
Testing Consequences of Grime Buildup in Object Oriented Design Patterns

Clemente Izurieta, James M. Bieman

Department of Computer Science

Colorado State University

Fort Collins, CO 80525

Email: {cizuriet, bieman}@colostate.edu

Abstract

Evidence suggests that as software ages the original

realizations of design patterns remain in place, and

participants in design pattern realizations accumulate

“grime” – non-pattern-related code. This research

examines the consequences that grime buildup has on

the testability of general purpose design patterns. Test

cases put in place during the design phase and initial

implementation of a project can become ineffective as

the system matures. The evolution of a design due to

added functionality or defect fixing increases the

coupling and dependencies between many classes that

must be tested. We show that as systems age, the

growth of grime and the appearance of anti-patterns

increase testing requirements. Early recognition and

removal of grime and anti-patterns can potentially

improve system testability.

1. Introduction

Successful software systems continuously evolve in

response to external demands for new functionality and

bug fixes. One consequence of such evolution to

systems built with design patterns is an increase in code

within design pattern participants that does not

contribute to the “mission” of individual design

patterns. This added non-pattern code, or “grime”, can

lower the effectiveness of software test suites by

increasing the number of program elements that must

be tested. In addition, grime buildup can induce the

formation of known testing anti-patterns.

Work on understanding design deterioration is

scarce. Parnas [14] describes symptoms and causes for

software decay, and uses an analogy between medical

systems and software to describe the aging of a system.

Parnas however does not suggest methods for tracking

such decay. Eick et al. [9] use a number of generic

code decay indices (CDIs) to further understand this

phenomenon. They use the change history of a telecom

switching system to track various CDIs. Examples of

CDIs include the number of deltas, lines added or

deleted as part of a change, the number of developers

implementing a change, the historical number of

changes in a given time interval, the frequency of

changes, the span of a change in terms of the number of

files that the change touches, etc.

Prior studies by Izurieta and Bieman [12] find

evidence of grime buildup, non-pattern code in

realizations of various general purpose design patterns.

The characterization of grime buildup in design

patterns is the first step towards understanding its

broader impacts. Our goal here is to evaluate the

impact that grime buildup has on design testability. As

software evolves, the consequences of grime buildup

on test requirements can impede fault detection. We

study the consequences on the total number of test

requirements necessary to have adequate testing of

design patterns, and develop methods to compute the

minimum necessary number of tests. We also

investigate the formation of testing anti-patterns in

realizations of design patterns, which reduces the

testability of systems.

This paper is organized as follows. In section two

we provide some background and specific definitions

of grime buildup and review our prior work. Section

three describes surrogate measures used to analyze the

testability of a design pattern. Section four illustrates

the testability measures on selected design pattern

realizations of the open source JRefactory [13]

refactoring tool. We demonstrate the growth of test

requirements and formation of anti-patterns. Section

five provides an analysis of the results, and discusses

some threats to the validity of the case study. Section

six explores related work that suggests possible

improvements to the testability of design patterns.

bieman
Text Box
Preprint: To appear in Proc. Int. Conf. Software Testing, Verification, and Reliability, 2008.

2. Decay and Grime Definitions

Software aging can affect the capability of design

pattern realizations to provide pattern-specific

behavior. In prior work [12] we define decay as the

deterioration of the internal structure of system designs.

Design pattern decay is the deterioration of the

structural integrity of a design pattern realization. To

experience decay, a pattern realization must undergo

negative changes (deterioration) through subsequent

releases and evolution. To evaluate decay we use the

Meta Role Based Modeling Language (RBML) [10],

which is defined in terms of a specialization of the

UML metamodel. The structural integrity of a design

pattern realization is determined by systematically

checking its classifiers (classes, interfaces, etc.) and

associations against its formal RBML specification.

Informal pattern definitions, such as those described by

Gamma et al. [11], are not sufficient to evaluate

structural integrity of a design pattern realization.

Design pattern grime is the buildup of unrelated

artifacts in classes that play roles in a design pattern

realization. These artifacts do not contribute to the

intended role of a design pattern. Grime is observed in

the environment surrounding the realization of a

pattern. Different forms of grime are identified. Class

grime is associated with the classes that play a role in

the design pattern and grime is indicated by increases

in the number of ancestors of the class, the number of

public attributes, etc. Modular grime is indicated by

increases in the coupling of the pattern as a whole by

tracking the number of relationships (generalizations,

associations, dependencies) pattern classes have with

external classes. Organizational grime refers to the

distribution and organization of the files and

namespaces that make up a pattern. Grime is relative

to the role that a design pattern plays. What is

considered grime from a design pattern point of view

may represent adequate functionality from a different

design perspective.

