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Abstract 
 

Evidence suggests that as software ages the original 

realizations of design patterns remain in place, and 

participants in design pattern realizations accumulate 

“grime” – non-pattern-related code.  This research 

examines the consequences that grime buildup has on 

the testability of general purpose design patterns.  Test 

cases put in place during the design phase and initial 

implementation of a project can become ineffective as 

the system matures.  The evolution of a design due to 

added functionality or defect fixing increases the 

coupling and dependencies between many classes that 

must be tested.  We show that as systems age, the 

growth of grime and the appearance of anti-patterns 

increase testing requirements.  Early recognition and 

removal of grime and anti-patterns can potentially 

improve system testability. 

 

1. Introduction 
 

Successful software systems continuously evolve in 

response to external demands for new functionality and 

bug fixes.  One consequence of such evolution to 

systems built with design patterns is an increase in code 

within design pattern participants that does not 

contribute to the “mission” of individual design 

patterns.  This added non-pattern code, or “grime”, can 

lower the effectiveness of software test suites by 

increasing the number of program elements that must 

be tested.  In addition, grime buildup can induce the 

formation of known testing anti-patterns. 

Work on understanding design deterioration is 

scarce.  Parnas [14] describes symptoms and causes for 

software decay, and uses an analogy between medical 

systems and software to describe the aging of a system.  

Parnas however does not suggest methods for tracking 

such decay.  Eick et al. [9] use a number of generic 

code decay indices (CDIs) to further understand this 

phenomenon.  They use the change history of a telecom 

switching system to track various CDIs.  Examples of 

CDIs include the number of deltas, lines added or 

deleted as part of a change, the number of developers 

implementing a change, the historical number of 

changes in a given time interval, the frequency of 

changes, the span of a change in terms of the number of 

files that the change touches, etc.   

Prior studies by Izurieta and Bieman [12] find 

evidence of grime buildup, non-pattern code in 

realizations of various general purpose design patterns.  

The characterization of grime buildup in design 

patterns is the first step towards understanding its 

broader impacts.  Our goal here is to evaluate the 

impact that grime buildup has on design testability.  As 

software evolves, the consequences of grime buildup 

on test requirements can impede fault detection.  We 

study the consequences on the total number of test 

requirements necessary to have adequate testing of 

design patterns, and develop methods to compute the 

minimum necessary number of tests.  We also 

investigate the formation of testing anti-patterns in 

realizations of design patterns, which reduces the 

testability of systems. 

This paper is organized as follows.  In section two 

we provide some background and specific definitions 

of grime buildup and review our prior work.  Section 

three describes surrogate measures used to analyze the 

testability of a design pattern.   Section four illustrates 

the testability measures on selected design pattern 

realizations of the open source JRefactory [13] 

refactoring tool.  We demonstrate the growth of test 

requirements and formation of anti-patterns.  Section 

five provides an analysis of the results, and discusses 

some threats to the validity of the case study. Section 

six explores related work that suggests possible 

improvements to the testability of design patterns. 
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2. Decay and Grime Definitions 
 

Software aging can affect the capability of design 

pattern realizations to provide pattern-specific 

behavior.  In prior work [12] we define decay as the 

deterioration of the internal structure of system designs.  

Design pattern decay is the deterioration of the 

structural integrity of a design pattern realization.  To 

experience decay, a pattern realization must undergo 

negative changes (deterioration) through subsequent 

releases and evolution.  To evaluate decay we use the 

Meta Role Based Modeling Language (RBML) [10], 

which is defined in terms of a specialization of the 

UML metamodel.  The structural integrity of a design 

pattern realization is determined by systematically 

checking its classifiers (classes, interfaces, etc.) and 

associations against its formal RBML specification.  

Informal pattern definitions, such as those described by 

Gamma et al. [11], are not sufficient to evaluate 

structural integrity of a design pattern realization. 

Design pattern grime is the buildup of unrelated 

artifacts in classes that play roles in a design pattern 

realization.  These artifacts do not contribute to the 

intended role of a design pattern.  Grime is observed in 

the environment surrounding the realization of a 

pattern.   Different forms of grime are identified.  Class 

grime is associated with the classes that play a role in 

the design pattern and grime is indicated by increases 

in the number of ancestors of the class, the number of 

public attributes, etc.  Modular grime is indicated by 

increases in the coupling of the pattern as a whole by 

tracking the number of relationships (generalizations, 

associations, dependencies) pattern classes have with 

external classes.  Organizational grime refers to the 

distribution and organization of the files and 

namespaces that make up a pattern.  Grime is relative 

to the role that a design pattern plays.  What is 

considered grime from a design pattern point of view 

may represent adequate functionality from a different 

design perspective. 

