2: Gather all the files that
appear in clusters in which any of the newly-
changed files appear. For example, if a new
track contains files A, C, and Q, a file is
considered in the impact set if it appears in any
cluster that contains at least one of files A, C, or
Q.

• Impact Method 3: Gather all the files that have
changed in the “historical data” with any of the
newly-changed files and does not use any
clustering technique. For example, if a new
track contains files A, C, and Q, a file is
considered part of the impact set if that file has
been modified in conjunction with either A, C, or
Q in a system modification in the historical data.

4.2 Case study results

We applied the three impact methods to each of the

ten random data splits for each of the five open source
projects. The results of the three impact methods are
shown in Table 2. We observed a decrease in impact
size when we looked at files identified as being related
to changed files through the association clusters. We
then examined the efficacy of Impact Method 1 by

investigating its true positive rate. The results of this
examination are shown in Table 3.

Table 2: Impact method size summary

Project Method 1
Avg./Med

Method 2
Avg./Med.

Method 3
Avg./Med.

Abbot 3.5 / 3 5.5 / 4 14.3 / 13
Grinder 2.6 / 3 3.1 / 3 12.2 / 10
HTTPU. 4.4 / 4 5.1 / 6 10.6 / 8
jFreeC. 9.4 / 5 15.1 / 11 30.4 / 31
StatSVN 8.5 / 5 10.4 / 8 14.4 / 13

Note that the efficacy of our technique in terms of

true positive rate is correlated with both the average
revision size and the number of overall revisions. With
a smaller number of overall revisions (135) and larger
average revision size (14.8 files), jFreeChart had the
least success with our technique. We believe that this
particular project is a good example of a project in
which there are more opportunistic changes than the
other projects. The larger average revision size along
with fewer total revisions could be an indication of
more development effort taking place before the
developer checks in their work Subversion. Note that
in these instances the developer may have implemented
more than one feature change to the system, given that
there are fewer instances of source code revisions and
the higher number of files revised at a given time.
Thus, the signal to noise ratio, where the signal is
related files changing together and noise is unrelated
files being checked in together, is much higher than
that of the other open source projects we examined.

At the other end of the spectrum is the project
Abbot. This project had a much smaller average
revision size (usually between two to five files) and
had a factor of ten more revisions than jFreeChart. We
hypothesize that in this project, developers made
smaller, directed revisions to the code and checked in
the changes immediately, thus reducing the number of
opportunistic changes without the need for a rigorous
process. From examining the results of our
investigation, we could infer that any development
methodology or project that supports small, targeted
revisions to the code as opposed to larger ones would
receive the most benefit from our technique. Through
such a methodology, opportunistic changes could be

Table 3: Investigation summary
Project Confirmed True

Positive Rate
% Non-Source
Files

Avg. Revision Size Avg. Size of
Impact Set

Abbot 52.4% 3.2% 7.25 3.5
Grinder 43.2% 2.2% 3.74 2.6
HTTPUnit 41.1% 5.9% 5.2 4.4
jFreeChart 19.5% 0.5% 14.8 9.4
StatSVN 35.5% 5.3% 5.4 8.5

minimized regardless of the commercial nature of the
project.

5. Comparison to other techniques

During this investigation, we compare the results
from two sets of experiments run by Orso et al. and by
Breech et al. on the performance of
CoverageImpact and PathImpact, along with
the results of our technique using the a large open
source project, gcc. Further, we compare the time and
resources required for each technique. We used the
algorithms provided by Rothermel and Orso in the
recreation of CoverageImpact and PathImpact
for our study. We continue to use the same version of
Matlab from our previous studies. Further, we
followed some of the methodology provided in Orso
and Breech as to how to compare impact analysis
techniques [4, 13].

We believe the advantage to using our technique is
three-fold. First, we believe that our technique
requires fewer system resources and less time to
execute than other techniques due to the use of change
records as opposed to dynamic path or coverage
information. If a development team is trying to
balance speed with effectiveness, our technique may be
more advantageous. Another advantage that has an
effect on speed and directed effort is the use of
historical data. Using historical data, our technique
identifies which impacted files have been under the
most change or reported as problematic from the field.
Weyuker suggests that most software faults are
localized within a system [15], and historical evidence
would help identify these areas of code easily. Finally,
by using empirical change records as opposed to
semantic information, our technique can determine the
impact that a non-source, non-executable file can have
on the project.