In a pilot case study of the JRefactory system we

tracked the evolution of instances of the Visitor, State,

and Singleton general purpose design patterns over a

period of four years and found no evidence of

structural decay. The instances of each pattern were

tested for conformance with the RBML specification of

the pattern, and no structural violations were found.

Minimal conformance is achieved when a pattern

realization meets all the constraints specified by its

RBML specification.

Although no structural violations were found, we

identified a form of grime buildup involving new

external relationships to other artifacts of the system,

which reduces modularity. These artifacts do not

contribute to the intended role of a design pattern.

Figure 1 displays the modular grime buildup of the

Visitor and Singleton patterns in JRefactory. The

figure also displays the relationship of the modular

grime buildup against the total number of classes that

participate in the pattern. In all cases, we see growth in

the number of new external relationships compared to

the number of classes participating in the pattern

realization. This evidence suggests that as patterns

evolve, they develop grime in the form of relationships

that break down its modularity.

Relationship of Participating classes and Modular

Decay (Grime)

0

20

40

60

80

100

120

140

160

180

200
J

a
n

-0
1

M
a

y
-0

1

S
e

p
-0

1

J
a

n
-0

2

M
a

y
-0

2

S
e

p
-0

2

J
a

n
-0

3

M
a

y
-0

3

S
e

p
-0

3

J
a

n
-0

4

M
a

y
-0

4

Releases

C
o

u
n

t

Visitor

Relationships

Visitor

Participating

classes

Singleton

Relationships

Singleton

Participating

classes

Figure 1. Relationship of modular grime and

participating classes in the Visitor and Singleton design

patterns in JRefactory [12].

Figure 2 breaks down the relationships per pattern.

In the cases of the Visitor and Singleton patterns, we

see clear increases in coupling.

Modular Decay (Grime) of Visitor Pattern

0

20

40

60

80

100

120

140

160

180

200

Jan-0
1

M
ay-0

1

Sep-0
1

Jan-0
2

M
ay-0

2

Sep-0
2

Jan-0
3

M
ay-0

3

Sep-0
3

Jan-0
4

M
ay-0

4

Releases

C
o

u
n

t

Realizations

Associations

Dependencies

Total Relationships

Figure 2a. Modular Grime buildup in a realization of

the Visitor pattern in JRefactory

Modular Decay (Grime) of Singleton Pattern

0

5

10

15

20

25

30

35

40

Jan-0
1

M
ay-0

1

Sep-0
1

Jan-0
2

M
ay-0

2

Sep-0
2

Jan-0
3

M
ay-0

3

Sep-0
3

Jan-0
4

M
ay-0

4

Releases

C
o

u
n

t

Associations

Dependencies

Total Relationships

Realizations

Generalizations

Figure 2b. Modular Grime buildup in a realization of

the Singleton pattern in JRefactory

We observe growth in the number of new external

relationships compared to the number of classes

participating in the pattern realization. As patterns

evolve, they develop relationships that break down

their modularity. The data plotted only counts those

relationships that do not play a role in the semantics of

the design pattern, and are considered grime buildup

from the perspective of the intended role of the design

pattern.

In the case of a State pattern realization, only three

realizations were found. All instances of the State

pattern show no signs of either structural breakdown or

grime buildup. The instances of the State pattern have

not evolved, thus no decay is observed. The code and

UML diagrams extracted using Altova [1] show no

deltas throughout the lifecycle of the system. A pattern

realization that is not used can be thought of as

suffering from dormant rot:

“Software that is not currently being used

gradually becomes unusable as the remainder of

the application changes. Changes in user

requirements and the software environment also

contribute to the deterioration.” [16].

3. Testability of Design Patterns

We evaluate the consequences of grime buildup on

test effectiveness in terms of specific test evaluation

criteria. Binder [6] suggests that at its most abstract,

tests should demonstrate the relationships that must

hold for a system under test. To “cover” a relationship

it must be executed by at least one test case. The

design of object oriented systems is driven in large part

by the relationships of the objects and classes that

make up the system. Evaluating a full design can be

daunting. However, by focusing on the design patterns

that make up the system we can gain a better

understanding at a localized level.