In a pilot case study of the JRefactory system we 

tracked the evolution of instances of the Visitor, State, 

and Singleton general purpose design patterns over a 

period of four years and found no evidence of 

structural decay.  The instances of each pattern were 

tested for conformance with the RBML specification of 

the pattern, and no structural violations were found.  

Minimal conformance is achieved when a pattern 

realization meets all the constraints specified by its 

RBML specification. 

Although no structural violations were found, we 

identified a form of grime buildup involving new 

external relationships to other artifacts of the system, 

which reduces modularity.  These artifacts do not 

contribute to the intended role of a design pattern.  

Figure 1 displays the modular grime buildup of the 

Visitor and Singleton patterns in JRefactory.  The 

figure also displays the relationship of the modular 

grime buildup against the total number of classes that 

participate in the pattern.  In all cases, we see growth in 

the number of new external relationships compared to 

the number of classes participating in the pattern 

realization.  This evidence suggests that as patterns 

evolve, they develop grime in the form of relationships 

that break down its modularity. 
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Figure 1.  Relationship of modular grime and 

participating classes in the Visitor and Singleton design 

patterns in JRefactory [12]. 

 

Figure 2 breaks down the relationships per pattern.  

In the cases of the Visitor and Singleton patterns, we 

see clear increases in coupling.   
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Figure 2a.  Modular Grime buildup in a realization of 

the Visitor pattern in JRefactory 
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Figure 2b.  Modular Grime buildup in a realization of 

the Singleton pattern in JRefactory 

 

We observe growth in the number of new external 

relationships compared to the number of classes 

participating in the pattern realization.  As patterns 

evolve, they develop relationships that break down 

their modularity.  The data plotted only counts those 

relationships that do not play a role in the semantics of 

the design pattern, and are considered grime buildup 

from the perspective of the intended role of the design 

pattern. 

In the case of a State pattern realization, only three 

realizations were found.  All instances of the State 

pattern show no signs of either structural breakdown or 

grime buildup.  The instances of the State pattern have 

not evolved, thus no decay is observed.  The code and 

UML diagrams extracted using Altova [1] show no 

deltas throughout the lifecycle of the system.  A pattern 

realization that is not used can be thought of as 

suffering from dormant rot:  

“Software that is not currently being used 

gradually becomes unusable as the remainder of 

the application changes. Changes in user 

requirements and the software environment also 

contribute to the deterioration.” [16]. 

 

3. Testability of Design Patterns 
 

We evaluate the consequences of grime buildup on 

test effectiveness in terms of specific test evaluation 

criteria.  Binder [6] suggests that at its most abstract, 

tests should demonstrate the relationships that must 

hold for a system under test.  To “cover” a relationship 

it must be executed by at least one test case.  The 

design of object oriented systems is driven in large part 

by the relationships of the objects and classes that 

make up the system.  Evaluating a full design can be 

daunting.  However, by focusing on the design patterns 

that make up the system we can gain a better 

understanding at a localized level. 

Tsai et al. [15] categorizes design patterns into two 

distinct groups, static and dynamic.  Static patterns are 

typically used where changes to the design are not 

anticipated. The Singleton pattern is an example of a 

static pattern.  Dynamic patterns allow for extensibility 

either at runtime or compile time, and new functionality 

is achieved via polymorphic constructs. Examples of 

dynamic patterns include the Visitor pattern and the 

State pattern. 

This research focuses on analyzing static and 

dynamic patterns and the testing consequences suffered 

as a result of grime buildup.  The increase in number of 

relationships that do not play a part in the intended use 

of the design pattern can create structures, or “anti-

patterns” that hinder testing.  Anti-patterns can make 

testability efforts intractable and can quickly render 

tests ineffective.  This is especially true with dynamic 

patterns, where inheritance hierarchies grow causing 

the potential number of paths that need to be tested to 

increase quickly. 

