
WS-TAXI: a WSDL-based testing tool for Web Services∗

Cesare Bartolini, Antonia Bertolino, Eda Marchetti

Istituto di Scienza e Tecnologie dell'Informazione �A. Faedo�

Consiglio Nazionale delle Ricerche - Via Moruzzi 1 - 56124 Pisa, Italy

{cesare.bartolini, antonia.bertolino, eda.marchetti}@isti.cnr.it

Andrea Polini

Dipartimento di Matematica ed Informatica, University of Camerino

Via Madonna delle Carceri, 9 - 62032 Camerino, Italy

andrea.polini@unicam.it

Abstract

Web Services (WSs) are the W3C-endorsed realiza-
tion of the Service-Oriented Architecture (SOA). Since
they are supposed to be implementation-neutral, WSs
are typically tested black-box at their interface. Such
an interface is generally speci�ed in an XML-based no-
tation called the WS Description Language (WSDL).
Conceptually, these WSDL documents are eligible for
fully automated WS test generation using syntax-based
testing approaches. Towards such goal, we introduce
the WS-TAXI framework, in which we combine the cov-
erage of WS operations with data-driven test genera-
tion. In this paper we present an early-stage implemen-
tation of WS-TAXI, obtained by the integration of two
existing softwares: soapUI, a popular tool for WS test-
ing, and TAXI, an application we have previously de-
veloped for the automated derivation of XML instances
from a XML schema. WS-TAXI delivers a complete
suite of test messages ready for execution. Test gen-
eration is driven by basic coverage criteria and by the
application of some heuristics. The application of WS-
TAXI to a real case study gave encouraging results.

1 Introduction

Service-oriented Architecture (SOA) is the emerg-
ing paradigm to enable interoperability and �exibil-
ity of distributed applications. All major IT ven-
dors, such as IBM, Tibco, Software AG, Oracle, have

∗The authors wish to thank Antonino Sabetta for his con-
tribution in de�ning the test cases. This work was supported
by the EU FP7 Project 216287 TAS3 and by the Italian MIUR
PRIN 2007 Project D-ASAP.

made huge investments into SOA in the last years,
making up a global estimated budget of $2 billion
in 2007, which is further expected to rise and reach
$9.1 billion by 2014 [11]. Beyond such numbers is the
fact that enterprises in virtually any domain, banks,
governments, hospitals, academies, leisure and travel
agencies, are progressively shifting towards the on-line
service-market.

Our research addresses the testing of Web Services
(certainly the most widely adopted technology to im-
plement a SOA), which has been recognized as a top-
most critical issue for the IT industry of the future:
for instance, a recent study by Gartner lists insu�cient
validation in the `hit list' of the most common techno-
logical errors in planning SOA implementations [10].
The same study recommends that at least 25% of the
e�ort spent in a SOA project is dedicated to testing.

Indeed, due to their pervasive distribution, services
must o�er strict guarantees of reliability and security.
Therefore, WSs need to be thoroughly tested before
deployment, and several industrial testing tools spe-
cialized to WSs technology are today available, such as
soapUI [9], PushToTest [15], and SOATest [14], just to
mention a few.

Essentially, a WS collects a set of functions, whose
invocation syntax is de�ned in an associated WSDL
(WS Description Language) [22] document. The for-
malized WSDL description of service operations and of
their input and output parameters can be taken as a
reference for black box testing at the service interface.

As an example, soapUI, which is acclaimed on its
distribution site [9] as the most used tool for WSs test-
ing, can automatically produce a skeleton of a WS test
case and provide support for its execution and result
analysis. The tester's job is certainly greatly released

1

by the usage of this or similar tools; however the pro-
duced test cases are incomplete and lack the input pa-
rameter values and the expected outputs. Moreover,
soapUI can also measure the coverage of WS opera-
tions, but again the generation of diverse test messages
for adequately exercising operations and data combina-
tions is left to the human testers.

It is somewhat surprising that till today WS test
automation is not pushed further than this, since in
principle the XML-based syntax of WSDL documents
could support fully automated WS test generation by
means of traditional syntax-based testing approaches.
In this direction, we hereby propose a framework for
�turn-key� generation of WS test suites. Our approach
easily realizes a practical yet powerful tool for fully au-
tomated generation of WSs test inputs. The key idea,
sketched in [5], is to combine the coverage of WS op-
erations (as provided by soapUI) with well-established
strategies for data-driven test input generation.

In this paper we present the logical architecture and
an early-stage implementation of the proposed frame-
work. The prototype is obtained by integrating two
existing softwares: soapUI, already presented above,
and TAXI [20], which is an application we have previ-
ously developed for the automated derivation of XML
instances from an XML schema (the interested reader
can refer to [20] for details on TAXI implementation)
The new integrated framework is named WS-TAXI.
The original notion at the basis of WS-TAXI, in com-
parison with soapUI and other existing WS test tools,
is the inclusion of a systematic strategy for test gen-
eration based on basic well-established principles of
the testing discipline, such as equivalence partitioning,
boundary analysis and combinatorial testing.