Tsai et al. [15] categorizes design patterns into two

distinct groups, static and dynamic. Static patterns are

typically used where changes to the design are not

anticipated. The Singleton pattern is an example of a

static pattern. Dynamic patterns allow for extensibility

either at runtime or compile time, and new functionality

is achieved via polymorphic constructs. Examples of

dynamic patterns include the Visitor pattern and the

State pattern.

This research focuses on analyzing static and

dynamic patterns and the testing consequences suffered

as a result of grime buildup. The increase in number of

relationships that do not play a part in the intended use

of the design pattern can create structures, or “anti-

patterns” that hinder testing. Anti-patterns can make

testability efforts intractable and can quickly render

tests ineffective. This is especially true with dynamic

patterns, where inheritance hierarchies grow causing

the potential number of paths that need to be tested to

increase quickly.

To evaluate testability, we look for empirical

evidence of the emergence of testing anti-patterns in

designs. An anti-pattern “describes a commonly

occurring solution to a problem that generates

decidedly negative consequences.” [7] Anti-patterns

develop as a result of increased coupling.

To track the increased coupling in design patterns

we follow the evolution of various realizations of the

Visitor, State, and Singleton patterns over a period of

four years in the JRefactory [13] open source system.

3.1. Growth of Relationships and Test

Requirements

We count the number of relationships (associations,

realizations, and dependencies) that develop as a result

of grime buildup, and observe the consequences on test

requirements in terms of the number of test cases

necessary to adequately cover a design pattern.

Relationship counts are tallied per individual classes.

Class relationships are subject to many kinds of

faults which must be tested. Examples of faults include

incorrect multiplicities, which can generate missing or

erroneous links between classes, errors in the creation

or deletion of the runtime objects that must satisfy the

constraints specified in the UML, etc. In the case of a

binary association (n=1) between classes, four possible

combinations must be tested [6]. For each combination

an accept and a reject test case is necessary, thus

yielding eight possible scenarios. In the case of n-ary

associations, 8n possible scenarios must be tested. The

8n scenarios cover the basic boundary conditions, but

an additional constant number of tests can be added to

cover typical scenarios that are found from operational

profiles. Thus, we express the minimum number of n-

ary association test cases necessary using the linear

model A(n, k) = 8nk + c, c>=0. The variable k

indicates the total number of such relationships found

in the release. The consequences of not testing such

combinations increase the fault proness of the system.

Aggregation associations involve a relationship

between the whole and its parts. Each element of an

aggregation has an independent lifetime. Since

aggregation is a kind of association, A(n, k) already

includes the multiplicity tests, however additional test

cases are necessary to cover the test requirement for

independent creation and destruction of the whole and

each of its parts. We express the minimum number of

test cases as AG(n, k) = A(n, k) + 4nk.

Composition relationships require testing of the

transitive property. Composition associations involve a

relationship between the whole and its parts, where the

part is created and destroyed along with the whole.

Thus, the lifetime of a part is dependent on the whole.

Since A(n, k) already covers the multiplicity tests, we

express the minimum number of test cases as C(n, k) =

A(n, k) + 2nk. The last term of this equation covers the

sequential creation and destruction of the whole and its

parts.

Generalization is also a transitive relationship. For

any hierarchy with depth greater than or equal to three,

at least two test cases are necessary. A class needs to

check its relationship with its immediate parent, and by

transitivity the relation must also hold with its

grandparent. The minimum number of test cases

necessary is thus expressed as G(n, k) = 2nk.

Finally, the number of dependency relationships is

fully code dependent and the number of test cases

necessary to cover such temporal relationships varies.

Temporal relationships between any two classes exist

when a method of one class defines an object of type of

the other class. The lifetime of such object is bounded

by the lifetime of the method that defines it. When the

method finishes executing, it goes out of scope, and the

object ceases to exist. Thus, we define D(n, k) = c,

c>=0.

As systems evolve, new relationships develop

between classes. These relationships may or may not

have been intended in the original design. Such

relationships may be the consequence of modular grime

buildup. Without necessary updates to the testing

suites of such systems, the possibility of faults, grows.