To evaluate testability, we look for empirical 

evidence of the emergence of testing anti-patterns in 

designs.  An anti-pattern “describes a commonly 

occurring solution to a problem that generates 

decidedly negative consequences.” [7] Anti-patterns 

develop as a result of increased coupling. 

To track the increased coupling in design patterns 

we follow the evolution of various realizations of the 

Visitor, State, and Singleton patterns over a period of 

four years in the JRefactory [13] open source system.  

 

3.1. Growth of Relationships and Test 

Requirements 
 

We count the number of relationships (associations, 

realizations, and dependencies) that develop as a result 

of grime buildup, and observe the consequences on test 

requirements in terms of the number of test cases 

necessary to adequately cover a design pattern.  

Relationship counts are tallied per individual classes. 

Class relationships are subject to many kinds of 

faults which must be tested.  Examples of faults include 

incorrect multiplicities, which can generate missing or 

erroneous links between classes, errors in the creation 

or deletion of the runtime objects that must satisfy the 

constraints specified in the UML, etc.  In the case of a 

binary association (n=1) between classes, four possible 

combinations must be tested [6]. For each combination 

an accept and a reject test case is necessary, thus 



yielding eight possible scenarios.  In the case of n-ary 

associations, 8n possible scenarios must be tested.  The 

8n scenarios cover the basic boundary conditions, but 

an additional constant number of tests can be added to 

cover typical scenarios that are found from operational 

profiles.  Thus, we express the minimum number of n-

ary association test cases necessary using the linear 

model A(n, k) = 8nk + c, c>=0.  The variable k 

indicates the total number of such relationships found 

in the release.  The consequences of not testing such 

combinations increase the fault proness of the system. 

Aggregation associations involve a relationship 

between the whole and its parts.  Each element of an 

aggregation has an independent lifetime.  Since 

aggregation is a kind of association, A(n, k) already 

includes the multiplicity tests, however additional test 

cases are necessary to cover the test requirement for 

independent creation and destruction of the whole and 

each of its parts.  We express the minimum number of 

test cases as AG(n, k) = A(n, k) + 4nk. 

Composition relationships require testing of the 

transitive property.  Composition associations involve a 

relationship between the whole and its parts, where the 

part is created and destroyed along with the whole.  

Thus, the lifetime of a part is dependent on the whole.  

Since A(n, k) already covers the multiplicity tests, we 

express the minimum number of test cases as C(n, k) = 

A(n, k) + 2nk.  The last term of this equation covers the 

sequential creation and destruction of the whole and its 

parts. 

Generalization is also a transitive relationship.  For 

any hierarchy with depth greater than or equal to three, 

at least two test cases are necessary. A class needs to 

check its relationship with its immediate parent, and by 

transitivity the relation must also hold with its 

grandparent.  The minimum number of test cases 

necessary is thus expressed as G(n, k) = 2nk. 

Finally, the number of dependency relationships is 

fully code dependent and the number of test cases 

necessary to cover such temporal relationships varies.   

Temporal relationships between any two classes exist 

when a method of one class defines an object of type of 

the other class.  The lifetime of such object is bounded 

by the lifetime of the method that defines it.  When the 

method finishes executing, it goes out of scope, and the 

object ceases to exist.  Thus, we define D(n, k) = c, 

c>=0. 

As systems evolve, new relationships develop 

between classes.  These relationships may or may not 

have been intended in the original design.  Such 

relationships may be the consequence of modular grime 

buildup.  Without necessary updates to the testing 

suites of such systems, the possibility of faults, grows. 

These test requirement computations do not take 

into account the complications that arise from the 

formation of testing anti-patterns, which in turn, further 

increase the count of test requirements as inheritance 

hierarchies develop.  Additional research is required to 

understand how these equations are affected by the 

development of anti-patterns. 

 

3.2. Test Anti-patterns 
 

We look for the formation of several types of testing 

anti-patterns.  In particular, we look for empirical 

evidence of two anti-patterns described by Baudry et 

al. [2, 5].  These anti-patterns involve inheritance 

hierarchies and polymorphism.  Figure 3 shows the 

concurrent-use-relationship anti-pattern, where two 

paths exist from A to C.  Class A has a transitive use 

path through B and B’ to C.  This scenario is described 

as an anti-pattern because A can change the state of C 

through one path, and read C from another path.  

Maintaining consistency of the state of class C can 

become hard to do, especially when multiple paths 

exist through a polymorphic hierarchy.  As the number 

of relationships in design patterns grow, some design 

pattern realizations are likely to develop this form of 

anti-pattern. 

