An Evaluation of Model Checkers for Specification Based Test Case Generation

Gordon Fraser*
Institute for Software Technology
Graz University of Technology
Inffeldgasse 16b/2
A-8010 Graz, Austria
fraser @ist.tugraz.at

Abstract

Under certain constraints the test case generation prob-
lem can be represented as a model checking problem, thus
enabling the use of powerful model checking tools to per-
form the test case generation automatically. There are,
however, several different model checking techniques, and
to date there is little evidence and comparison on which
of these techniques is best suited for test case generation.
This paper presents the results of an evaluation of several
different model checkers on a set of realistic formal speci-
fications given in the SCR [21] notation. For each specifi-
cation test cases are generated for a set of coverage crite-
ria with each of the model checkers using different config-
urations. The evaluation shows that the best suited model
checking technique and optimization very much depend on
the specification that is used to generate test cases. How-
ever, from the experiments we can draw general conclu-
sions about which optimizations are useful and which model
checking technique is best suited for which type of model.
Finally, we demonstrate that by combining several model
checking techniques it is possible to significantly speed up
test case generation and also achieve full test coverage for
cases where none of the techniques by itself would succeed.

1. Introduction

Software testing is an essential part of every software de-
velopment process. Due to its complexity and incomplete-
ness automation is desirable. Several different techniques
to automatically derive test cases have been presented in
the past. One particular category of such approaches uses

*The research herein is partially conducted within the competence net-
work Softnet Austria (www.soft-net.at) and funded by the Austrian Fed-
eral Ministry of Economics (bm:wa), the province of Styria, the Steirische
Wirtschaftsforderungsgesellschaft mbH. (SFG), and the city of Vienna in
terms of the center for innovation and technology (ZIT).

Angelo Gargantini

Dip. di Ing. dell’Informazione e Metodi Mat.

University of Bergamo
Viale Marconi 5
24044 Dalmine, Italia
angelo.gargantini @unibg.it

dedicated test models or formal specifications to systemat-
ically derive test cases. In this context, the formal verifica-
tion technique model checking has been proposed as a ver-
satile technique to derive test cases and can adapt to many
different requirements of the testing process.

The term model checking describes the process of veri-
fying an automaton model against a temporal logic specifi-
cation; several different techniques to perform this verifica-
tion have been presented in the past. The techniques differ
in the underlying data structures and algorithms, and opti-
mizations have been presented for all of them. To date it
is not clear which of these techniques is best suited when
using model checking to derive test cases, which is usually
done by formalizing test objectives as temporal logic prop-
erties and deriving counterexamples as test cases for these
properties. In fact there are critical voices that claim that
model checking is not suitable for test case generation at
all. However, there is little empirical evidence on this topic
and very little comparison of the different techniques.

This paper aims to fill this gap and reports on exper-
iments to compare and evaluate different model checking
techniques with regard to their suitability for test case gen-
eration. Previous work on this subject was usually based
on a translation from a formal language to only one model
checker, and that translation was seldom automated. In con-
trast, we are able for the first time to automatically translate
the same specifications to five different model checkers, and
this has allowed us to perform a novel comparison of the
techniques implemented by these model checkers.

The evaluation is based on a set of real-life specifications
given in the requirements specification language SCR (soft-
ware cost reduction method [21]). Several restrictions apply
to this type of testing: Specifications are assumed to be de-
terministic, and models are assumed to be fully observable.
The specifications are automatically translated to the input
languages of several different available model checkers. Af-
ter the conversion, test cases are generated for each speci-
fication/model checker pair for a set of different coverage

criteria using different configurations of the model checker;
each coverage criterion can be presented as a set of tem-
poral logic predicates such that counterexample sequences
to these predicates represent test cases. Furthermore, ran-
dom test cases are generated in order to allow a comparison
between random testing and test case generation based on
model checking. In detail, the analysis tries to answer the
following questions:

e Which model checking technique is best suited for test

case generation?

e Which optimizations are useful in the context of test

case generation?

e What impact does the choice of model checking tech-

nique have on the test case generation?