These test requirement computations do not take

into account the complications that arise from the

formation of testing anti-patterns, which in turn, further

increase the count of test requirements as inheritance

hierarchies develop. Additional research is required to

understand how these equations are affected by the

development of anti-patterns.

3.2. Test Anti-patterns

We look for the formation of several types of testing

anti-patterns. In particular, we look for empirical

evidence of two anti-patterns described by Baudry et

al. [2, 5]. These anti-patterns involve inheritance

hierarchies and polymorphism. Figure 3 shows the

concurrent-use-relationship anti-pattern, where two

paths exist from A to C. Class A has a transitive use

path through B and B’ to C. This scenario is described

as an anti-pattern because A can change the state of C

through one path, and read C from another path.

Maintaining consistency of the state of class C can

become hard to do, especially when multiple paths

exist through a polymorphic hierarchy. As the number

of relationships in design patterns grow, some design

pattern realizations are likely to develop this form of

anti-pattern.

 Figure 3. Concurrent-Use-Relationship test anti-

pattern [5].

The second anti-pattern is called self-use-

relationship, which is displayed in Figure 4. Self-

usage identifies potential self referential loops in the

design, which must be tested for potential infinite

loops. Self references can occur at a single class level

or through multiple transitive class paths.

Figure 4. Self-Use-Relationship test anti-pattern [5].

In addition to the concurrent-use-relationship and

self-use-relationship anti-patterns, we also look for

A

B

B’

C

A B

anti-patterns described by Brown et al. [7] that develop

as a result of grime buildup.

The lava flow anti-pattern is an example of dormant

rot. It involves occurrences of code that remain

unchanged through the lifecycle of a product. This

unchanged code is detrimental to designs because, as

the rest of the system evolves to conform to a new

operational domain, this code lies dormant. Test cases

and requirements of the dormant code may still be

viable at a unit level, however when tested at a system

level, this code may not work correctly because the

environment and the other code in the system around it

have changed. Dormant code, if not checked early, can

lead to further deterioration of the system because new

developers do not want to remove code that is not

understood.

We also look for evidence of the swiss army knife

anti-pattern, which occurs when classes try to

implement too many methods. Symptoms include a

constant increase in methods that may not have

anything to do with the original intent of the class in

the design pattern, or by the sudden implementation of

methods via realizations of new interfaces.

4. Observed Effects on Test Requirements

Evidence indicates that test requirements increased

and anti-patterns develop as a result of grime buildup

in real systems. The process of counting relationships

that form as a result of grime buildup was automated,

however manual intervention was still required to

distinguish between relationships that are not part of

the intended role of the pattern, and those that extend

the pattern in intended ways. We can compute the

minimum number of test requirements necessary to

provide adequate test coverage of anti-patterns. We

demonstrate the consequences of grime buildup by

manually identifying design anti-patterns formed.

We examine the grime buildup and its effects on

testability of the JRefactory open source system.

JRefactory is written in the Java language and is

available through SourceForge.net. JRefactory

supports many refactoring operations in a system, and

automatically updates the java source files as

appropriate. We studied versions 2.6.12, 2.6.38,

2.7.05, 2.8.00, 2.9.00, and 2.9.19. These releases

represent the evolution of the software over a period of

almost four years.

4.1. Observed Growth in Test Requirements

We evaluate the consequences of modular grime

buildup on the adequacy of test requirements by

counting the number of tests necessary to provide

adequate coverage.

First we analyze the impact that associations have

on test requirements. Figure 5, displays the normalized

values for Visitor and Singleton design patterns in

JRefactory. The equation for computing the number of

tests for associations in JRefactory is given by A(n, k)

= 8nk + c, c>=0. By normalized we mean that the x-

axis values now represent equally spaced intervals for

the various releases of the software. We used

CurveExpert [8] statistical software to create our

graphs.

Although the Singleton realization yielded slightly

different results than for Visitor, both results are

monotonically increasing.

The test requirements for aggregation and

composition yield no additional significant insights

because they are both defined in terms of associations.

Specifically, the equations for computing the number

of tests for aggregation and composition are given by

AG(n, k) = A(n, k) + 4nk, and C(n, k) = A(n, k) + 2nk

respectively. Plotting these curves yield multiples of

the association information.