 Figure 3.  Concurrent-Use-Relationship test anti-

pattern [5]. 

 

The second anti-pattern is called self-use-

relationship, which is displayed in Figure 4.  Self-

usage identifies potential self referential loops in the 

design, which must be tested for potential infinite 

loops.  Self references can occur at a single class level 

or through multiple transitive class paths. 

 
Figure 4.  Self-Use-Relationship test anti-pattern [5]. 

 

In addition to the concurrent-use-relationship and 

self-use-relationship anti-patterns, we also look for 
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anti-patterns described by Brown et al. [7] that develop 

as a result of grime buildup. 

The lava flow anti-pattern is an example of dormant 

rot.  It involves occurrences of code that remain 

unchanged through the lifecycle of a product.  This 

unchanged code is detrimental to designs because, as 

the rest of the system evolves to conform to a new 

operational domain, this code lies dormant.  Test cases 

and requirements of the dormant code may still be 

viable at a unit level, however when tested at a system 

level, this code may not work correctly because the 

environment and the other code in the system around it 

have changed.  Dormant code, if not checked early, can 

lead to further deterioration of the system because new 

developers do not want to remove code that is not 

understood. 

We also look for evidence of the swiss army knife 

anti-pattern, which occurs when classes try to 

implement too many methods.  Symptoms include a 

constant increase in methods that may not have 

anything to do with the original intent of the class in 

the design pattern, or by the sudden implementation of 

methods via realizations of new interfaces. 

 

4. Observed Effects on Test Requirements 
 

Evidence indicates that test requirements increased 

and anti-patterns develop as a result of grime buildup 

in real systems.  The process of counting relationships 

that form as a result of grime buildup was automated, 

however manual intervention was still required to 

distinguish between relationships that are not part of 

the intended role of the pattern, and those that extend 

the pattern in intended ways.  We can compute the 

minimum number of test requirements necessary to 

provide adequate test coverage of anti-patterns.  We 

demonstrate the consequences of grime buildup by 

manually identifying design anti-patterns formed. 

We examine the grime buildup and its effects on 

testability of the JRefactory open source system.  

JRefactory is written in the Java language and is 

available through SourceForge.net.  JRefactory 

supports many refactoring operations in a system, and 

automatically updates the java source files as 

appropriate.  We studied versions 2.6.12, 2.6.38, 

2.7.05, 2.8.00, 2.9.00, and 2.9.19.  These releases 

represent the evolution of the software over a period of 

almost four years. 

 

4.1. Observed Growth in Test Requirements 
 

We evaluate the consequences of modular grime 

buildup on the adequacy of test requirements by 

counting the number of tests necessary to provide 

adequate coverage. 

First we analyze the impact that associations have 

on test requirements.  Figure 5, displays the normalized 

values for Visitor and Singleton design patterns in 

JRefactory.  The equation for computing the number of 

tests for associations in JRefactory is given by A(n, k) 

= 8nk + c, c>=0.  By normalized we mean that the x-

axis values now represent equally spaced intervals for 

the various releases of the software.   We used 

CurveExpert [8] statistical software to create our 

graphs.  

Although the Singleton realization yielded slightly 

different results than for Visitor, both results are 

monotonically increasing.   

The test requirements for aggregation and 

composition yield no additional significant insights 

because they are both defined in terms of associations.  

Specifically,  the equations for computing the number 

of tests for aggregation and composition are given by 

AG(n, k) = A(n, k) + 4nk, and C(n, k) = A(n, k) + 2nk 

respectively.  Plotting these curves yield multiples of 

the association information. 

 

 
Figure 5a.  Test requirement count for associations in 

the Visitor pattern of JRefactory 

 

 
Figure 5b.  Test requirement count for associations in 

the Singleton pattern of JRefactory 
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For dependencies, where D(n, k) = c, c>=0, we 

obtain the results shown in figure 6a for the Visitor 

pattern. 

 

 
Figure 6a.  Test requirement count for dependencies in 

the Visitor pattern of JRefactory 

 

The Singleton instance yielded the values displayed 

in figure 6b. 

Generalization consequences are defined by the 

equation G(n, k) = 2nk + c.  There are no 

generalizations in the evolution of the Visitor 

realization studied.  However, in the case of the 

Singleton pattern we found data as shown in figure 7. 