The paper is structured as follows. In the next sec-
tion we explain the motivations of the approach; in
Sec. 3 we present the WS-TAXI methodology and its
current implementation; in Sec. 4 we then demonstrate
the functioning and e�ectiveness of WS-TAXI on a case
study. Related work is surveyed in Sec. 5 and conclu-
sions are drawn in Sec. 6.

2 Motivation

Before describing our approach, in this section we
provide a motivating example. We �rst show the type
of support provided by soapUI [9], and then explain
how our proposed approach improves on it.

Let us take a simple example of a WSDL speci�ca-
tion for a dummy testExample service. The WSDL, as
shown in Figure 1a, speci�es two operations, called op-
eration and anotherOp. The former accepts an input
message composed of three parts:

(a) WSDL port type

(b) XSD excerpt. ChoiceType is also the type of ChoiceElement

Figure 1. Simple WSDL example.

• �rstInput which is an element, called ChoiceEle-
ment, of a user-de�ned complex type ChoiceType.
In particular, it is a choice element with �ve pos-
sible choices, one of which is an all element called
AllElem, as shown in Figure 1b;

• secondInput, a basic XSD type (string);

• headerPart, another XSD string type which is used
in the SOAP header.

The second operation accepts messages with a single
part (anotherOpRequest) which is of the user-de�ned
complex type ChoiceType (Fig. 1b). Our WSDL spec-
i�cation also de�nes the response messages of the two
operations, which are operationResponse and anoth-
erOpResponse, respectively.

If we run the soapUI tool on this WSDL �le, it auto-
matically generates two separate SOAP envelopes, one
for each operation, containing the skeletons of some
test input. Figure 2 shows the one for operation. As
we can see, soapUI leaves question marks (or alterna-
tively some pregenerated Latin words or numbers) in
the place of actual input data for the generated test
cases (see lines 13�15, 17, 21�22, 25 in Fig. 2); in
addition, it does not manage the choice and all ele-
ments and the occurrence attributes, but introduces
comments (see lines 11�12, 19�20 and 16 in Fig. 2,
respectively) explaining to the human tester how to
handle them. Finally, the tool distinguishes the ba-
sic data types but with little variability in the kind of

2

1 <soapenv:Envelope
2 xmlns:soapenv="http:// schemas.xmlsoap.org/soap/
3 envelope/"

4 xmlns:test="http://www.example.org/test/">
5 <soapenv:Header >
6 <headerPart >?</headerPart >
7 </soapenv:Header >
8 <soapenv:Body >
9 <test:operation >

10 <test:ChoiceElem >
11 <!--You have a CHOICE of the next 5 items

12 at this level -->
13 <field1 >?</field1 >
14 <field2 >?</field2 >
15 <field3 >?</field3 >
16 <!--0 to 3 repetitions: -->
17 <occurElem >?</occurElem >
18 <AllElem >
19 <!--You may enter the following 2

20 items in any order -->
21 <AllElem1 >?</AllElem1 >
22 <AllElem2 >?</AllElem2 >
23 </AllElem >
24 </test:ChoiceElem >
25 <secondInput >?</secondInput >
26 </test:operation >
27 </soapenv:Body >
28 </soapenv:Envelope >

Figure 2. Skeleton generated by soapUI

value used for instances derivation. For instance, soa-
pUI �lls date or numeric types using the same value
for all instances, while it uses predetermined combina-
tions of Latin words for string data. For completeness'
sake, we add that the commercial version of the tool
improves this aspect a bit and provides some support
for data generation. However, as far as we could ex-
periment with it, this function only deals with simple
types and still requires complex user guidance to prop-
erly manage the input selection.

It is evident from this simple example that the tester
still needs to do most of the work before such SOAP
skeletons can be e�ectively launched as test cases. Our
contribution starts where soapUI stops: WS-TAXI can
deliver ready-to-launch test messages by automatically
instantiating XML instances for the XSD structures
included in the WSDL speci�cation (and therefore get-
ting rid of all the question marks or bogus words in the
soapUI test skeleton).

Some hints of how the example in Figure 1 is pro-
cessed by WS-TAXI are:

• the choice within the �rstInput element is sub-
stituted by systematically picking every possible
child element;

• AllElem is substituted with random orderings of
its child elements;

• for occurElem, which speci�es 0 as minOccurs and
3 asmaxOccurs, three di�erent results are instanti-
ated: we take the minimum, the maximum and an

1 <?xml version="1.0"?>
2 <soapenv:Envelope
3 xmlns:soapenv="http:// schemas.xmlsoap.org/soap/
4 envelope/"

5 xmlns:test="http://www.example.org/test/">
6 <soapenv:Header >
7 <headerPart >ydykDkjj </headerPart >
8 </soapenv:Header >
9 <soapenv:Body >

10 <test:operation >
11 <ChoiceElem >
12 <occurElem >gTqNyYyb </occurElem >
13 <occurElem >xEXWdpVs </occurElem >
14 <occurElem >o</occurElem >
15 </ChoiceElem >
16 <secondInput >YjuyjuLd </secondInput >
17 </test:operation >
18 </soapenv:Body >
19 </soapenv:Envelope >