This paper is organized as follows: Section 2 gives a
brief overview on model checking techniques and describes
how the test case generation problem can be represented as
a model checking problem. Section 3 describes the tools,
specifications, and coverage criteria used in the evaluation.
Then, Section 4 presents the results of our experiments and
Section 5 discusses and analyzes the results. Finally, Sec-
tion 6 draws some general conclusions.

2. Background

In general, model checking describes the process of de-
termining whether an automaton model satisfies or violates
a specification given as temporal logic properties. The most
common logics are the linear time logic LTL [30] (Linear
Temporal Logic), and the branching time logic CTL [12]
(Computation Tree Logic). One of the most useful aspects
of this process is that model checkers can create witnesses
or counterexamples that illustrate how a property is satisfied
or violated, respectively. This particular feature is exploited
for software testing, as counterexample sequences can be
interpreted as test cases under certain constraints (e.g., de-
terminism and observability).

2.1. Model checking

Historically, the first successful model checking ap-
proach was explicit model checking, which performs an
explicit search in a model’s state space, considering one
state at a time. The search might be based on a breadth-
first search (BFS), depth-first search (DFS) or possibly also
heuristic search algorithm. There are several different ap-
proaches based on different temporal logics [13]. The
state explosion problem limits the applicability of exhaus-
tive explicit model checking, but when the goal is not ver-
ification but generation of counterexamples then explicit
model checking is useful even for large models. Symbolic
model checking [28] uses ordered binary decision diagrams
(BDDs [7]) to represent sets of states and function relations
on these states efficiently, which allows the representation
of significantly larger state spaces. Finally, bounded model
checking [6] (BMC) reformulates the model checking prob-

lem as a propositional satisfiability (SAT) problem, which
contains the unfolded transition relation and the negation of
a property up to a certain bound. If this problem is solvable
then any solution is a counterexample; the main intention of
bounded model checking is not exhaustive verification but
fast generation of counterexamples.

Due to space restrictions it is not possible to give de-
tailed overviews of the various model checking techniques;
instead, we refer the interested reader to the standard litera-
ture on the topic, e.g., [6, 13, 28].

2.2. Testing with model checkers

In order to use model checkers to generate test cases,
the test objective (e.g., satisfaction of a coverage criterion)
has to be encoded in temporal logic. Each distinct test re-
quirement (e.g., coverage item) of the overall objective is
encoded as a temporal logic property (trap property or test
predicate) [19, 25, 31]. When using counterexamples these
properties claim that the test requirements cannot be sat-
isfied; consequently, any counterexample to a test predi-
cate represents a test case that satisfies the test requirement
posed by the property. Other test objectives include, for ex-
ample, mutation testing [1] or combinatorial testing [8, 27].
The charm of testing with model checkers is that once a
framework has been created it is very easy to apply any of
these techniques, or combine several at the same time.

Counterexamples returned by model checkers are se-
quences of states. In this paper, we assume that a test case
is also a sequence of states, and each state represents input
and output values serving as test data and test oracle: For
each state, test data is provided as input to the system under
test and the returned outputs are compared to the expected
output values. The length of a test case is defined as the
number of states it consists of. For example, this type of
test cases is used for reactive systems, such as those spec-
ified in SCR notation. Note that counterexamples can also
have other interpretations; for example, in [25] counterex-
amples are control flow paths.

For a detailed overview of testing with model checkers
we refer to [18]. The evaluation presented in this paper uses
coverage based techniques: Each coverage item represented
by a given coverage criterion is encoded in temporal logic,
such that a counterexample derived for the property is a test
case for the underlying coverage item.

3. Experimental setup

In order to evaluate different model checking techniques
and optimizations we use different model checkers in vari-
ous configurations to create test cases for various specifica-
tions and coverage criteria; this section contains all relevant
details about the experiments.