5.1. Algorithmic complexity

The first advantage that our technique has over

other impact analysis techniques is in the cost of
system resources and the amount of time needed to
perform the analysis. A key component in this analysis
is in how complex the algorithm is and how the
algorithm scales to larger programs. For this section,
we define the following variables:

• f is the number of functions affected by a new
change set introduced into the system;

• F is the number of files in a given system;

• T is the size of the call trace generated by the f
functions;

• R is the number of revisions recorded in the
change repository;

• A is the average number of files affected in a
revision;

• C is the number of association clusters
generated by the SVD; and,

• L is the number of lines of code in the system.
PathImpact operates by first instrumenting the

code base and executing the entire system using a test
suite. A call trace is gathered from the instrumented
system during execution, and can be compressed using
the SEQUITUR algorithm [13] so that the data is not
too large to store on a single machine. Running
SEQUITUR is not always necessary, however, the size
of the call graph generated from the call trace can be so
large as to exceed system memory [4]. Once system
execution and SEQUITUR have finished,
PathImpact determines the impact of a changed
function by looking forward and backward through the
DAG. Examining the DAG is proportional to T to
examine the impact of a single function change. Thus,
if multiple functions are affected by a given new
revision, then the total complexity for a full change set
is O(f*T).

CoverageImpact also begins by instrumenting
the code base and running the entire testing suite.
CoverageImpact uses a single bit vector to record
how the functions are exercised during the test run.
Static program slicing with a control flow graph is then
used to determine the impact of the change of a single
function. Since that function could possibly travel
through the entire program, in the worst case the
complexity for this step is O(L). Thus, as with
PathImpact, if a new revision contains more than
one affected function, the total complexity of this step
is O(f*L).

Our technique begins with the gathering of change
records from a source repository. The time it takes to
gather these records is proportional to the amount of
activity the repository has had over time, or O(R*A).
Once the records are gathered and placed in the matrix
M as described in earlier sections of this paper, a sparse
SVD is performed on the matrix. A sparse SVD is
performed because most files in the system will not
change with every other file in the system, thus making
M a sparse matrix. The complexity of a sparse SVD is
O(F log F). After the SVD has been completed, the
impact of the new revision is done by comparing the
changed files to the cluster set, which is O(F*C).

The three algorithms’ steps and algorithmic
complexities are shown in Tables 4 and 5. Looking at
PathImpact and CoverageImpact, the main
time and validity issues arise from the use of the test
suite. PathImpact and CoverageImpact are
both reliant on comprehensive testing suites that
exercise the entire code base. If there is no automated
way to run the system to gather either a call trace or
coverage data, the effectiveness of PathImpact and
CoverageImpact decreases. Assuming that a
system does have a comprehensive test suite, running
that test suite could take a great deal of time,
depending on the nature of the tests and the software
itself. Having any test suite that requires excessive
manual intervention increases the overall cost of using
the technique.

Depending on the scope of the software system, the
system could have a comprehensive test suite that is
not overly expensive to run to gather execution data.
Even with a good test suite, the building of a call trace
for PathImpact has been shown to be infeasible in
some circumstances as it does not scale well to larger
programs [4]. Breech performed a study comparing
PathImpact and CoverageImpact with his own
impact analysis technique and showed that from a set
of eight systems selected for experimentation, five of
the systems selected could not use PathImpact
effectively due to resource constraints that stemmed
from the size of the system [4]. The overhead for

gathering and storage requirements for the call trace
resulted in either excessive time allotted for the
experiment (two hours) or data sets that exceeded the
remaining space on the machine (15GB).

We used our technique on the system that had the
worst performance for PathImpact to determine
whether our technique could handle the systems that
PathImpact could not. The system that exemplified
the worst case scenario for PathImpact was gcc,
which took over 15GB of storage space and could not
be completed due to excessive resource requests. The
total space required while using our technique was
60MB, and the impact of a new revision could be
calculated in approximately two seconds on a 2.2 Ghz
computer. The initial time to seed the M matrix with
the revisions was large (over four hours) due having to
process 127,051 total revisions to the system.
However, ideally the M matrix would be updated
periodically during the course of development, which
would minimize this time, taking no longer than 30
seconds for a given revision.

CoverageImpact scales better to larger systems
than PathImpact does, mainly because the coverage
vector is significantly smaller and less computationally
intensive to maintain than the call trace required for
PathImpact. CoverageImpact’s complexity is
not based on the depth of the call structure, but rather
on the number of functions overall in the system, and
thus does not increase in complexity as quickly as

Table 4: Time and resource concerns for impact analysis algorithms
 Pre-Processing Impact of Change Set Post-Processing
PathImpact Running entire test suite O(f*T) Running entire test suite
CoverageImpact Running entire test suite O(f*L) Running entire test suite
Our Technique SVD (O(F log F)) O(F*C) Occasional re-run of SVD

Table 5: Impact analysis algorithm steps
 Pre-Processing Impact of Change Set Post-Processing
PathImpact 1. Instrument code

2. Run entire test suite
3. Gather call trace
4. Compress using
SEQUITUR

For each function that
changes, follow the
DAG forward and
backwards

If test cases change or are
added, reinstrument code base
and run entire test suite again.
The entire suite must be
executed so that a full call
graph is generated.