Figure 5a. Test requirement count for associations in

the Visitor pattern of JRefactory

Figure 5b. Test requirement count for associations in

the Singleton pattern of JRefactory

Release

A
(n

,k
)

=
 8

n
k
 +

c

0.5 1.5 2.5 3.5 4.5 5.5 6.5
83.20

92.80

102.40

112.00

121.60

131.20

140.80

Release

A
(n

,k
)

=
 8

n
k

 +
c

0.5 1.5 2.5 3.5 4.5 5.5 6.5126.40

209.60

292.80

376.00

459.20

542.40

625.60

For dependencies, where D(n, k) = c, c>=0, we

obtain the results shown in figure 6a for the Visitor

pattern.

Figure 6a. Test requirement count for dependencies in

the Visitor pattern of JRefactory

The Singleton instance yielded the values displayed

in figure 6b.

Generalization consequences are defined by the

equation G(n, k) = 2nk + c. There are no

generalizations in the evolution of the Visitor

realization studied. However, in the case of the

Singleton pattern we found data as shown in figure 7.

Figure 6b. Test requirements count for dependencies

in the Singleton pattern of JRefactory

Figure 7. Test requirements count for generalization

in the Singleton pattern of JRefactory

In general we found that realizations of the Visitor

and Singleton patterns show either tapering or growth

in the number of test cases necessary to test new grime

buildup. Some “dips” in dependency counts were

found. These are analyzed in section five.

4.2. Observed Appearances of Test Anti-

patterns

The following examples provide evidence to

support the formation of testing anti-patterns as

systems evolve.

In this example we observe the evolution of an

inheritance hierarchy in a realization of the Visitor

pattern. The new hierarchy forms approximately two

years after the first release of JRefactory. In this

example the gray arrows represent the inheritance

hierarchies, the black arrows are associations, and the

dashed line represents a use relationship. Figure 8

illustrates an example of the self-use-relationship anti-

pattern.

Figure 8. Self-Use-Relationship anti-pattern in

JRefactory

The self usage reference occurs because up to eight

visit methods of the ParseTreeVisitor class call

super.visitor() before entering their own logic, thus

creating a circular dependency. In the worst case, each

visitor will visit every concrete element in the subject

hierarchy, thus producing a quadratic in the number of

paths that must be tested. In this example, the circular

dependency traverses a use dependency and a

generalization relationship.

We also find evidence of the formation of anti-

patterns described by Brown et al. [7]. As described in

section 2, three realizations of the State pattern were

studied with no evidence of evolution found. The State

pattern never evolves, but it is also never used. This is

an example of dormant rot, or dead code.

JavaParserVisitor

JavaParserVisitorAdapter

ParseTreeVisitor

<<uses>>

Release

G
(n

,k
)

=
 2

n
k
 +

 c

0.5 1.5 2.5 3.5 4.5 5.5 6.5
1.40

2.60

3.80

5.00

6.20

7.40

8.60

Release

D
(n

,k
)

=
 c

0.0 1.1 2.2 3.3 4.4 5.5 6.6
0.00

1.47

2.93

4.40

5.87

7.33

8.80

Release

D
(n

,k
)

=
 c

0.5 1.5 2.5 3.5 4.5 5.5 6.5
85.60

90.40

95.20

100.00

104.80

109.60

114.40

In another example, we find evidence of the swiss-

army-knife anti-pattern. The original design pattern

was not intended to implement the methods defined by

the new interface. Figure 9 illustrates an example

found in the JRefactory system.

Figure 9. Swiss army knife anti-pattern in JRefactory

The JavaParserVisitorAdapter class did not appear

until version 2.9.00, which is approximately two years

after the original design. The AbstractRule class

develops a realization from the Rule interface which

affects the entire testing of the hierarchy that

implements AbstractRule. This form of anti-pattern

may be evidence of a lack of focus by the developers,

and can lead to many potential testability issues.

In some cases the anti-patterns are found in the

original design studied and remain for the duration of

the study. Such findings are considered foundational

grime. Design pattern decay or grime is considered

foundational if it is determined by an examiner that the

first realization of a pattern studied has already

undergone some form of deterioration from prior

versions of the software. If no prior versions of the

software exist, then no decay or grime buildup are

possible.