1 <?xml version="1.0"?>
2 <soapenv:Envelope
3 xmlns:soapenv="http:// schemas.xmlsoap.org/soap/
4 envelope/"

5 xmlns:test="http://www.example.org/test/">
6 <soapenv:Header >
7 <headerPart >ydykDkjj </headerPart >
8 </soapenv:Header >
9 <soapenv:Body >

10 <test:operation >
11 <ChoiceElem >
12 <field1 >value2 </field1 >
13 </ChoiceElem >
14 <secondInput >YjuyjuLd </secondInput >
15 </test:operation >
16 </soapenv:Body >
17 </soapenv:Envelope >

1 <?xml version="1.0"?>
2 <soapenv:Envelope
3 xmlns:soapenv="http:// schemas.xmlsoap.org/soap/
4 envelope/"

5 xmlns:test="http://www.example.org/test/">
6 <soapenv:Header/>
7 <soapenv:Body >
8 <test:anotherOp >
9 <anotherOpRequest >

10 <AllElem >
11 <AllElem2 >UwiiuPrA </AllElem2 >
12 <AllElem1 >IhESSchU </AllElem1 >
13 </AllElem >
14 </anotherOpRequest >
15 </test:anotherOp >
16 </soapenv:Body >
17 </soapenv:Envelope >

Figure 3. Messages generated by WS-TAXI

intermediate number of occurrences (when unlim-
ited, a maximum bound is set by the user before
instance generation);

• the string types are dealt with by generating com-
pliant input data.

Applying such rules, for every part of every input
message WS-TAXI can generate a number of instances
(at least as many as all the possible structures of the
part itself or its types). Input messages are then cre-
ated by suitably selecting instances of the various parts

3

composing the message, both in the SOAP header and
body. Ideally, this would require a cartesian product of
the instances of all parts; since this can quickly get out
of control, in generating the messages we apply some
heuristics inherited from the combinatorial and pair
wise testing [1] to draw without repetitions all di�er-
ent instances, until all of them have been used. Finally,
the SOAP envelopes are populated with the generated
message instances, as above.

The application of WS-TAXI to the example of Fig-
ure 1 would generate seven structurally di�erent SOAP
envelopes, which may be �lled by varying the input val-
ues, originating an arbitrary number of instances. A
sample of three of them is shown in Fig. 3. In particu-
lar, the �rst sample is an invocation to operation where
the occurElem has been chosen, with three occurrences.
The second is another invocation to operation where
�eld1 was chosen, and a speci�c value was randomly
selected from an enumeration. The third sample is an
invocation of anotherOp where the AllElem has been
chosen, and a random ordering has been assigned to the
elements in the AllType. Concerning the string type,
unless the type is constrained by an enumeration in the
schema, the possible options are either a random gen-
eration (as is the case for Fig. 3), or more meaningful
values retrieved from a database previously populated
for that purpose.

By comparing our generated test cases (Fig. 3) with
the results produced by soapUI (Fig. 2), the gain in au-
tomation is evident. While soapUI generates sketchy
outlines or very simple SOAP envelopes, our approach
delivers a more complete test suite which spans over
the several possible structures compliant with the as-
sociated XML Schema.

Increased automation comes coupled with �exibil-
ity: in WS-TAXI the tester is provided with several
handles through which the test generation process can
be tuned. The test suite generation can be driven by
basic coverage criteria and by the application of some
test heuristics. Moreover, by systematically combin-
ing the generated element instances in di�erent ways,
and by varying the number and data values of the in-
stances, the tester can automatically obtain as many
test messages as desired. The approach is detailed in
the next section.

3 Approach

In this section we detail the WS-TAXI framework.
The main activities performed by WS-TAXI are:

WSDL Analysis The WSDL speci�cation is parsed
and useful information, such as operations, messages

and the data structures (XSD), is automatically ex-
tracted1.
SOAP Envelope Derivation For each operation a
separate SOAP envelope is automatically extracted. It
does not contain ready-to-send messages so far, but
only their skeletons.
De�nition of Message Parts For each data struc-
ture in the WSDL speci�cation, di�erent message in-
stances are generated.
Composition of Envelopes The bogus data in the
envelope skeletons are replaced with the actual derived
instances.
Message Sending and Results Analysis The built
envelopes are sent to the service. The output messages
are collected and submitted to inspection.

We have realized a working prototype which incor-
porates soapUI and TAXI. The logical architecture of
the WS-TAXI framework is depicted in Figure 4. The
WS-TAXI activity starts taking the WSDL speci�ca-
tion of the service to be tested as an input. This is
given both to the soapUI and getXSD components. The
former is responsible of the SOAP envelope skeleton
derivation, while the latter extracts the schemas refer-
enced by or contained within the WSDL and passes
them to the TAXI component. This last one is in
charge of the actual message de�nition and will be
described in detail in Section 3.3. Once available,
the XML instances derived by TAXI and the enve-
lope skeletons generated by soapUI are both given to
the Composer component for assembly. Di�erent test-
ing coverage criteria can be adopted by Composer, as
described below. Besides, since this methodology can
lead to an exponential explosion of the number of gen-
erated envelopes, some heuristics to forcibly control the
number of test cases are also implemented. Finally the
Message Sender component sends the envelopes one
by one to the server and collects the results. As said,
the test oracle is not (yet) automated: the test results
are presented to the tester or could be checked against
provided expected output annotations (as is done also
by soapUI).

