
Accepted for the IEEE Intl. Conf. on Software Testing Verification and Validation
Lillehammer, Norway, April 9-11, 2008

1

A Metamodel for the Measurement of Object-Oriented Systems:
An Analysis using Alloy

Jacqueline A. McQuillan
Department of Computer Science

National University of Ireland Maynooth
Co. Kildare, Ireland
jmcq@cs.nuim.ie

James F. Power
Department of Computer Science

National University of Ireland Maynooth
Co. Kildare, Ireland
jpower@cs.nuim.ie

Abstract

This paper presents a MOF-compliant metamodel for
calculating software metrics and demonstrates how it is
used to generate a metrics tool that calculates coupling
and cohesion metrics. We also describe a systematic ap-
proach to the analysis of MOF-compliant metamodels and
illustrate the approach using the presented metamodel. In
this approach, we express the metamodel using UML and
OCL and harness existing automated tools in a framework
that generates a Java implementation and an Alloy specifi-
cation of the metamodel, and use this both to examine the
metamodel constraints, and to generate instantiations of the
metamodel. Moreover, we describe how the approach can
be used to generate test data for any software based on a
MOF-compliant metamodel. We extend our framework to
support this approach and use it to generate a test suite for
the metrics calculation tool that is based on our metamodel.

1. Introduction

Software metrics are important in many areas of software
engineering, for example assessing software quality or es-
timating the cost and effort of developing software. Many
metrics have been proposed and new metrics continue to
appear in the literature regularly [9]. Many of these metrics
are incomplete, ambiguous and open to a variety of differ-
ent interpretations [3]. This makes it difficult to create gen-
eral metric tools and everytime a new metric is defined the
tools need to be updated with the new metric [18]. Further-
more, many of these metrics are applicable to a number of
different models of a software system. In order to provide
assurance that the same concepts are being measured from
these different models we need a way to specify the metrics
in a generic way, independent of the particular model.

Like Mens and Lanza, we believe that these issues

are best addressed using alanguage-independent, metrics-
specific metamodel[18]. However, they do not consider
coupling or cohesion metrics in their work. In this paper
we present a metamodel for calculating object-oriented soft-
ware metrics which is based on existing frameworks for
coupling and cohesion measurement [3, 4]. We use the
metamodel to specify a set of existing coupling and co-
hesion metrics and use our existing Eclipse-based metrics
framework [15] to automatically generate a tool to calcu-
late these metrics.

Developing and working with metamodels can be diffi-
cult since they deal with abstract concepts. Therefore, it
is important that we are able to perform analysis on meta-
models and assess their correctness. By correctness, we
mean that the metamodel specification is consistent and ad-
equately describes what the user intends. Also, in order to
ensure the correctness and quality of software applications
that are based around metamodels, for example our metrics
tool, we need to be able to test these applications. How-
ever, there is no direct way of automatically generating in-
stantiations of a metamodel to use as test inputs for testing
metamodel-based applications [7].

In this paper we describe an approach to the analysis
of Meta Object Facility (MOF)-compliant metamodels and
apply it to our metrics specific metamodel. In our ap-
proach, we express the metamodel using the Unified Mod-
elling Language (UML) and the Object Constraint Lan-
guage (OCL) [22], and harness existing automated tools in
a framework that generates a Java implementation of our
metamodel.

We also generate an Alloy [12] specification correspond-
ing to the metamodel, and use this to examine the meta-
model constraints and to generate sample instances of the
metamodel. Ourreflective instantiatortakes these Alloy
generated models and transforms them into instances of the
Java implementation, thus harnessing Alloy’s lightweight
approach to generate a test suite for our metrics tool. We



Accepted for the IEEE Intl. Conf. on Software Testing Verification and Validation
Lillehammer, Norway, April 9-11, 2008

1

use this test suite to determine if the tool correctly com-
putes metric values for the coupling and cohesion metrics.
Finally, we evaluate the adequacy of the generated test suite
in terms of traditional line and branch coverage criteria.

This paper is organized as follows. Section 2 outlines
some of the background information. Details of our metrics
specific metamodel are presented in Section 3. In Sections
4 and 5, we describe an approach to the analysis of MOF-
compliant metamodels and illustrate the approach using our
metamodel. In Section 6, we describe the generation of a
test suite for the metamodel-based metrics tool. Section 7
presents a discussion of related work. Section 8 summarises
and concludes the paper.

2. Background

Models provide a representation of a real system and are
increasingly important in software engineering, particularly
in the Model Driven Engineering (MDE) approach [22].
Typically, we think of a model of a software system as being
a design model, such as UML class or sequence diagrams,
or an implementation model, such as an actual program. As
the name suggests, ametamodel is a model that is used to
describe the structure of other models. One example of a
metamodel specification is theUML Superstructure Speci-
fication from the Object Management Group (OMG) [21],
which defines models for each of the diagrams of the UML.

While a number of different formalisms may be used to
describe metamodels, one of the most widely adopted stan-
dards is the Meta Object Facility (MOF), which is speci-
fied by the OMG [20]. The MOF provides a set of con-
structs for defining metamodels and is referred to as ameta-
metamodel. As well as facilitating comprehension, using
a standard metamodelling formalism aides interoperability,
through formats such as the XML Metadata Interchange
(XMI), as well as automated tool generation.

2.1. Metamodels and metrics

Many software metrics have been proposed in the liter-
ature [6, 9]. For these software metric definitions to be us-
able, it is important that the definitions clearly specify what
is to be counted. For example, when counting method calls,
do we include calls to abstract methods, calls to/from inher-
ited and overridden methods etc. Briandet al. have shown
that even seemingly straightforward metric definitions are
subject to a range of different interpretations [3, 4].