CoverageImpact 1. Instrument code
2. Run entire test suite
3. Gather coverage
information

For each function that
changes, perform static
slicing and compare

If test cases change or are
added, reinstrument code base
and run entire test suite again.
The entire suite must be
executed so that a full call
graph is generated.

Our Technique 1. Gather change
records
2. Perform SVD

Compare all changed
files simultaneously
with cluster set

After a significant number of
revisions (several days of
revisions for a mature project,
one day for early stages), add
new revision numbers to M
and perform SVD again

PathImpact. CoverageImpact, however, also
could not be run effectively on gcc due to problems
with creating static slices of the system [4].

5.2. Non-source files

In our case study, we examined a system that had a

large number of non-source files. We note that the
impact of changing these files cannot be determined
through the use of PathImpact or
CoverageImpact due to their use of dynamic
means or require manual intervention to examine the
file, thus making the techniques more costly. Further,
in some of the open source studies performed by
Breech and Orso, similar non-source files are also
present. For example, change log files, which are
maintained by open source developers to let system
users know what has changed in a given revision, are
also maintained in the source control system for a
number of these programs. While not modifying a
change log file may not be a critical failure in some
instances, in others it could lead a system user to
misinterpret the functionality of the system, and thus
use it in an improper way leading to a perceived
failure.

6. Conclusions

Our technique makes use of the information in

change records to discover and define relationships
between files within the system. The novel aspect of
our technique as compared to other impact analysis
techniques is the use of SVD with change records to
drive an impact analysis that requires no access to the
source code itself and also can incorporate all files in a
system, even non-source files. In some systems, faults
in non-source files can be just as severe as those in the
code base [9]. Further, our technique utilizes
historical, empirical evidence as to areas of the system
currently under change to highlight files that are most
likely to change together. By utilizing empirical
change data, our technique can effectively prioritize
which areas of the system require more developer
attention due to system modifications, thus helping to
mitigate the risks associated with software revisions.

To examine the efficacy of our technique, we
performed a case study with five open source projects.
The generated association clusters from the analysis
were identifiable and directly relatable to specific
requirements for each release or for an identified
internal system component. The association clusters
specifically illuminated areas of the code base where
cross-component dependencies existed and
components that included files that would not normally

be examined in an analysis that used execution-based
files, such as help files and configuration files. With
enough information about how files change together,
our technique has a confirmed true positive rate of
around 60%. The other files in the impact set that are
not confirmed true positives are either unconfirmed
true positives or false positives.

In our comparative study between PathImpact,
CoverageImpact, and our technique, we found that
the system resource requirements for our technique
were significantly less than those of PathImpact.
CoverageImpact’s algorithm is as efficient as ours,
however CoverageImpact and PathImpact both
require instrumented execution information from either
a set of test cases or from users of the system.
Gathering this execution information could be time and
resource consuming depending on the complexity of
the test suite and/or system, and even then the test suite
must be comprehensive to be of effective use.

7. Acknowledgments

We would sincerely like to thank Dr. Michael Lake
at IBM Corp. for his input into this work. Partial
funding for this work was provided by the National
Science Foundation.

8. References

[1] Arnold, R. and Bohner, S., "Impact Analysis -

Towards A Framework for Comparison,"
Proceedings of the Conference on Software
Maintenance, Montreal, Canada, 1993, pp. 292-
301.

[2] Ball, T., Kim, J., Potter, A., and Siy, H., "If your
version control system could talk," Proceedings
of the Workshop on Process Modeling and
Empirical Studies of Software Engineering, 1997.

[3] Beyer, D. and Noack, A., "Clustering Software
Artifacts Based on Frequent Common Changes,"
Proceedings of the 13th IEEE International
Workshop on Program Comprehension, St.
Louis, MO, May 15-16, 2005, pp. 259-268.

[4] Breech, B., Tegtmeyer, M., and Pollock, L., "A
Comparison of Online and Dynamic Impact
Analysis Algorithms," Proceedings of the
European Conference on Software Maintenance
and Reengineering, Manchester, UK, March 21-
23, 2005, pp. 143-152.

[5] Canfora, G. and Cerulo, L., "Impact Analysis by
Mining Software and Change Request
Repositories," Proceedings of the International
Symposium on Software Metrics, Coma, Italy,
September 19-22, 2005, pp. 9-18.

[6] Demmel, J., Applied Numerical Linear Algebra.
Philadelphia: Society for Industrial and Applied
Mathematics, 1997.