 

 
Figure 6b.  Test requirements count for dependencies 

in the Singleton pattern of JRefactory 

 

 
Figure 7.  Test requirements count for generalization 

in the Singleton pattern of JRefactory 

 

In general we found that realizations of the Visitor 

and Singleton patterns show either tapering or growth 

in the number of test cases necessary to test new grime 

buildup.  Some “dips” in dependency counts were 

found.  These are analyzed in section five.   

 

4.2. Observed Appearances of Test Anti-

patterns 
 

The following examples provide evidence to 

support the formation of testing anti-patterns as 

systems evolve.   

In this example we observe the evolution of an 

inheritance hierarchy in a realization of the Visitor 

pattern.  The new hierarchy forms approximately two 

years after the first release of JRefactory.  In this 

example the gray arrows represent the inheritance 

hierarchies, the black arrows are associations, and the 

dashed line represents a use relationship.  Figure 8 

illustrates an example of the self-use-relationship anti-

pattern. 

 
Figure 8.  Self-Use-Relationship anti-pattern in 

JRefactory 
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creating a circular dependency.  In the worst case, each 

visitor will visit every concrete element in the subject 

hierarchy, thus producing a quadratic in the number of 

paths that must be tested.  In this example, the circular 

dependency traverses a use dependency and a 

generalization relationship. 

We also find evidence of the formation of anti-

patterns described by Brown et al. [7].  As described in 

section 2, three realizations of the State pattern were 

studied with no evidence of evolution found.  The State 

pattern never evolves, but it is also never used.  This is 

an example of dormant rot, or dead code.   
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In another example, we find evidence of the swiss-

army-knife anti-pattern.  The original design pattern 

was not intended to implement the methods defined by 

the new interface.  Figure 9 illustrates an example 

found in the JRefactory system. 

 

 
Figure 9.  Swiss army knife anti-pattern in JRefactory 

 

The JavaParserVisitorAdapter class did not appear 

until version 2.9.00, which is approximately two years 

after the original design.  The AbstractRule class 

develops a realization from the Rule interface which 

affects the entire testing of the hierarchy that 

implements AbstractRule.  This form of anti-pattern 

may be evidence of a lack of focus by the developers, 

and can lead to many potential testability issues. 

In some cases the anti-patterns are found in the 

original design studied and remain for the duration of 

the study.  Such findings are considered foundational 

grime.  Design pattern decay or grime is considered 

foundational if it is determined by an examiner that the 

first realization of a pattern studied has already 

undergone some form of deterioration from prior 

versions of the software.  If no prior versions of the 

software exist, then no decay or grime buildup are 

possible. 

Figure 10 illustrates our first example of a 

concurrent-use-relationship anti-pattern found in all 

versions of a realization of the Visitor pattern in 

JRefactory.  We can clearly observe that the 

“summary” hierarchy of classes can be accessed 

through concurrent paths.  A client of class 

MoveMethodRefactoring can reach various “summary” 

classes via two paths.  The concurrent access to the 

“summary” hierarchy is worsened by the inheritance 

hierarchies involved in both paths because 

polymorphism must be taken into account when testing.  

When an instance of the class MoveMethodRefactoring 

uses an instance of the MoveMethodVisitor class, then 

it must take into consideration objects of type 

ChildrenVisitor as well.  Baudry et al. [4] find that “the 

Visitor pattern is especially known to be difficult to test 

because of an extensive use of polymorphism.”  They 

provide a testability grid for design patterns that 

considers the number of paths and self usages to test as 

a result of anti-patterns. 

 

 
Figure 10.  Concurrent-Use-Relationship anti-pattern 

in JRefactory 

 

     The formation of anti-patterns as a consequence of 

grime buildup is suspected to be pervasive.  To 

evaluate this, other open source systems are under 

investigation and early evidence suggests similar 

results. 

 

5. Analysis 
 

The results clearly show that as the JRefactory 

design evolved so does the coupling of the classes 

involved in design patterns.  At a design pattern level, 

we find evidence of grime buildup for various 

realizations of design patterns and an increase in the 

number of relationships that design pattern classes 

develop.   

Design patterns develop non-pattern relationships 

(grime), with classes that do not play roles in a pattern, 

and sometimes with classes in other patterns.  The 

extent of the non-pattern relationship buildup is 

measured by counting the minimum number of test 

cases necessary to test the relationships in a design 

pattern. 