3.1. Model checkers

The following freely available model checkers were used
in our evaluation:

Spin: Spin [24] (Simple Promela Interpreter) is an
explicit state model checker which supports a wide range
of options. In particular, we are interested in the main
supported search strategies depth-first search (DFS) and
breadth-first search (BFS). Spin supports various techniques
of compression which aim to reduce the amount of mem-
ory needed for storing states. We consider bitstate hashing
(BH), introduced by Holzmann [22], which is an optimiza-
tion technique that can greatly reduce the memory require-
ments of a model checker by probabilistically storing the
visited states. In addition, we are interested in Wolper’s
hash-compact (HC) method [33], and the lossless collapse
compression (CC) [23]. In all runs partial order reduction
is disabled as the specifications do not have several agents;
weak-fairness is disabled, and an optimization for the case
where no cycle detection is needed is enabled. Finally, Spin
also supports generation of random paths, which allows us
to perform a ‘sanity check’ whether test case generation
with model checkers outperforms random test cases. With
random simulation, we force Spin to randomly choose with
a pseudo-uniform distribution a monitored variable and then
to choose a legal change of that variable (in SCR one mon-
itored variable changes at every step and such a change is
called input event). In this way, even if the system admits
more changes of a variable = than another variable y, the
probabilities of a change of x or y at every step do not dif-
fer. We have generated random paths of length up to 10
millions states.

NuSMYV: NuSMV [10], based on ideas of the classi-
cal SMV [26] (Symbolic Model Verifier) developed by Ken
McMillan at CMU, is a symbolic model checker which sup-
ports both BDD based symbolic model checking as well
as SAT based bounded model checking. For BDD based
model checking NuSMV supports both CTL and LTL prop-
erties; NuSMYV is able to analyze LTL specifications with
the BDD-based algorithm by using the approach presented
in [11]: For each LTL property, a tableau of the behav-
iors falsifying the property is constructed, and then syn-
chronously composed with the model. Several SAT solvers
are supported (MiniSAT [16], ZChaff [29], and the SIM
solver developed by the NuSMV team). NuSMYV also sup-
ports many options; in particular, we are interested in the
following optimization techniques: COI [3] (cone of influ-
ence reduction), which results in considering only the vari-
ables which the property to be proved depends on. Fur-
thermore, NuSMV provides a simplified algorithm (AG) for
cases when the property to be proved is a simple invariant
and does not contain temporal operators, which is the case
for some of the test predicates used in the evaluation.

Cadence SMV: Cadence SMV' is also related to
SMV [26]. In our evaluation we use the BDD based sym-
bolic model checking technique provided by Cadence SMV,
in order to compare different symbolic model checkers.

SAL: SAL [14] (Symbolic Analysis Laboratory), is a
model checker implemented in the language Scheme, and
supports both BDD based model checking and bounded
model checking. It uses the same BDD library as NuSMV
(CUDD [32]) but it does not use the same direct tableau
construction. The SAL bounded model checker is based on
the Yices SAT solver, and it can also perform a unique “in-
finite” model checking based on SMT solving.

In our experience, different model checkers can behave
very differently even if they are based on the same princi-
ples. For example, at times NuSMV might run out of mem-
ory when SAL has no problems, or vice versa. In addition,
using several model checkers that implement similar tech-
niques should allow us to gain insights on the effects of cer-
tain optimizations, implementations, and data types.