[7] Gall, H., Jazayeri, M., and Krajewski, J., "CVS
Release History Data for Detecting Logical
Couplings," Proceedings of the Sixth
International Workshop on Principles of
Software Evolution, 2003.

[8] Huang, L. and Song, Y.-T., "Dynamic Impact
Analysis Using Execution Profile Tracing,"
Proceedings of the International Conference on
Software Engineering Research, Management,
and Applications, Aug 9-11, 2006, pp. 237-244.

[9] Jalote, P., Software Project Management in
Practice. New York: Addison Wesley
Professional, 2002.

[10] Law, J. and Rothermel, G., "Whole Program
Path-Based Dynamic Impact Analysis,"
Proceedings of the International Conference on
Software Engineering, Portland, OR, May 3-10,
2003, pp. 308-318.

[11] Livshits, B. and Zimmermann, T., "DynaMine:
Finding Common Error Patterns by Mining
Software Revision Histories," Proceedings of the
European Software Engineering Conference and
Symposion on the Foundations on Software
Engineering, Lisbon, Portugal, September 5-9,
2005.

[12] Orso, A., Apiwattanapong, T., and Harrold, M. J.,
"Leveraging field data for impact analysis and
regression testing," Proceedings of the
Symposium on the Foundations of Software
Engineering, Helsinki, Finland, September 1-5,
2003, pp. 128-137.

[13] Orso, A., Apiwattanapong, T., Law, J.,
Rothermel, G., and Harrold, M. J., "An Empirical
Comparison of Dynamic Impact Analysis
Algorithms," Proceedings of the International
Conference on Software Engineering, Scotland,
2004.

[14] Osinski, S., Stefanowski, J., and Weiss, D.,
"Lingo: Search Results Clustering Algorithm
Based on Singular Value Decomposition,"
Proceedings of the Advances in Soft Computing,
Intelligent Information Processing and Web
Mining, Zakopane, Poland, 2004, pp. 359-368.

[15] Ostrand, T., Weyuker, E. J., and Bell, R., "Where
the bugs are," Proceedings of the International
Symposium on Software Testing and Analysis,
Boston, MA, 2004, pp. 86-96.

[16] Ren, X., Shah, F., Tip, F., Ryder, B., and
Chesley, O., "Chianti: a tool for change impact
analysis of Java programs," Proceedings of the

Conference on Object-Oriented Programming,
Systems, Languages, and Applications,
Vancouver, Canada, October 2004, 2004, pp.
432-448.

[17] Sherriff, M., Analyzing Software Artifacts
Through Singular Value Decomposition to Guide
Development Decisions, Diss, Department of
Computer Science, North Carolina State
University, 2007.

[18] Sherriff, M., Heckman, S., Lake, M., and
Williams, L., "Identifying Fault-Prone Files
Using Static Analysis Alerts Through Singular
Value Decomposition," Proceedings of the
CASCON, Toronto, Canada, Oct 13-15, 2007, p.
To appear.

[19] Sherriff, M., Heckman, S., Lake, M., and
Williams, L., "Using Groupings of Static
Analysis Alerts to Identify Files Likely to
Contain Field Failures," Proceedings of the
Symposium on the Foundations of Software
Engineering, Dubrovnik, Croatia, Sept 7-10,
2007, p. To appear.

[20] Sherriff, M., Lake, M., and Williams, L.,
"Prioritization of Regression Tests using Singular
Value Decomposition with Empirical Change
Records," Proceedings of the International
Symposium on Software Reliability Engineering,
Trollhättan, Sweden, Nov 7-10, 2007, p. To
appear.

[21] Tip, F., "A survey of program slicing tecniques,"
Journal of Programming Languages, vol. 3, no.
1, pp. 121-189, 1995.

[22] von Knethen, A. and Grund, M., "QuaTrace: A
Tool Environment for (Semi-) Automatic Impact
Analysis Based on Traces," Proceedings of the
International Conference on Software
Maintenance, September 22-26, 2003, pp. 246-
255.

[23] von Mayrehaurser, A., Wang, J., Ohlsson, M.,
and C., W., "Deriving a Fault Architecture from
Defect History," Proceedings of the International
Symposium on Software Reliability Engineering,
Boca Raton, Florida, Nov, 1999, pp. 295-303.

[24] Ying, A., Murphy, G., Ng, R., and Chu-Carroll,
M., "Prediction Source Code Changes by Mining
Change History," IEEE Transactions on Software
Engineering, vol. 30, no. 9, pp. 574-586,
September, 2004.

[25] Zimmermann, T., Diehl, S., and Zeller, A.,
"Mining Version Histories to Guide Software
Changes," IEEE Transactions on Software
Engineering, vol. 31, no. 6, June, 2005.