The computations yield the expected growth of test 

requirements as patterns evolve over a number of 

releases.  Most computations show growth patterns, 

however some dips were observed.  Such dips in the 

curves may be due to a refactoring process that 

occurred at the specified time period.  After further 
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investigation, we determined that some functionality 

had been moved to a different part of the system, thus 

lowering the relationship count.  After the dip in count 

was experienced, the counts resume a monotonically 

increasing behavior, suggesting that refactoring of code 

is a temporary solution. 

Additional research is clearly necessary to refine the 

computation of the minimum number of test cases 

required to adequately test a pattern.  The equations are 

one dimensional in the sense that only immediate 

classes suffering from grime buildup are considered.  

Grime buildup consequences are far more reaching 

than just immediate classes, and better models need to 

be examined.   

A consequence of grime buildup that has serious 

implications in the number of test requirements 

necessary to adequately test a pattern is the formation 

of anti-patterns.  We have found examples of anti-

patterns in different realizations of design patterns in 

JRefactory, and we need to understand the effects that 

anti-pattern formations have on the equations. 

We can say that the Visitor pattern appears to suffer 

from more grime and decay than the Singleton pattern, 

and thus test consequences are higher.  Also, the 

Visitor pattern is a dynamic pattern, in that it can be 

extended via polymorphism.  This extensibility opens 

the possibility for the formation of testing anti-patterns, 

as we found out.  

Many additional instances of patterns need to be 

studied to improve the validity of results.  To improve 

content validity, we need to investigate additional 

variables beyond relationships between classes.  

Examples include class grime, which indicates grime 

buildup inside a class regardless of the associations that 

it has.  Organizational grime buildup is another 

example where we can investigate the physical files 

and directories that make up a pattern.  Additional 

variables studied can have significant effects in the test 

suites developed for software, and could yield 

additional test requirements.  A refinement of the 

existing equations is necessary to account for 

additional variables and the development of anti-

patterns. 

Internal validity focuses on the cause and effect 

relationships.  In this study one can try to determine 

whether an increased number of test requirements is 

directly dependent on the grime buildup of a software 

pattern.  The data does demonstrate this is the case for 

JRefactory.  Temporal precedence must also be 

determined when examining the internal validity of a 

system, and in the case of JRefactory we have evidence 

to demonstrate that as grime buildup occurs, test 

requirements increase as a result of new relationships.  

The formation of testing anti-patterns may follow. 

Finally, external validity refers to the ability to 

generalize results, and it is quite evident that 

demonstrating the consequences in a single subject is 

not enough to make general conclusions.  Further 

studies of additional systems, additional design 

patterns, and additional grime buildup measures are 

required. 

 

6. Related Work 
 

Baudry et al. [3] propose improving the testability 

of designs by inserting testability constraints to design 

patterns when they are instantiated.  They propose 

attaching the constraints at a UML meta-model level, 

so that when a design pattern is instantiated, 

stereotypes are added to classifiers and relationships.  

This allows a code developer to follow a design closer 

to the intended roles.  In other words, if a link from 

class A to class B has a “create” stereotype, then you 

should only create this relationship when instantiating a 

class of type B, and not when reading from class B. 

We propose carrying this idea further by 

augmenting the RBML that is used to check for 

conformance of a design pattern.  The RBML will be 

used to specify the constraints.  The idea is to explicitly 

display unacceptable constructs, such that when a 

realization of a design pattern is checked for 

conformance, no classifier or relationship in the 

realization should bind to a constraint in the RBML. 

 

7. Conclusions 
 

It is not possible to stop the aging and deterioration 

of designs.  Evidence suggests that as design patterns 

age, the realizations of patterns remain and grime 

builds up.  Such grime buildup can have negative and 

adverse consequences on the testability of designs.  

Testability of designs is an important quality attribute.  

We have focused on testability of design patterns 

because they represent smaller localized parts of the 

design. 

JRefactory, a real world and successful open source 

system is the test subject for this study.  We observed 

the growth of test requirements which measurably 

increase testing requirements.  We developed and 

applied a method to compute the minimum test 

requirements necessary to test various relationships 

between classes.  We also found evidence of 

concurrent-use-relationships, self-use-relationships, 

swiss army knife, and lava flow testing anti-patterns. 
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