Figure 10 illustrates our first example of a

concurrent-use-relationship anti-pattern found in all

versions of a realization of the Visitor pattern in

JRefactory. We can clearly observe that the

“summary” hierarchy of classes can be accessed

through concurrent paths. A client of class

MoveMethodRefactoring can reach various “summary”

classes via two paths. The concurrent access to the

“summary” hierarchy is worsened by the inheritance

hierarchies involved in both paths because

polymorphism must be taken into account when testing.

When an instance of the class MoveMethodRefactoring

uses an instance of the MoveMethodVisitor class, then

it must take into consideration objects of type

ChildrenVisitor as well. Baudry et al. [4] find that “the

Visitor pattern is especially known to be difficult to test

because of an extensive use of polymorphism.” They

provide a testability grid for design patterns that

considers the number of paths and self usages to test as

a result of anti-patterns.

Figure 10. Concurrent-Use-Relationship anti-pattern

in JRefactory

 The formation of anti-patterns as a consequence of

grime buildup is suspected to be pervasive. To

evaluate this, other open source systems are under

investigation and early evidence suggests similar

results.

5. Analysis

The results clearly show that as the JRefactory

design evolved so does the coupling of the classes

involved in design patterns. At a design pattern level,

we find evidence of grime buildup for various

realizations of design patterns and an increase in the

number of relationships that design pattern classes

develop.

Design patterns develop non-pattern relationships

(grime), with classes that do not play roles in a pattern,

and sometimes with classes in other patterns. The

extent of the non-pattern relationship buildup is

measured by counting the minimum number of test

cases necessary to test the relationships in a design

pattern.

The computations yield the expected growth of test

requirements as patterns evolve over a number of

releases. Most computations show growth patterns,

however some dips were observed. Such dips in the

curves may be due to a refactoring process that

occurred at the specified time period. After further

ChildrenVisitor

MoveMethodVisitor MoveMethodRefactoring

MethodRefactoring

Summary

TypeSummary MethodSummary

<<uses>>

JavaParserVisitor

JavaParserVisitorAdapter

AbstractRule

Rule

A B C Z

investigation, we determined that some functionality

had been moved to a different part of the system, thus

lowering the relationship count. After the dip in count

was experienced, the counts resume a monotonically

increasing behavior, suggesting that refactoring of code

is a temporary solution.

Additional research is clearly necessary to refine the

computation of the minimum number of test cases

required to adequately test a pattern. The equations are

one dimensional in the sense that only immediate

classes suffering from grime buildup are considered.

Grime buildup consequences are far more reaching

than just immediate classes, and better models need to

be examined.

A consequence of grime buildup that has serious

implications in the number of test requirements

necessary to adequately test a pattern is the formation

of anti-patterns. We have found examples of anti-

patterns in different realizations of design patterns in

JRefactory, and we need to understand the effects that

anti-pattern formations have on the equations.

We can say that the Visitor pattern appears to suffer

from more grime and decay than the Singleton pattern,

and thus test consequences are higher. Also, the

Visitor pattern is a dynamic pattern, in that it can be

extended via polymorphism. This extensibility opens

the possibility for the formation of testing anti-patterns,

as we found out.

Many additional instances of patterns need to be

studied to improve the validity of results. To improve

content validity, we need to investigate additional

variables beyond relationships between classes.

Examples include class grime, which indicates grime

buildup inside a class regardless of the associations that

it has. Organizational grime buildup is another

example where we can investigate the physical files

and directories that make up a pattern. Additional

variables studied can have significant effects in the test

suites developed for software, and could yield

additional test requirements. A refinement of the

existing equations is necessary to account for

additional variables and the development of anti-

patterns.

Internal validity focuses on the cause and effect

relationships. In this study one can try to determine

whether an increased number of test requirements is

directly dependent on the grime buildup of a software

pattern. The data does demonstrate this is the case for

JRefactory. Temporal precedence must also be

determined when examining the internal validity of a

system, and in the case of JRefactory we have evidence

to demonstrate that as grime buildup occurs, test

requirements increase as a result of new relationships.

The formation of testing anti-patterns may follow.

Finally, external validity refers to the ability to

generalize results, and it is quite evident that

demonstrating the consequences in a single subject is

not enough to make general conclusions. Further

studies of additional systems, additional design

patterns, and additional grime buildup measures are

required.