Several authors have considered the use of metamodels
as a way to address the problem of ambiguous metric def-
initions. Such an example is the canonical presentation of
coupling and cohesion metrics by Briandet al. which was
effectively based around a metrics specific metamodel of an

object-oriented software system. Mens and Lanza [18] pro-
pose a language independent metamodel for object-oriented
metrics that is based on graphs. They use this to define a se-
lection of generic object-oriented metrics and higher order
metrics but do not consider coupling or cohesion metrics.

Recent research has built upon this work by defining
metrics as queries over metamodels. El-Wakilet al. pro-
pose the use of XQuery as a metric definition language to
extract metric data from XMI documents, specifically UML
designs [8]. Harmer and Wilkie, working from a relational
schema, express metric definitions as SQL queries over this
schema [23]. Baroniet al. propose using the OCL and the
UML 1.3 metamodel to define UML-based metrics [2].

In our own work, we have extended the approach of Ba-
roni et al. in a manner specifically designed to be reusable
for other metamodels [15]. We have used theDagstuhl
Middle Metamodelas a general programming metamodel,
and have defined several object-oriented metrics across this
metamodel using OCL [14]. We have also defined similar
metrics at the design level using the UML 2.0 metamodel
[15].

However, each of these approaches is either metamodel-
specific (e.g. the UML metamodel), or uses ametrics spe-
cific metamodel, with the associated difficulty of finding
model instances to use as test data. The approach presented
in this paper addresses this issue by providing a means of
generating suitable instances to use for testing any software
based on a metrics specific (or any MOF-compliant) meta-
model.

2.2. The Alloy language and analyser

Alloy is a formal specification language based on typed
first-order relational logic [12]. It has been used primarily to
explore abstract software models and to assist in finding and
correcting flaws in these models. An Alloy specification is
based aroundsignaturesandformulas. Signaturesare used
for defining the entities of the model and consist of a set of
declarations that define the relations and operations of the
entity. Formulassuch asfacts, predicatesand assertions
are used to specify constraints on the model.

A fully automatic tool, called theAlloy Analyserhas
been developed simultaneously with the Alloy language.
This is a “model-finder” tool that uses a constraint solver
to analyse models written in Alloy. There are two types of
analysis offered by the tool, namelysimulationandcheck-
ing. Simulationinvolves finding model instances that meet
the Alloy specification. Checkinginvolves finding coun-
terexamples to the specification. To make instance finding
feasible, a user may specify ascopefor the model under
analysis. Thescopeputs a bound on how many instances
of an entity may be observed in a model instance and thus
limits the number of model instances to be examined.

2



Accepted for the IEEE Intl. Conf. on Software Testing Verification and Validation
Lillehammer, Norway, April 9-11, 2008

1

3. A metamodel for object-oriented
software measurement

In this section we describe the motivation for develop-
ing our metamodel for coupling and cohesion measurement.
We also present the details of the metamodel and with the
use of an example illustrate how it is used in the definition
and calculation of software metrics.

3.1. Motivation

Typically, calculating software metrics involves count-
ing entities found in a model, such as number of classes or
methods [9]. While some metrics are specific to a given
type of model (e.g. lines of code), others are applicable to
a number of different models. For example, coupling be-
tween classes might be usefully measured in source code,
in a UML class diagram, or even a UML sequence diagram.

If similar metrics are defined on different models of the
same system, then it is desirable that we can make these
similarities explicit. For example, we should be able to en-
sure that the rules for calculating the depth of an inheritance
tree are consistent between the source code and the corre-
sponding UML class diagram. Ideally, it should be possible
to define a set of metrics once, and then adapt them to each
relevant model in turn. It is our view that this is best ad-
dressed by defining the metrics as OCL queries over amet-
rics specific metamodeland mapping all other metamodels
to this canonical metamodel [16].

The advantages of a such an approach include:
• the ability to specify standardised, unambiguous defi-

nitions for software metrics.
• providing assurance that the same concepts are being

measured from the different models of the same soft-
ware system.

• the automation of the generation of a measurement tool
by forward engineering the metamodel and OCL defi-
nitions to a language implementation.

3.2. Metamodel overview

One requirement of our metamodel is that it is interop-
erable with the UML and Java metamodels and thus has
been developed to conform to the MOF. This ensures that all
three metamodels are specified using the same formalism,
thus facilitating the translation of instances of the UML and
Java metamodel to instances of the metamodel presented in
this paper.

Moreover, our MOF-compliant metamodel is based on
the coupling and cohesion measurement frameworks pro-
posed by Briandet al. [3, 4]. It captures the basic structure
of an object-oriented system at a level of abstraction that

Table 1. Summary of implemented metrics.
Metric Set Metrics from references [6, 3, 4]
CKMetrics WMC, NOC, DIT
Cohesion LCOM1, LCOM2, LCOM3, LCOM4, LCOM5,

Co, NewCo, TCC, LCC, ICH
Coupling RFC, RFC’, CBO, CBO’, MPC, COF, DAC, DAC’,

ICP, IH ICP, NIH ICP, IFCAIC, ACAIC, OCAIC,
ACMIC, OCMIC, IFCMIC, AMMIC, OMMIC,
IFMMIC, FMMEC, DMMEC, OMMEC, FCMEC,
DCMEC, OCMEC, OCAEC, FCAEC, DCAEC

represents concepts and relationships required for coupling
and cohesion measurement.