3.1 Coverage criteria

As mentioned, WS-TAXI can be used for testing a
service under di�erent levels of thoroughness, which
correspond to the di�erent coverage criteria adopted
by the Composer component:
Operation Coverage: For each envelope skeleton
provided by the soapUI component, corresponding to a

1We conducted our experiments considering WSDL using
RPC style. Nevetheless the tool should be applicable without
major revision to Document style.

4

Figure 4. Diagram of the WS-TAXI approach.

di�erent operation of the WSDL speci�cation, a single
TAXI-generated message is packaged into the envelope
(it is picked using a pseudo-random algorithm). For in-
stance, with respect to the WSDL depicted in Figure 1,
two messages are required to achieve operation cover-
age, one for operation and one for anotherOp. The �rst
(or second) and third samples in Figure 3 would su�ce.

Message Coverage: Among the messages declared in
the WSDL speci�cation only those used as inputs of the
operations are taken into account for testing purposes.
For this reason it is necessary to select a representative
(sub)set of operations so that all the di�erent input
messages are exploited at least once. As an example,
consider a set of operations Op1, Op2 and Op3 so that
Op1 uses messages A and B, Op2 uses messages C and
D, Op3 uses messages A and C; in this case, Op1 and
Op2 are su�cient to cover all the possible input mes-
sages (A, B, C, D). Then, for each message a suitable
instance is de�ned and packaged into the proper op-
eration envelope. Message instances are selected from
those provided by the TAXI component. The coverage
of input messages implicitly determines the coverage of
their parts. Considering Figure 1, since the two oper-
ations use di�erent input messages, message coverage
does not di�er from operation coverage.

Schema Coverage: The parts composing each mes-
sage could be associated to an XSD type or element.
For each data speci�cation, a set of instances is de-
rived. The instances may vary either in structure or
in value. Note that to cover the full set of the XSD
structures, a subset of the messages required as input
operations might be su�cient. From this observation,
we conceived the mixed approach below. Using the
sample WSDL from Figure 1, since the input message
for operation contains a choice with an element with

minOccurs and manOccurs attributes, seven instances
are needed to cover that schema (one for each child of
the choice, except for the occurElem which needs three
instances, as described in Section 2). In particular, the
�rst sample in Figure 3 shows the occurElem selection
with the maximum allowed occurrences, while the sec-
ond one shows the �eld1 selection; we omit the remain-
ing ones due to space constraints. Additionally, the
same set of instances is su�cient to cover the schema
for the input message of anotherOp also (because an-
otherOp uses only the ChoiceType), so there is no need
to have instances related to that operation.

Mixed Approach: The two criteria of operation cov-
erage and schema coverage are combined together for
deeper analysis. Speci�cally, each operation is selected
at least once, and in addition, where applicable, each
operation is invoked repeatedly so as to cover all the
possible data structures of the input messages. Again,
following our example, to achieve the mixed approach
it is necessary to make a schema coverage of all mes-
sages. This implies using the seven instances from the
schema coverage, plus seven more for covering the mes-
sage of anotherOp. One of the additional instances is
the third sample in Figure 3.

Concerning the relationships among the proposed
criteria: Operation coverage implies message coverage
but not the opposite. Operation and message coverage
guarantee that each schema type or element has been
exercised at least once but do not guarantee that ev-
ery possible structure has been generated for each type
or element. Schema coverage does not automatically
imply message or operation coverage.

In the rest of this section we further detail the role of
the soapUI and TAXI tools into the WS-TAXI frame-
work.

5

3.2 soapUI

soapUI [9] is a tool developed by Eviware Software
AB, available both in free and improved commercial
versions. It assists programmers in developing SOAP-
based web services. In particular, it can:

• generate stubs of SOAP calls for the operations
declared in a WSDL �le;

• send SOAP messages to the web service and dis-
play the outputs;

• mock a web service, by providing a listening server
compliant with a WSDL �le;

• populate a data source and generate messages with
data extracted from it (only in the commercial ver-
sion; this feature requires a certain amount of do-
main knowledge and skill with the tool usage. Fur-
thermore choices, all, occurrences and other con-
structs are not automatically dealt with);

• run batch tests, and (in the commercial version)
produce some partial information about coverage
of the data value sets used in the operations.

For the purposes of this research we mainly used the
�rst feature, and, to a minor extent, the second one for
some preliminary tests.