6. Related Work

Baudry et al. [3] propose improving the testability

of designs by inserting testability constraints to design

patterns when they are instantiated. They propose

attaching the constraints at a UML meta-model level,

so that when a design pattern is instantiated,

stereotypes are added to classifiers and relationships.

This allows a code developer to follow a design closer

to the intended roles. In other words, if a link from

class A to class B has a “create” stereotype, then you

should only create this relationship when instantiating a

class of type B, and not when reading from class B.

We propose carrying this idea further by

augmenting the RBML that is used to check for

conformance of a design pattern. The RBML will be

used to specify the constraints. The idea is to explicitly

display unacceptable constructs, such that when a

realization of a design pattern is checked for

conformance, no classifier or relationship in the

realization should bind to a constraint in the RBML.

7. Conclusions

It is not possible to stop the aging and deterioration

of designs. Evidence suggests that as design patterns

age, the realizations of patterns remain and grime

builds up. Such grime buildup can have negative and

adverse consequences on the testability of designs.

Testability of designs is an important quality attribute.

We have focused on testability of design patterns

because they represent smaller localized parts of the

design.

JRefactory, a real world and successful open source

system is the test subject for this study. We observed

the growth of test requirements which measurably

increase testing requirements. We developed and

applied a method to compute the minimum test

requirements necessary to test various relationships

between classes. We also found evidence of

concurrent-use-relationships, self-use-relationships,

swiss army knife, and lava flow testing anti-patterns.

8. References

[1] Altova Umodel 2006. Altova. http://www.altova.com

[2] Baudry, B., Sunye, G. Improving the Testability of UML

Class Diagrams. First International Workshop on Testability

Assessment, 2004. IWoTA 2004. Proceedings. Nov. 2004,

pp. 70- 80.

[3] Baudry, B., Traon, Y., Sunye, G. Testability Analysis of

a UML Class Diagram. Software Metrics Symposium,

Ottawa, Canada. June 2002, pp. 54-63.

[4] Baudry, B., Traon, Y., Sunye, G., Jezequel, J.M.

Measuring and Improving Design Patterns Testability. 9th

International Software Metrics Symposium. September 2003,

pp. 50-59.

[5] Baudry, B., Traon, Y., Sunye, G., Jezequel, J.M.,

“Towards a Safe Use of Design Patterns to Improve OO

Software Testability,” Proceedings of the 12th International

Symposium on Software Reliability Engineering, ISSRE ’01,

pg 324.

[6] Binder R.V., “Testing Object Oriented Systems. Models,

Patterns, and Tools,” Addison-Wesley Publishers, 2000.

[7] Brown, W.J., Malveau, R.C., McCormick, H.W.,

Mowbray, T.J. Anti Patterns. Refactoring Software,

Architectures, and Projects in Crisis. John Wiley and Sons,

Inc. 1998.

[8] Curve Expert 1.3 Statistical Software. A Curve Fitting

System for Windows. v1.38, 2006.
http://curveexpert.webshop.biz

[9] Eick, S.G., Graves T.L., Karr A.F., Marron J.S., Mockus

A., Does Code Decay? Assessing the Evidence from Change

Management Data. IEEE Transactions on Software

Engineering, 2001, 27(1):1-12.

[10] France, R., Kim, D.K., Song, E., Ghosh, S. Metarole-

Based Modeling Language (RBML) Specification V1.0.

[11] Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design

Patterns: Elements of Reusable Object Oriented Software.

Addison-Wesley, Reading MA, 1995.

[12] Izurieta, C., Bieman, J.M. How Software Designs

Decay: A Pilot Study of Pattern Evolution. 1st ACM-IEEE

International Symposium on Empirical Software Engineering

and Measurement, ESEM ’07, Madrid, Spain, September

2007.

[13] JRefactory Opens Source Software.

http://jrefactory.sourceforge.net

[14] Parnas, D.L. Software Aging. Invited Plenary Talk. 16th

International Conference ICSE 1994, pp. 279-287, May

1994.

[15] Tsai, W.T., Tu, Y., Shao, W., Ebner, E. Testing

Extensible Design Patterns in Object-Oriented Frameworks

through Scenario Templates. 23rd Annual International

Computer Software and Applications Conference, 1999.

COMPSAC apos;99. Proceedings. Volume , Issue , 1999

Page(s):166 – 171.

[16] Wikipedia. http://en.wikipedia.org/wiki/Software_rot