The metamodel is composed of a single package called
MM (Metrics Metamodel) and the contents of this pack-
age are depicted in Figure 1. The figure shows the main
classes involved in the metamodel, along with the impor-
tant associations, necessary for distinguishing the different
types of coupling and cohesion metrics. The central classes
for coupling and cohesion metrics areClass, Method and
Attribute. A Class is generalised byType, which also
generalises built-in types (e.ginteger , string ) and
user-defined types (e.gstruct , enumeration ).

In order to implement the metric definitions, we distin-
guish between declared/implemented attributes and meth-
ods based on whether they physically appear in the class
definition, or whether they are just present due to inher-
itance. Similarly, we partition methods into three types:
those that are inherited without change, those that are in-
herited and overridden, and those that are declared for the
first time in a class. Other classifications of methods are
given by the attributes of theMethod class.

Our MOF-compliant metamodel specification also con-
tains constraints, which specify semantic and syntactic
properties of the data described by the metamodel. These
constraints are specified using the OCL and referred to as
well-formedness rules. In total, the metamodel contains 15
well-formedness rules. Further details of these rules are
given in Section 5 and a complete specification of them
along with a more detailed description of the metamodel
can be found in [17].

3.3. Defining metrics using the metamodel

In this section we describe how we used our metamodel
to define three sets of existing object-oriented software met-
rics. The three sets of metricsCKMetrics, Cohesionand
Couplingwere taken from [6, 3, 4], respectively. In total,
we defined 42 metrics and these are summarised in Table 1.

In keeping with the approach outlined in [15], the met-
rics were defined as OCL queries over the metamodel. The

3



Accepted for the IEEE Intl. Conf. on Software Testing Verification and Validation
Lillehammer, Norway, April 9-11, 2008

1

Class

Parents() : Set
Children() : Set
Ancestors() : Set
Descendents() : Set
Methods() : Set
M_d() : Set
M_i() : Set
M_inh() : Set
M_ovr() : Set
M_new() : Set
M_pub() : Set
M_npub() : Set
Attributes() : Set
A_d() : Set
A_i() : Set
FriendsInv() : Set
Friends() : Set
uses(d : Class) : boolean

Method

SIM() : Set
SIM_() : Set
PIM() : Set
PIM_() : Set
AR() : Set
Par() : Set
NSI(m : Method) : int
NPI(m : Method) : int
PP(m : Method) : int

isPublic : boolean
isAbstract : boolean
type : MethodType

Attribute

0..1

method_implementing_class

0..*

implemented_method

att_implementing_class

0..*

implemented_att

FormalParamter

param_of

0..*

param

0..*

referenced_by

0..*

referenced _att

0..*

att_declaring_class

0..*

declared_att

Type

0..*

type

0..*

type
BuiltIn

UserDefined

0..*

method_declaring_class

0..* declared_method

0..1

overriding_class

0..*

overridden_method

0..1

new_class

0..*

new_method

0..*

inheriting_class

0..*

inherited_method

Invocation

type : InvocationType

0..* invoked_by

callee

0..*invokes

caller

0..*

passed_to

0..*

passes_pointer_to

0..*

friend_of

0..*

grants_friendship

0..*

parent

0..*

child

<<enumeration>>
InvocationType

static
polymorphic

<<enumeration>>
MethodType

constructor
destructor
accessor
mutator
general

Figure 1. A class diagram showing the main classes used in the metamodel.

metamodel was extended with a separate metrics package
containing a single class calledMetrics, and each set of met-
rics was defined as follows:

1. A class was created in the metrics package for the met-
ric set; this class extends theMetricsclass.

2. For each metric, an operation was declared in the class,
parameterised by the appropriate metamodel elements.

3. The metrics were defined by expressing them as OCL
queries using the OCLbody expression.

As an example of a definition, Figure 2 presents the def-
inition of thenumber of children (NOC) metric. Here, the
definition is parameterised by a singleClass , and the body
of the definition returns the size of the set of all children of
this class. The auxiliary operationChildren defined in
the metamodel traverses the elements and relationships in
the metamodel to assemble this set. Full details of this and
the other metric definitions can be found in [17].

We have developed a measurement framework for the
definition and calculation of software metrics based around
an Eclipse plug-in [15]. This framework was used to define

all 42 metrics shown in Table 1 and to automatically create
a tool to calculate these metrics. The metrics calculation
tool was created by transforming the OCL and UML corre-
sponding to the metric sets to Java code. In brief, the tool
computes the metric values for metamodel instances by in-
voking the Java methods corresponding to the OCL metric
definitions. In Section 6, we report on how we evaluate the
correctness of this metrics tool.

-- Returns a count of the immediate
-- descendents of the Class c
context CKMetrics::NOC (c:MM::Class):Real
body: c.Children()->size()

-- Returns the set of children
context Class::Children ():Set(Class)
body: self.child

Figure 2. Definition of the NOC metric in OCL
using our metamodel.

4



Accepted for the IEEE Intl. Conf. on Software Testing Verification and Validation
Lillehammer, Norway, April 9-11, 2008

1

4. An overview of the approach

In this section we present an overview of an approach
that can be used to both analyse a MOF-compliant meta-
model and to automatically generate test data for software
based on the metamodel.