3.3 TAXI

TAXI (Testing by Automatically generated XML In-
stances) [6, 20] is a tool able to generate compliant
XML instances from a given XML Schema. It has been
conceived so as to cover all interesting combinations of
the schema by adopting a systematic black-box crite-
rion. For this reason, TAXI applies the well-known
Category Partition (CP) technique [13] to the XML
Schema. CP provides a stepwise intuitive approach to
identify the relevant input parameters and environment
conditions and combine their signi�cant values into an
e�ective test suite.

Here below we present the main activities of the
TAXI component. TAXI activity starts with the anal-
ysis of an input XML Schema. In case choice elements
are included into the schema, a set of sub-schemas are
derived by selecting a di�erent child from each choice
element. In the likely case that more than one choice
elements are present, a combinatorial methodology of
choice children is performed. This ensures that the set
of sub-schemas represents all the possible structures
derivable from choice.

The implementation of CP requires the analysis of
the XML Schema and the extraction of the useful in-
formation. Element occurrences and types are ana-
lyzed, and the constraints are determined, from the
XML Schema de�nition. In particular, boundary val-
ues for minOccurs and maxOccurs are de�ned: for in-
stance if maxOccurs is associated to �unbounded�, a
suitable value is used; if speci�c values are de�ned for
minOccurs and maxOccurs, they are used as boundary
values. Exploiting the information collected so far and
the structure of the (sub)schema, TAXI derives a set
of intermediate instances by combining the occurrence
values assigned to each element.

The �nal instances are derived from the intermedi-
ate ones by assigning values to the various elements.
Two approaches can be adopted: values can be picked
from a database embedded within TAXI or generated
randomly if no value is associated to an element in the
database. In the former case the database should be
previously populated with meaningful values for each
element. The database does not play an active role in
the testing process; it only serves as a data source for
building the instances. Since the number of instances
with di�erent structures could be huge, in the current
implementation TAXI only selects one value per ele-
ment for each instance.

During the �nal instance derivation, particular care
is devoted to the all elements. Each time an all con-
struct is in an intermediate instance a random sequence
of the all children elements is chosen for generating the
�nal instance. This new sequence is then used during
the assignment of values to each element.

In order to make the generation more �exible, TAXI
also provides di�erent test strategies to pilot the in-
stance generation. This requires, for instance, either
the coverage of the possible (sub)schemas, or occur-
rence combinations, or value combinations, or simply
the generation of a pre�xed number of instances. For
space constraints we do not provide further details but
we refer to [6] for a more accurate description.

3.4 What WS-TAXI does not do

In the paper, we have sometimes used the term �test
suite� to refer to the set of test messages generated by
WS-TAXI, but we did so somewhat improperly. Since
the generation is only based on the WSDL syntax, in
its current version WS-TAXI only produces ready-to-
launch test input messages, such as those shown in
Fig. 3, but cannot also automatically produce the test
oracle. As said, presently the test results are collected
and presented to the tester or checked against user-
provided annotations. However, all the generated mes-

6

sages are compliant by construction to the WSDL in-
terface. Hence, even though we cannot predict the ser-
vice response, we know at least a partial oracle, that
is, it is mandatory that all WS-TAXI test messages be
accepted by the service under test.

Another natural limitation of WS-TAXI, as well as
of any other syntax-based test approach, is that the
generated test messages do not consider possible depen-
dencies between messages, i.e., WS-TAXI is (as yet) ag-
nostic of any protocol. For such necessities, other test
approaches, based on behavioural speci�cation, should
be considered.

4 Case Study

To measure the strength of the proposed approach,
our methodology has been applied to a web service
which queries a publications database. The service
is described in Sec. 4.1, and the empirical study in
Sec. 4.2.

4.1 The Pico service

Pico is a web-based PHP application for scienti�c
publication management currently in use at Scuola Su-
periore Sant'Anna [2]. Registered users can add, edit
and remove the publications in the database, however
its information is publicly available, therefore search
results can be viewed by non-registered users. Beyond
direct connection to the database, searches can be ex-
ecuted through the provided web service using SOAP
invocations. Tests were conducted on a system running
a development version of the Pico software on a subset
of the real publications database. The service, based
on a SOAP RPC binding, runs on PHP 5.2.5 using
the native SOAP module, and the underlying database
application is MySQL 5.0.45 Community Edition. For
the sake of simplicity, although the service is composed
of a high number of operations for di�erent purposes,
only three of them are used in this experiment (for a
total of 215 PHP LOCs) and included in the WSDL
�le processed by WS-TAXI:
searchByAuthor performs a search of all the publi-
cations in the Pico database including a given name in
their list of authors.

• Inputs: author's name (type: string); research
sector. If not speci�ed, then all research sectors
will be included in the search (type: string); year
(type: string); publication type (journal, confer-
ence proceedings...). If not speci�ed, then all pub-
lications from this author will be returned (type:
string).

• Outputs: a list of references. If no publications rel-
ative to the requested author were found an empty
element is returned (type: sequence of record ele-
ments, from a custom XML Schema De�nition).

searchByTitle performs the search according to the
requested title.

• Inputs: publication title, or part thereof (type:
string).