3.2. Specifications

In order to increase the confidence in the generality of
the results we obtain from the experiments, the evaluation
uses several specifications with different characteristics. Ta-
ble 1 lists statistics of the formal specifications used in the
evaluation: the number of monitored variables (Mon.) and
the number of dependent variables (Dep.), i.e., internal vari-
ables and outputs, and the number of possible input com-
binations (Input Comb.) and states (Total States). The
specifications are given in SCR (Software Cost Reduction
method [21]) notation, and for the experiments they are au-
tomatically translated to the input languages of the model
checkers. The ‘cruise’ specification models a simple auto-
motive cruise control [2], ‘sis’ models a Safety Injection
System which controls the coolant injection of a nuclear
power plant [21], the ‘autopilot’ specifies the requirements
of a simplified mode control panel for the Boeing 737 au-
topilot [4], ‘bombrel’ is a simplified subset of the bomb re-
lease requirements of a U.S. Navy attack aircraft [5], and
‘car3prop’ is the complete specification of a “car overtak-
ing” protocol, intended to coordinate intelligent vehicles on
a road [17]. Autopilot, bombrel, and sis are examples of
classical reactive systems which monitor some integer in-
puts and control few critical outputs: in order to adequately
test them, one should choose the right values of the inputs in
possible big intervals. Cruise and car3prop do not have inte-
ger inputs and the internal logic of the controller is the most
critical part to be tested. For this reason, these two specifi-
cations do not have disequality split (DS) and boundary (B)
test predicates, while they present a relatively high number
of test predicates for MCDC (see Table 2 and Section 3.3).

Uhttp://www.kenmemil.com/smv.html

Table 1. Specification statistics.

Name Variables Size
Mon. Dep. InputComb. Total States
autopilot 10 9 2.82e+11 4.78e+18
bombrel 9 3 8.28e+07 9.94e+08
car3prop 5 12 1.23e+05 1.01e+13
cruise 4 1 3.20e+01 1.28e+02
sis 3 3 2.00e+04 2.40e+05
Table 2. Test predicates.

Name T SM MCDC DS B b

autopilot 44 99 178 32 2| 355

bombrel 13 21 39 4 2179

car3prop 53 171 289 0 0513

cruise 12 15 51 0 0| 78

sis 13 21 41 8 8| 91

3.3. Coverage criteria

For each of the SCR specifications several sets of test
predicates are automatically generated according to differ-
ent coverage criteria. SCR specifications consist of differ-
ent types of tables which in turn consist of cells that contain
logical expression over modes. In SCR, a mode is an inter-
nal term of a specification that captures the system history:
Each mode defines an equivalence class of system states
useful both in specifying and in understanding the required
system behavior. We used the following coverage criteria in
our experiments:

e Table coverage (T): Every cell is covered once.

e Split mode coverage (SM): If a cell refers to several

modes, it is covered for every mode.

e Disequality split (DS): Expressions containing dise-
quality operators are covered for both cases of the dis-
equality. For example, > is split into > and =.

e Boundary coverage (B): Cover boundary values of dis-
equalities in expressions. For example, y > C' (with z
and C integers) is splitintox = C'+1and z > C' + 1.

e Modified Condition Decision Coverage (MCDC):
Each literal (condition) is shown to independently af-
fect the value of the expression (decision) it is part of.
We use masking MCDC [9].

Table 2 summarizes the test predicates generated for each of
the specifications and coverage criteria. To keep the number
of tables in the paper to a tractable number each experiment
uses the union of a specification’s test predicates.

4. Results

Tables 3-5 contain some data about the experiments we
performed?. For space reasons we can only report a small

2For the entire set of results see http://cs.unibg.it/gargantini/software

fraction of the data we have, since for every case study we
ran around 45 different model checkers and options; the pre-
sented data was selected with respect to the discussion in
the next section. Tables report the best run for every model
checker and several other runs to give evidence to our con-
clusions. We ran all the experiments on a Linux PC with In-
tel(R) Xeon(R) CPU at 2.66GHz and 4 GB of RAM. We set
the timeout for every call of the model checker to one hour.
To evaluate the memory consumption we use the memusage
command available on Linux systems, which unfortunately
in some cases did not report reliable results.