An overview of the approach is depicted in Figure 3. In
this figure, our system is delineated by a dashed red line.
The inputs to the system are the metamodel and its con-
straints expressed as UML and OCL, and are shown on the
left of the figure. The outputs of the system are shown on the
bottom, and consist of a Java implementation of the meta-
model and its associated OCL constraints and queries, along
with a test suite based on the metamodel. These are linked
through a coverage analysis, as described in Section 6.

Both Octopus1 and Alloy are third-party tools used in
our system. The UML2Alloy tool used here is a re-
implementation of the same tool of Anastasakiset al. [1],
but specialised for Octopus. TheReflective Instantiatortool
was developed by us. The process is almost fully auto-
mated, with user intervention limited to providing the orig-
inal UML/OCL description of the metamodel, and examin-
ing the generated Alloy specification. This is depicted by
the stick-figure in green in Figure 3.

There are six main steps in this process:

Step 1: Expressing the metamodel in UML and OCL.
The OMG specification for MOF does not define a textual
or graphical representation for MOF [20]. However, there
is a UML Profile that defines a bi-directional mapping be-
tween UML and MOF. The profile facilitates the creation
of metamodels using UML and the viewing of MOF meta-
models. Our approach uses this to express the metamodel in
UML and OCL. For example, any constraints on the MOF
metamodel map directly to UML constraints. This process
was not automated, the metamodel was depicted using a
standard UML modelling tool. Octopus is used to check
the OCL for correct syntax and use of metamodel elements.

Step 2: Generating a Java implementation of the meta-
model. After the metamodel and its constraints are de-
picted using UML/OCL, Octopus is used to generate the
corresponding Java classes. All attributes and associations
in the metamodel are created as fields in the appropriate
classes. Finally, methods are created that check the con-
straints and multiplicities of the model.

Step 3: Transforming the metamodel to Alloy. We have
created a tool to convert an Octopus UML/OCL metamodel
to Alloy. Since this tool mimics theUML2Alloy tool [1], we
only briefly outline the transformation approach here.

1http://www.klasse.nl/octopus

Eclipse /
Octopus

Converter

UML2Alloy

Alloy

Meta
Model
Classes

in Java

Reflective
Instantiator
Alloy2Java

Metrics
Meta

Model

UML/OCL

Metrics

in
Alloy

Metamodel

Instances
of

Meta
Model

in Java

Instances
of

Meta
Model

Alloy/XML

Coverage

Figure 3. Overview of the approach to
analysing the MOF-compliant metamodel.

Classes and Enumerations map to Alloy signatures. All
attributes map to fields of the corresponding Alloy signa-
ture. Associations are also mapped to fields in the appropri-
ate Alloy signatures. An additional fact is generated in the
Alloy specification for bi-directional UML associations to
show that the relations are symmetric.

Finally, any OCL invariants of the metamodel are
mapped directly to Alloy facts. At present, the OCL map
does not cover the full language, and requires some user
intervention for more difficult constructs.

Step 4: Analysis of the metamodel. The Alloy Analyser
is used to analyse the Alloy model to detect flaws in the
metamodel specification. For example, it can be used to
generate random instances of the metamodel that conform
to the well-formedness rules. If an instance cannot be found
then there is an inconsistency in the metamodel specifica-
tion. It is also possible to enumerate and explore all pos-
sible instances of the metamodel. This is useful to identify
invalid instances i.e. instances that do not represent what
the user intends their specification to represent.

Step 5: Generation of metamodel instances using Alloy.
The role of Alloy in our system is twofold. First, it allows
us to investigate the metamodel constraints to check for re-
dundancies or errors (see Section 5). Second, it allows us to
automatically generate valid metamodel instances.

For this step we created a Java program to harness Al-
loy’s model generation capabilities. This program reads an
Alloy specification file and continually creates instances of
the metamodel until all possible instances have been gener-
ated. Every metamodel instance produced during this step
is output and stored in XML format for future use.

5



Accepted for the IEEE Intl. Conf. on Software Testing Verification and Validation
Lillehammer, Norway, April 9-11, 2008

1

Step 6: Transformation of metamodel instances to Java
objects. One of the central technical contributions of our
system is theReflective Instantiator, which transforms the
XML versions of Alloy-generated models into instances of
the Java implementation of our metamodel.

The Reflective Instantiatorparses the XML produced
by Alloy and creates instances of our metamodel using the
class files generated in Step 2. It does this using Java reflec-
tion, reading the class names from the XML files and cre-
ating instances of these classes. The fields of these classes
are set by reading the fields from the XML and calling the
appropriate set methods.

It is important to note that this process is not tied to
any specific metamodel. Since the Alloy model and Java
metamodel implementation are generated from the same
MOF metamodel, Java reflection can make the link between
them without having this information statically hard-coded.
Therefore, this program is not specific to the metamodel un-
der consideration and can be used for any metamodel.

5. Metamodel development and analysis

While the approach outlined in Section 4 will work for
any MOF-compliant metamodel, our original intention was
the specification and analysis of a metamodel for coupling
and cohesion measurement. In this section we elucidate our
approach using that metamodel.

5.1. Applying the approach

As described in Section 4, the first step of our approach
is to express the metamodel in UML and OCL. As we were
basing our metamodel on that of Briandet al., we began by
expressing the concepts described in [3, 4] as a class dia-
gram and formalised any well-formedness rules that were
expressed in natural language by Briandet al.. An example
of such a rule is thatthe set of all new, overriding and inher-
ited methods of a class are disjoint. We suspected that all
these constraints were not sufficient to describe our meta-
model and thus added 15 more constraints, resulting in a
total of 27 well-formedness rules. Once we had formalised
all of the rules in OCL, we used Octopus to statically check
the OCL constraints and then translated the MOF-compliant
metamodel and its well-formedness rules to Alloy.