• Outputs: a list of references identical to the pre-
vious function.

pdfGetter recovers the �le containing the printable
form of the publication and returns its URL. It is im-
portant to note that this function does not actually
return a PDF �le, but a publicly accessible URL, so
the requestor has a greater �exibility in choosing how
to recover the actual �le.

• Inputs: the name of the �le (type: string).

• Outputs: the full URL where the �le can be re-
trieved, or an empty value if it is not available
(type: string).

4.2 Experimentation

To evaluate the bene�ts provided by a new test
methodology, it is usual to generate mutants of a sys-
tem under test and measure how many of them are
killed. In our case study, a �trusted� version of the
Pico web service has been used as a basis, and a num-
ber of mutants has been generated from it. We have
not found any mature or consolidated tool for PHP mu-
tations, therefore we have generated a number of mu-
tants by ourselves, using the following standard rules
for mutation:

• statement deletion: Every statement that could be
deleted without leading to incorrect PHP code has
been commented out, generating a separate mu-
tant, for a total of 105 mutants;

• booleans: every if statement has been forced to
true and false, generating two mutants for each
such statement, for a total of 32 mutants;

• logical operators: every <, <=, > and >= oper-
ator has been replaced with the other three and
with ==, giving 4 mutants each, for a total of 8
mutants;

• boolean operators: every == or != operator has
been replaced with its opposite, giving a total of
8 mutants.

7

The total number of mutants is 153. Another usual
problem in evaluating a new test methodology is to
compare it against a relevant baseline method, to show
how the new approach improves over the old one. In
our case, we are not aware of any other approach that
can automatically derive a systematic test suite as we
do. We therefore decided to compare our automated
test suite against a manually generated one, mimicking
a tester using the soapUI tool.

Against the generated mutants, two parallel testing
approaches have thus been undertaken. On one side,
for each operation, 4 custom test cases were built ad-
hoc from soapUI skeletons by an expert tester. On
the other side, for a fair comparison, the same number
of SOAP calls were generated using WS-TAXI, under
the mixed coverage approach (see Section 3). Both
test suites were made up exclusively of XSD-compliant
messages, and included both data actually taken from
the publications database, and �ctitious names or key-
words. A total of 12 operations for each test suite were
therefore run.

As a result, we observed that the custom test suite
managed to kill 65 mutants, while the WS-TAXI test
suite killed 106. A deeper analysis revealed a gener-
alized result for the custom test suite, meaning that
the non-killed mutants belonged to all of the four pre-
viously de�ned categories; on the other hand, the re-
maining mutants for the WS-TAXI test suite were con-
centrated among those created with the booleans rule.

In the above test, however, WS-TAXI was under-
utilized: employing this tool for such a low number
of tests is a nonsense. We then progressively increased
the number of SOAP calls generated by WS-TAXI, and
run an extended version of the previous test. We did
not do the same for the custom tests, due to the ex-
cessive e�ort required to manually build a lot of SOAP
envelopes.

With 20 instances for each of the three operations,
we did not obtain any improvement. With 50 instances
per operation, we killed an extra 2 mutants. With
100 and 200 calls per operation, we managed to kill 3
additional mutants, for a total of 111. A deep static
analysis of the code of the remaining 42 mutants led
to the conclusion that further increasing the number of
tests would not manage to kill any more mutants. A
summary of the results is shown in Table 1.

The 42 non-killed mutants were thus classi�ed:

• 22 mutants were actually equivalent. PHP does
not enforce declaring arrays, for example, there-
fore deleting such a statement causes a perfor-
mance loss, but does not compromise the results.
Since PHP is a loosely-typed language, there were
several mutants which would slow down perfor-

mance or issue some warning (if warnings were en-
abled) but are actually equivalent from the point
of view of functionality;

• 18 mutants were also equivalent, but they helped
evidence two small bugs in the source code of the
original application. This will be explained in
greater detail later in this section;

• there were 2 mutants which our test suite was not
able to distinguish, so they remained alive.

Tests Killed Not killed Percentage
12 (manual) 65 88 42.48%

12 106 47 69.28%
20 106 47 69.28%
50 108 45 70.59%
100 111 42 72.55%
200 111 42 72.55%

Table 1. Summary of the WS-TAXI results.

The �rst result that needs some thoughtful consider-
ation is the fact that the automatically-generated test
suite is actually more e�cient than the manual one.
Reasonably, given enough time, a professional tester
could achieve results much similar if not equivalent to
those of the automated test suite. However, manu-
ally writing test cases takes much longer than an au-
tomated exhaustive XML-based generation, and might
not be su�cient to cover the whole spectrum of criti-
calities. An interesting side aspect is that running the
automated test suite with 200 instances per operation
still required much less time than the 12 instances per
operation manually written by the tester.

A thoughtful analysis of the results proved that the
2 alive mutants were missed not directly because of is-
sues in the WS-TAXI methodology, but rather because
of the sample data with which the TAXI database had
been populated. There were no data values covering
the speci�c di�erences of those mutants from the orig-
inal: indeed, this further con�rmed us the importance
of producing a good number of input messages varying
the data values, as can be done with WS-TAXI.