Each table lists results for one or more specifications:
First, it contains the model checker and options used. Op-
tions are listed in terms of their abbreviations and acronyms
as introduced above. In addition, values of the type ‘dx’
represent a search depth of x for bounded model checking,
‘mz’ means a search depth of z for Spin® , and ‘wa’ speci-
fies the size of the hashtable for Spin. For random test gen-
eration the option represents the number of states (length)
that each random test case should have.

The number of runs shows how often the model checker
was called until either all test predicates were covered, a
timeout was reached, memory was exhausted, or there were
no more test predicates that the model checker had not
been called on. Consequently, each run can either success-
fully generate a test case, return with an error (e.g., timeout
reached or no counterexample found within boundary), or
determine that a test predicate is infeasible, i.e., there exists
no test case to cover the test predicate. If a test case is gen-
erated, all remaining test predicates that are also covered by
that test case are removed, and so only uncovered test cases
are considered. The tables list the number of unique test
cases, which means that if a test case is subsumed by an-
other test case (e.g., if it is a prefix of the other test case)
only the subsuming test case is considered.

In addition, the tables list the total time the model
checker took for all its runs and the maximum amount of
memory used at any time. Finally, the sum of states gives
the total length of the test suite, i.e., the sum of the lengths
of each test case, and max states gives the length of the
longest test case which has been generated. Note that the
longest test case might not necessarily add to the coverage,
therefore the total number of states in a test suite can be
smaller than the length of the longest generated test case
(e.g., see experiments 2 and 3).

5. Discussion

From the data we have we can draw two kinds of com-
ments: The first kind concerns the use of specific options
of the same model checker and the second kind concerns
comparisons between the different model checkers.

3mnM (mnK) means a search depth m of n - 106 (n - 10%)

Table 3. Sis (91 test predicates).

exp | Model Checker Runs Tests Test predicates Time Mem States
Error Infeasible (Total) (Max) Sum Max
1 Random 1000 66 1 66 0 1439 0.124 1003 1003
2 Random 100K 41 2 37 0 67.28 0.120 43237 100003
3 Random 10M 5 1 49 0 20.65 0.121 18151 3170983
4 Spin DFS m1K w20 68 1 66 0 41.91 17.3 7 7
5 Spin DFS m10M w20 18 5 8 0 14775 754 112881 23515
6 Spin DFS m1M w20 17 5 8 0 141.79 410 112881 23515
7 Spin DFS m1M w25 13 6 0 7 106.21 627 117761 23515
8 Spin CC m1M w25 19 6 7 0 166.87 662 117761 23515
9 Spin HC m1M w25 17 6 7 0 111.55 561 117761 23515
10 | Spin BH m10M w24 19 6 7 0 85.74 384 117898 23123
11 | Spin BFS mIM w20 46 9 34 0 440.5 705 556 92
12 | NuSMV CTL 23 14 0 7 280.85 119 2563 402
13 | NuSMV LTL 21 11 0 7 266.58 211 2499 406
14 | NuSMV LTL COI 18 10 0 7 22215 249 2092 406
15 | NuSMV LTL AG COI 67 2 47 0 40.21 64.6 403 400
16 | NuSMV/BMC MiniSAT COI 69 2 67 0 2170.06 456 6 3
17 | NuSMV/BMC ZChaff COI 70 3 66 0 1188.03 517 8 3
18 | Cad. SMV CTL 25 15 0 7 34557 - 2655 402
19 | Cad. SMV LTL 28 15 0 7 562.28 - 2964 402
20 | SAL/SMC 26 12 0 7 68.53 - 2393 403
21 | SAL/BMC d2 73 2 67 3 19.09 - 6 3
22 | SAL/BMC d10 70 4 63 3 23.99 - 28 11
23 | SAL/BMC d50 68 2 63 3 109.05 - 11 6
Table 4. Cruise (78 test predicates).
exp | Model Checker Runs Tests Test predicates Time Mem States
Error Infeasible (Total) (Max) Sum Max
24 | Random 1M 9 1 6 0 127.74 0.0949 16349 16349
25 | Spin DFS w20 17 9 0 6 9.52 8.58 315 39
26 | Spin BFS mIM w20 21 13 0 6 11.81 8.29 67 7
27 | Spin BH mIM w19 15 9 6 0 8.1 38.2 315 39
28 | Spin BH BFS 22 13 6 0 1213 2.29 67 7
29 | Spin HC mIM w20 17 9 6 0 6.78 46.3 315 39
30 | NuSMV LTL COI 17 11 0 6 2.7 19.4 90 10
31 | Cad. SMV LTL 20 13 0 6 1.73 - 65 7
32 | SAL/SMC 22 12 0 6 8.67 - 74 8
33 | SAL/BMC d10 16 7 6 0 4.99 - 68 11