An example of the translation of UML classes to Alloy is
shown in Figure 4. This figure gives the Alloy specification
for the Class element of our metamodel which is defined
in Alloy as a signature extending theType signature. The
associations for a class are represented by fields, which we
have shown here in four groups. These groups represent in-
heritance relationships, friendship relationships (for C++),
and an association with the class’ attributes and methods.

sig Class extends Type
{

/* Inheritance */
parent: set Class,
child: set Class,

/* Friendship */
grants friendship: set Class,
friend of: set Class,

/* Class - Attribute Relationships */
declared att: set Attribute,
implemented att: set Attribute,

/* Class - Method Relationships */
declared method: set Method,
implemented method: set Method,
new method: set Method,
overridden method: set Method,
inherited method: set Method

}

Figure 4. Alloy signature for the element
Class of the metamodel.

5.2. Metamodel analysis

To perform the analysis, the Alloy Analyser was used to
generate a random instance of the metamodel. The Analyser
requires that a scope is specified for the model and then per-
forms the analysis by exhaustively searching the state space
for this scope. We specified a scope of 10 for all elements.
The analyser searches for a model that contains at most 10
instances of each base class of the metamodelandconforms
to the well-formedness rules of the metamodel. An instance
was produced thus demonstrating that the well-formedness
rules specified for the metamodel were consistent.

We then used the Analyser to search for invalid instances
of the metamodel. We specified a scope of 1 for the Alloy
model and manually inspected the random instances pro-
duced by the Analyser. Each time an invalid instance was
found, we added a constraint to prevent that instance from
being generated. For example, we found a metamodel in-
stance where a class could inherit from itself. On comple-
tion we had a total of 37 metamodel constraints.

Upon visual inspection of the 37 metamodel constraints,
we suspected that a number of the constraints were super-
fluous. For each of these constraints, we converted it into an
assertion about the metamodel and then used Alloy to check
whether the assertion was valid. If the assertion produced
a counterexample then we knew that the constraint was re-
quired. If a counterexample could not be found within a
reasonable scope then it cannot be guaranteed that the con-
straint is redundant but it can increase our confidence that
it is. Therefore, we assumed that the constraint was super-

6



Accepted for the IEEE Intl. Conf. on Software Testing Verification and Validation
Lillehammer, Norway, April 9-11, 2008

1

fluous and omitted it from the specification. During this
final analysis, 24 constraints were identified as potentially
redundant and removed from the Alloy specification. We
also found that a further 2 constraints were needed to pre-
vent invalid metamodel instances, thus giving us a total of
15 constraints in the Alloy version of the metamodel.

5.3. Discussion

This approach relies on Jackson’ssmall scope hypothe-
sis, which suggests that if a bug exists it will appear infairly
small models of a system [12]. So, it is possible our ap-
proach may not be applicable to larger metamodels. How-
ever, in such a situation it may be possible to apply the ap-
proach by partitioning and abstracting the metamodel into
the parts that are related to the properties being analysed.

Moreover, we are fully aware that this process is not a
completely formalised method for developing and analysing
metamodels. However, we believe that this approach gives
the developer a formal way of analysing and checking for
any suspected deficiencies in their metamodel specification.
By iteratively analysing and improving the metamodel, the
developer becomes more confident in their specification.

Finally, it is important to note that this approach is not
specific to a particular metamodel. It is generally applicable
to any MOF-compliant metamodel. In fact, the approach is
not restricted to metamodels but is applicable to any kind of
model, for example a UML class diagram of a UML model.

6. Test suite generation

As described in Sections 3 and 4 we were able to au-
tomatically generate both an implementation of the meta-
model and an implementation to calculate the specified met-
rics. In this section we describe the final step in integrating
the use of Alloy with this code: the construction of a test
suite for the automatically generated metrics tool. We use
this test suite as input to the metrics tool and use a test ora-
cle to determine whether or not the metric results produced
by the tool are correct. The test oracle had to be constructed
manually and therefore, required a test suite with the fol-
lowing properties:

1. Each test case should contain a relatively small number
of elements.

2. The number of test cases in the test suite should also
be relatively small.

3. The test suite should provide as much coverage of the
implementation as possible.

6.1. Test case generation

Using our reflective instantiator described in Section 4
we were able to automate the generation of a set of test cases

Table 2. Groups of generated test cases.
Test No. of

Group Alloy Command Test Cases
1 run show for exactly 1 Type,

exactly 1 Attribute, exactly 1
Method, exactly 1 FormalParame-
ter, exactly 1 Invocation

40

2 run show for 1 217
3 run show for exactly 1 ... all

classes listed
360

4 run show for exactly 2 Type,
exactly 2 Attribute, exactly 2
Method, exactly 2 FormalParame-
ter, exactly 2 Invocation

528,152

for the metrics calculation tool. As we required models with
a relatively small number of elements we began by gener-
ating models using a small scope. Table 2 summarises the
results of generating these test cases which are partitioned
into four different groups:
Group 1 consisted of all possible instances with exactly

one instance of each base class in our metamodel.
Group 2 is all possible instances where each base class is

observed 0 or 1 times in a metamodel instance.
Group 3 is similar to group 1 except that we defined a

scope of exactly 1 for all classes (not just base classes).
Group 4 again is similar to group 1 except that we allowed

a scope of exactly 2 for all base classes.