An important side e�ect of this analysis was the op-
portunity to detect two bugs in Pico which had not
popped out before. One of these errors was related to
some search parameters which were not passed to the
search function; this parameters would act as a �lter
on the search results, and their absence returns some
results which may not be requested in the search. The
second error was the lack of the journal element in the
XSD speci�cation of the return data, so that journal
articles did not include the name of the periodical.

8

The in-use version of the Pico software has been
thoroughly tested and is bug-free enough for ordinary
use, while the version used for this experiment contains
several improvements which still have to be integrated
into the in-use application. Several tests had been pre-
viously run against the new features, but these were
not su�cient to highlight those errors.

For completeness, we also ran the mutation testing
against the instances generated by soapUI. Of course,
these are not apt for testing, because they are com-
pletely independent of the aplication and populate the
�elds with very basic data, and without any variability
(i.e., all generated instances for an operation are identi-
cal). Our experiments con�rmed that such a test suite
behaves very poorly, managing to kill only 23 mutants
out of 153.

In conclusion, the experiments showed out that the
systematic approach o�ered by WS-TAXI can provide,
in a completely automated way, a test suite which is
more e�ective than the one which is created manually.
In particular, having a test suite which covers such a
wide range of variability in the structure and the values
of the data would require a huge e�ort if done manu-
ally, even starting from a basis of automatically gener-
ated skeletons such as those provided by soapUI. Even
though we have not yet performed benchmark evalu-
ation, the e�ort and time required appear drastically
reduced using this methodology.

5 Related Work

In the introduction we have already cited some re-
lated industrial tools. We are now going to discuss
the related work from a perspective more related to
academic research. Notwithstanding the many open
challenges in service testing, there are not as many pa-
pers as we could expect. Indeed, as noted in a 2005
report [16], the area of testing services and their spec-
i�cations has until now received limited attention from
the research community. Three years have passed from
such claims, but in our opinion the situation has not
changed a lot. We recently conducted a survey of sev-
eral main conferences (i.e., ICSE, ICSOC, ICWS) and
also workshops including �service-related� engineering
activities within their lists of topics. We discovered
that only around 30 papers on web service testing had
been published until 2006. Making a cross-check, in its
�rst edition, ICST, has a few papers on web applica-
tions and just one on services; symmetrically, the In-
ternational Conference on Service-oriented Computing
in its 2007 edition included only one paper on testing
and the same was true for the 2006 edition. Therefore,
we still need additional e�ort on WS testing research.

An interesting perspective on new challenges, oppor-
tunities and stakeholders in the testing of web services
can be found in [7]. Among the various opportunities
our approach tries to take advantage from the usage of
standard descriptions and open formats to automati-
cally manipulate and generate SOAP messages.

The direct manipulation of SOAP messages for test-
ing purpose is also investigated by [12] which, to verify
service behaviour, proposes to capture SOAP messages
and to replay modi�ed versions of the same message.

To the best of our knowledge, the only works which
address issues similar to ours are [4] and [18]. The �rst
work proposes XML-based test data generation and
test operation generation. However, this work only out-
lines the possible perspectives of WSDL-based testing,
but does not provide a tool, nor does it rely on standard
test approaches. Similarly the second work permits to
automatically generate SOAP messages from WSDL
speci�cation. Nevertheless this is done generating ran-
dom values for the parameters in a invocation. More-
over the aprroach used does not seem easily exsten-
sible to a document-style WS interaction paradigm.
WS-TAXI o�ers a �turn-key� approach which focuses
on a systematic generation of test cases based on the
CP algorithm that is equally applicable to RPC or
document-style interaction paradigm.

Finally, automatic generation of instances from
XML Schemas is nowadays a feature of some, even
commercial, tools [3, 21, 19]. Therefore in principle our
approach could be pursued even using other XML in-
stance generators then TAXI. Nevertheless we are not
aware of any existing tool that tries to address the XML
instance generation step in a systematic manner by
applying well founded test strategies. Other interest-
ing directions of investigation, related to the automatic
derivation of instances, concern work done within the
Model Driven Engineering community [8, 17]. How-
ever, since XML Schema does not contain constraints,
the task of XML instance generation seems to be easier
than model-based generation performed within MDE.

6 Conclusions and Future Work

Testing of Web Services is a challenging activ-
ity. Many characteristics (run-time discovery, multi-
organization integration) of this new paradigm and its
related technologies certainly contribute to make test-
ing much more di�cult. Nevertheless there are other
characteristics that could be fruitfully exploited for
testing purposes. Among these, the representation of
data in a computer readable format (typically XML-
based) facilitates the automatic derivation of data in-
stances to be used for testing invocations.

9

Starting from this consideration we developed a
methodology and a tool to automatically derive data
instances from WSDL descriptions. Such data rep-
resent possible values that a real implementation of
the service should be able to handle. The generated
data instances are encapsulated in correct SOAP en-
velopes that can be used to invoke a service implemen-
tation. Furthermore we exploited the characteristics
of an XML Schema-based data description to auto-
matically apply well known testing methods such as
Category Partition and boundary value selection. This
results in the derivation of a suite of messages that are
representative of the space of possible messages.