6.2. Test cases and expected results

We added the two extra constraints to the original
UML/OCL specification, and thus the generated Java imple-
mentation contained 39 constraints in total. All of the test
cases summarised in Table 2 were used as input to our Re-
flective Instantiator. For each model, the Instantiator built
the instantiation, ran the code to check each of the 39 OCL
constraints, and then systematically tore down each model
to test the element removal code. As each test model was
built it was used as input to the metrics calculation tool and
the values for all 42 metrics were recorded.

Since each generated constraint was checked for each
test case, this provided further assurance that the reduced
set of constraints used to generate the Alloy models was
sufficient. Further, using such a large number of test cases
demonstrates the robustness of the metric calculation tool
and was used as asmoke testto ensure that the recorded val-
ues were within reasonable boundaries. Based on the scope
used to generate each of the groups in Table 2 we computed
the maximum and minimum values possible for each of the
metrics. We then identified the models that produced met-
ric values outside of these bounds. The results of this smoke
test are discussed later in this section.

7



Accepted for the IEEE Intl. Conf. on Software Testing Verification and Validation
Lillehammer, Norway, April 9-11, 2008

1

Table 3. Line/Branch coverage excluded from
the coverage targets.

Reason for exclusion Line Branch
Negative test cases 11% 1%
Field setters 6% 2%
Passed-as-Pointer Association 3% 4%
Total excluded 20% 7%

Table 4. A breakdown of the metamodel cov-
erage for each of the test groups in Table 2.

Test Cum. Line Coverage Cum. Branch Coverage
Group MM Metrics All MM Metrics All

1 44% 68% 51% 55% 60% 57%
2 49% 68% 54% 62% 60% 61%
3 49% 68% 54% 62% 60% 61%
4 71% 99% 79% 91% 99% 93%

Our original intention was to generate a test suite with
a relatively small number of test cases whose metric values
could be calculated manually, serving as a test oracle for
the generated metric tool. However, since the number of
test cases produced is in excess of 500,000, it is necessary
to reduce this suite to a more manageable size. We decided
to measure the coverage of the implementation in terms of
traditional code coverage criteria and to reduce the number
of test cases based on these criteria.

6.3. Coverage analysis

Cobertura2 was used to measure the line and branch cov-
erage of the metamodel implementation and the implemen-
tation corresponding to the metrics. Cobertura is a free Java
tool that computes the percentage of code accessed by tests.

It was not possible to achieve full line and branch cover-
age of the implementation for several reasons, summarised
in Table 3. Since our test suite only included positive test
cases, code that involves catching exceptions when the in-
variants of the metamodel are violated was not fully cov-
ered. Some auxiliary routines, such as alternative set and
get methods were not called in constructing the model. For
simplicity, the part of the metamodel dealing with method
pointers was not instantiated in Alloy, significantly reduc-
ing the number of models created. Thus, excluding these
totals, from our target coverage gave a maximum possible
coverage of 80% for line and 93% for branch coverage.

The results of the coverage analysis is summarised in
Table 4 on a per-group basis. This table has one row for
each of the test case groups described previously in Table

2http://www.cobertura.sourceforge.net/

Table 5. Test cases in the reduced test suite.
Test Cum. Line Coverage Cum. Branch Coverage
Case MM Metrics All MM Metrics All
T1 43% 66% 50% 55% 59% 56%
T2 44% 68% 51% 55% 60% 57%
T3 44% 68% 51% 55% 60% 57%
T4 44% 68% 51% 56% 60% 57%
T5 48% 68% 54% 62% 60% 61%
T6 59% 68% 54% 62% 60% 61%
T7 63% 88% 71% 80% 88% 83%
T8 68% 89% 74% 87% 89% 87%
T9 68% 89% 74% 87% 89% 88%
T10 68% 89% 74% 87% 89% 88%
T11 69% 97% 77% 87% 98% 90%
T12 69% 97% 77% 87% 98% 90%
T13 69% 98% 77% 87% 99% 91%
T14 71% 99% 79% 91% 99% 93%

2. The data in each case represents the percentage coverage
for each of the two coverage criteria. Each row describes
the percentage coverage of the metamodel implementation
(MM), the metrics implementation (Metrics) and the com-
bined percentage coverage (All). Furthermore, each row
representscumulativecoverage; for example, the line cov-
erage value of 54% for group 2 includes the 51% line cov-
erage achieved by group 1. As can be seen from Table 4,
the smaller test suites exhibit relatively poor coverage.

6.4. Test oracle construction

In this subsection we consider the construction of are-
ducedtest suite that achieves the maximum coverage crite-
ria possible for use as a test oracle for the metrics tool.

A number of techniques exist that can reduce test suites
based on various constraints. For example, Harroldet al.
outline techniques for test suite reduction and prioritisation
based on coverage criteria [11]. However, since our test
cases were being generated by Alloy roughly in order of
size, a simpler approach was taken to test suite reduction:

1. As each test case is executed, the cumulative coverage
of both criteria, is recorded.

2. Any test case that causes an increase in any one of the
two coverage figures is added to the reduced suite.

3. This process is continued until either the maximum
coverage has been achieved for both criteria or until
all test cases have been examined.

In general this process will not perform as well as that of
Harroldet al., but it is much simpler to implement. Apply-
ing this technique to the test cases, we generated a reduced
test suite of 14 unique test cases. Table 5 lists the cumula-
tive coverage data for each of these cases, labelled T1-T14.
Three of these cases (T1-T3) originated from group 1, three
(T4-T6) from group 2, and eight (T7-T14) from group 4.

8



Accepted for the IEEE Intl. Conf. on Software Testing Verification and Validation
Lillehammer, Norway, April 9-11, 2008

1

The 14 test cases almost achieved the maximum cover-
age possible. By inspecting the output from the Cobertura
tool we were able to identify 10 lines of code that had not
been covered by the reduced test suite. We then used Alloy
to generate a valid metamodel instance to cover this situa-
tion. This model was added to our test suite and increased
the coverage to the maximum value possible of 80% for
code coverage and 93% for branch coverage.

The 15 test cases were then used to manually create a test
oracle for the metrics tool. All 42 metrics were calculated
by hand and recorded for each of the 15 test cases. We
compared these values with the actual values computed by
the metrics tool. In the next subsection, we briefly discuss
the results of this along with the results from the smoke test.

6.5. Discussion

Using the above procedure we uncovered 6 bugs in the
metrics tool. Four of these were detected by the smoke test
and 2 with the test oracle. For example, for certain cohesion
metrics (e.g. LCOM1), an auxiliary operation was specified
in OCL to compute the set of method pairs in aClass. It
was discovered that each method pair was being counted
twice and thus returning a metric value outside of the ex-
pected bounds for the metrics. This error was corrected at
the OCL level. Further, we identified and fixed the remain-
ing bugs and regenerated the metrics tool.

In summary, we were able to partition the types of er-
rors we found into three categories. The first category are
bugs that are a result of the metric definitions themselves.
For, example when a metric has no provision for a divi-
sion by 0. Second, are those introduced in the OCL where
the definition has been incorrectly specified, for example
a misplaced bracket in the OCL definition. Lastly, errors
introduced by Octopus in transforming the UML/OCL to
Java, for example incorrect casting of objects. Overall, our
experience found this to be a relatively simple and effective
way of increasing our confidence in the correctness of the
automatically generated metrics tool.

7. Related work

The parallel between specification in Alloy and mod-
elling in UML has been noted by Massoniet al. [13] and ex-
ploited by Anastasakiset al. [1]. Anastasakiset al. present
a tool,UML2Alloy, that takes a UML class diagram, along
with the associated OCL constraints, and translates this into
an Alloy specification. The sample instances generated by
the Alloy Analyser then correspond to object diagrams from
the UML model. However, their tool does not provide any
automated handling of the generated Alloy models.

Several other researchers have used Alloy to analyse and
reason about metamodels. For instance, an alternative defi-

nition of the UML metamodel is presented in [19] and anal-
ysed using Alloy. In [24], Alloy is used to formalise and
analyse the package merge concept of the UML 2.0 meta-
model. These approaches are similar to ours in that they
use Alloy to describe ametamodel, as opposed to amodel
as with Anastasakiset al.. However, the main focus of this
research to date has been on the analysis of the UML meta-
model. Our work, is concerned with using Alloy to anal-
yse a metamodel for object-oriented software measurement.
Moreover, these approaches have no automated support for
metamodelling or for handling the generated models.

Some work related to ours is that of Gogollaet al. [10]
who describe an approach to the automatic generation of
model instances (snapshots) from UML class diagrams.
ASSL (A Snapshot Sequence Language) is used to spec-
ify properties of a required model instance. Using their ap-
proach they generate two types of model instances, those
that are test cases and those that are validation cases. The
test cases confirm that models with certain properties can
be created from the specification. The validation cases are
used to show that certain properties of a model are a con-
sequence of existing properties of the model. However, this
approach is not fully automated as it requires the creation of
scripts for each model in order to generate instances.

A related problem is that of generating metamodel in-
stances for use in testing model transformations. Brottieret
al. use an approach that determines the part of the meta-
model that is relevant to the model transformation, and then
determines coverage criteria based on this part of the meta-
model [5]. This criteria is then used to generate metamodel
instances. However, OCL constraints, an important part
of a metamodel, cannot be directly reflected, leading to an
under-specification of model instances.

Finally, an approach to metamodel instance generation is
presented by Ehriget al. [7]. This approach involves the au-
tomatic creation of an instance-generating graph grammar
for the given metamodel. They also describe how to trans-
late restricted OCL constraints to graph constraints. The
grammar and the graph constraints are then used to create
metamodel instances. However this approach does not sup-
port attribute values, only supports limited OCL constraints
and cannot be used to verify properties of the metamodel.

8. Concluding remarks

In this paper we presented an approach to analysing
MOF-compliant metamodels. We also presented a meta-
model for coupling and cohesion measurement based on the
work of Briandet al. and described how we used our ap-
proach to construct and analyse the metamodel. The meta-
model and well-formedness rules were expressed in UML
and OCL and a Java implementation and Alloy specifica-
tion of the metamodel were generated by third-party tools.

9



Accepted for the IEEE Intl. Conf. on Software Testing Verification and Validation
Lillehammer, Norway, April 9-11, 2008

1

We used the Alloy specification to examine and validate
the metamodel constraints, and to generate instantiations of
the metamodel. We implemented a reflective instantiator to
transform the automatically generated Alloy models into an
instantiation of the Java implementation of the metamodel,
generating a test suite for the metamodel-based metric cal-
culation tool. Finally, we evaluated the adequacy of the test
suite using several coverage criteria.

We identify the principal contributions of this paper as:
• The development and analysisof a MOF-compliant

metamodel for coupling and cohesion metrics, based
on the work of Briandet al., and the elimination of
redundant constraints in that metamodel.

• The automation of the generation of metamodel in-
stances from a UML/OCL specification that can be
used as test data for metamodel-based software.