We experimented our approach on a real service im-
plementation used to retrieve and store bibliographical
data. The service was reasonably correct since already
deployed and tested for some time. Therefore in or-
der to check our approach we applied a mutant-based
strategy using the existing service implementation as a
trusted version (the oracle). As a baseline, we adopted
a manually derived test suite; we then executed the
two test suites, the one automatically derived by WS-
TAXI and the one built by the expert tester, on the
mutants. The results were encouraging. The auto-
matically generated test suite killed about 70% of the
derived mutants against about 43% killed by the man-
ual one (being 65% more powerful). By increasing the
number of WS-TAXI test messages, we were able to
kill all non-equivalent mutants except two and, to our
surprise, we were also able to identify two errors in the
trusted version that had not been discovered before.

Main tasks for the future include: to perform more
extensive evaluations of other case studies in order to
identify fault categories that are easily discovered and
better de�ne the usage scope; to extend WS-TAXI
functionality so as to also generate non-compliant test
cases that can support robustness testing of the in-
voked service; to improve WS-TAXI implementation
and make it available to the community for free down-
load and experimentation.

References

[1] Automated combinatorial testing for software - be-
yond pairwise testing. http://csrc.nist.gov/

groups/SNS/acts/index.html#combinatorial.

[2] Pico 5. http://pico.sssup.it/, 2006.

[3] Altova. XML Spy. http://www.altova.com/

products/xmlspy/xml_editor.html.

[4] X. Bai, W. Dong, W.-T. Tsai, and Y. Chen. WSDL-
based automatic test case generation for web services
testing. In Proc. of IEEE Int. Work. SOSE, pages
215�220, Washington, USA, 2005. IEEE Comp. Soc.

[5] C. Bartolini, A. Bertolino, E. Marchetti, and A. Polini.
Towards automated WSDL-based testing of web ser-
vices. In Proc. ICSOC 2008, 2008. to appear.

[6] A. Bertolino, J. Gao, E. Marchetti, and A. Polini. Au-
tomatic test data generation for XML Schema based
partition testing. In Proc. Int. Work. on Automation
of Software Test (ICSE'07 companion), Minneapolis,
Minnesota, USA, May 2007.

[7] G. Canfora and M. Di Penta. Testing services and
service-centric systems: challenges and opportunities.
IEEE IT Prof., 8(2):10�17, March/April 2006.

[8] K. Ehrig, J. Küster, G. Taentzer, and J. Winkelmann.
Generating instance models from meta models. In
FMOODS'06 (Formal Methods for Open Object-Based
Distributed Systems), pages 156 � 170, June 2006.

[9] eviware. soapUI; the Web Services Testing tool. http:
//www.soapui.org/. accessed 2008-05-30.

[10] Gartner. 2007 Press Release: Bad Technical Imple-
mentations and Lack of Governance Increase Risks of
Failure in SOA Projects. http://www.gartner.com/

it/page.jsp?id=508397. accessed 2008-09-30.
[11] Global Information Inc. SOA infrastructure mar-

ket shares, market strategy, and market forecasts,
2008-2014. http://www.the-infoshop.com/study/

wg64381-soa-infra-mkt.html, 2008. acc. 2008-05-22.
[12] J. O�utt andW. Xu. Generating test cases for web ser-

vices using data perturbation. SIGSOFT Softw. Eng.
Notes, 29(5):1�10, 2004.

[13] T. J. Ostrand and M. J. Balcer. The category-partition
method for specifying and generating fuctional tests.
Commun. ACM, 31(6):676�686, 1988.

[14] Parasoft. SOATest. http://www.parasoft.com/jsp/

products/home.jsp?product=SOAP. acc. 2008-06-03.
[15] PushToTest. PushToTest TestMaker. http://www.

pushtotest.com/Docs/downloads/features.html.
accessed 2008-06-03.

[16] A. Sassen and C. Macmillan. The service engineering
area: An overview of its current state and a vision of
its future. Technical report, EU Commis., July 2005.

[17] S. Sen, B. Baudry, and J.-M. Mottu. On combining
mullti-formalism knowledge to select test models for
model transformaion testing. In IEEE 1st ICST, Lille-
hammer, Norway, April 2008.

[18] H. M. Sneed and S. Huang. The design and use of
WSDL-test: a tool for testing web services. Journal
of Software Maintenance and Evolution: Research and
Practice, 19:297�314, 2007.

[19] Sun. Sun XML Instance Generator. http:

//wwws.sun.com/software/xml/developers/

instancegenerator/index.html, 2003.
[20] TAXI. Testing by Automatically generated Xml

instances. http://labse.isti.cnr.it/index.php?

option=com_content&task=view&id=94&Itemid=49.
[21] Toxgene. Toxgene. http://www.cs.toronto.edu/

tox/toxgene/, 2005.
[22] WWW Consortium. WSDL version 2.0. http://www.

w3.org/TR/wsdl20/, 2007.

10