• A coverage-based analysisof the Alloy-generated
test suite in terms of code coverage, thus “completing
the circle” between lightweight formal methods and
standard software testing techniques.

In future work, we plan to define a precise and complete
scheme for transforming UML models and Java programs
to instances of the metamodel presented in this paper.

Acknowledgements. Special thanks to Thomas Keane
and the anonymous reviewers for their valuable comments
on earlier revisions of this paper.

References

[1] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray.
UML2Alloy: A challenging model transformation. InInt.
Conference on Model Driven Engineering Languages and
Systems (MoDELS), volume 4735 ofLecture Notes in Com-
puter Science, pages 436–450. Springer, 2007.

[2] A. L. Baroni, S. Braz, and F. B. e Abreu. Using OCL
to formalize object-oriented design metrics definitions. In
ECOOP Workshop on Quantative Approaches in Object-
Oriented Software Engineering, Malaga, Spain, June 2002.

[3] L. Briand, J. Daly, and J. Wuest. A unified framework for
cohesion measurement in object-oriented systems.Empiri-
cal Software Engineering, 3(1):65–117, 1998.

[4] L. Briand, J. Daly, and J. Wuest. A unified framework for
coupling measurement in object-oriented systems.IEEE
Transactions on Software Engineering, 25(1):91–121, 1999.

[5] E. Brottier, F. Fleurey, J. Steel, B. Baudry, and Y. L.
Traon. Metamodel-based test generation for model trans-
formations: an algorithm and a tool. InIntl. Symposium
on Software Reliability Engineering, pages 85–94, Raleigh,
NC, Nov. 2006.

[6] S. R. Chidamber and C. F. Kemerer. A metrics suite for
object oriented design.IEEE Transactions on Software En-
gineering, 20(6):476–493, 1994.

[7] K. Ehrig, J. Küster, G. Taentzer, and J. Winkelmann. Gener-
ating instance models from meta models. InIntl. Conference

on Formal Methods for Open Object-Based Distributed Sys-
tems, volume 4037 ofLecture Notes in Computer Science,
pages 156–170. Springer, 2006.

[8] M. El-Wakil, A. El-Bastawisi, M. Riad, and A. Fahmy.
A novel approach to formalize object-oriented design met-
rics. InEvaluation and Assessment in Software Engineering,
Keele, UK, Apr. 2005.

[9] N. Fenton and S. Lawrence Pfleeger.Software Metrics: A
Rigorous and Practical Approach. Intl. Thompson Com-
puter Press, 1996.

[10] M. Gogolla, J. Bohling, and M. Richters. Validating UML
and OCL models in USE by automatic snapshot generation.
Journal on Software and System Modeling, 4(4):386–398,
2005.

[11] M. J. Harrold, R. Gupta, and M. L. Soffa. A methodology
for controlling the size of a test suite.ACM Trans. Softw.
Eng. Methodol., 2(3):270–285, 1993.

[12] D. Jackson. Software abstractions: logic, language, and
analysis. The MIT Press, 2006.

[13] T. Massoni, R. Gheyi, and P. Borba. A UML class diagram
analyzer. In3rd International Workshop on Critical Systems
Development with UML, Lisbon, Portugal, Oct. 2004.

[14] J. A. McQuillan and J. F. Power. Experiences of using the
Dagstuhl Middle Metamodel for defining software metrics.
In Intl. Conference on Principles and Practices of Program-
ming in Java, pages 194–198, Germany, 2006.

[15] J. A. McQuillan and J. F. Power. Towards re-usable met-
ric definitions at the meta-level. InPhD Workshop of the
20th European Conference on Object-Oriented Program-
ming, Nantes, France, July 4 2006.

[16] J. A. McQuillan and J. F. Power. On the application of soft-
ware metrics to UML models. InModels in Software En-
gineering, volume 4364 ofLecture Notes in Computer Sci-
ence, pages 217–226. Springer, 2007.

[17] J. A. McQuillan and J. F. Power. Specifying coupling and
cohesion metrics using OCL and Alloy. Technical Report
NUIM-CS-TR-2008-01, Dept. of Computer Science, NUI
Maynooth, Jan. 2008.

[18] T. Mens and M. Lanza. A graph-based metamodel for
object-oriented software metrics.Electronic Notes in The-
oretical Computer Science, 72(2), 2002.

[19] A. Naumenko and A. Wegmann. A metamodel for the Uni-
fied Modeling Language. InProceedings of the 5th Interna-
tional Conference on The Unified Modeling Language, vol-
ume 2460, pages 2–17. Springer, 2002.

[20] Object Management Group. Meta Object Facility (MOF)
Core Specification v2.0. Doc # formal/06-01-01, Jan. 2006.

[21] Object Management Group. UML Superstructure Specifica-
tion v2.1.1. Doc # formal/07-02-05, Feb. 2007.

[22] J. Warmer and A. Kleppe.The Object Constraint Language:
Getting your models ready for MDA. Addison-Wesley, 2003.

[23] F. G. Wilkie and T. J. Harmer. Tool support for measur-
ing complexity in heterogeneous object-oriented software.
In IEEE Intl. Conference on Software Maintenance, pages
152–161, Montŕeal, Canada, Oct. 2002.

[24] A. Zito and J. Dingel. Modeling UML2 package merge with
Alloy. In First Alloy Workshop of the ACM SIGSOFT Sym-
posium on Foundations of Software Engineering, Portland,
OR, Nov. 2006.

10