Table 5. Generation statistics.

exp | Model Checker Runs Tests Test predicates Time Mem States
Error Infeasible (Total) (Max) Sum Max
bombrel (79 test predicates)
34 | Random IM 4 1 7 0 1.18 0.117 2342 2342
35 | Spin BH BFS m100M w24 26 9 15 0 108.24 245 53 8
36 | NuSMV LTL COI 11 9 0 1 80.59 114 180 60
37 | Cad. SMV CTL 52 5 48 1 18.49 - 76 58
38 | SAL/BMCd10 37 4 21 1 10.27 - 40 11
autopilot (355 test predicates)
39 | Random 100K 6 1 3 0 429 0.176 19084 19084
40 | Spin DFS mIM w31 43 23 4 0 2577.3 294 574997 25001
41 | NuSMV/BMC ZChaff COI 83 32 44 0 83.31 720 158 8
42 | NuSMV/LTL COI 355 0 352 3 10758.82 270 - -
43 | Cad. SMV CTL 61 39 9 3 158.1 - 197 8
44 | SAL/SMC 81 30 23 3 741.38 - 170 9
car3prop (513 test predicates)
45 | Random IK 233 5 231 0 123.78 0.419 5015 1003
46 | Spin BH m10M w24 309 3 301 0 883.05 384 32022 11711
47 | Spin DFS mIM w31 266 6 258 0 58844.82 294 89585 20409
48 | NuSMV LTL COI 447 6 436 0 55.8 12.9 12 2
49 | Cad. SMV LTL 20 9 371 5 8.28 - 25 4
50 | SAL/BMC 513 0 513 0 69.72 - 0 0

5.1. Model checker options and optimizations

Regarding the comparison among the different options
for the same model checker or technique, we can say that:

Random testing: Increasing the length of the randomly
generated tests normally has increased the number of test
predicates covered (see exp. 1 and 2), although there is no
guarantee for this. As our tool that calls the model check-
ers was sometimes not able to deal with test sequences as
long as several millions states, the random tests with the
maximum length of 10 million states actually often covered
fewer test predicates (see exp 2 and 3). We found that for
big specifications the randomly generated test suite which
covered most test predicates it was never that with the max-
imum length (see exp. 34, 39, 45). In fact, the best ran-
dom test suite for the two biggest specifications (see exp.
39, 45) has maximum 100K states. Moreover, we believe
that test sequences consisting of millions of states, although
achieving high coverage, may result useless in the end in
both conformance testing and in validation (i.e., to check
by hand if the model behaves as expected). In conformance
testing, the execution of so long tests may require too much
time on the real system and so long tests may be difficult
to understand during validation. Consequently, it is neces-
sary to find a balance between a very high maximum length
to possibly cover more test predicates and a small length to
keep the tests still useful and tractable by the involved tools.

Spin options: Spin supports a great variety of options and
search strategies. This can be a strong advantage for
the user, since he/she can choose the strategy which suits
his/her goal best, but it can be really confusing at the same
time too. Even for small examples like sis, using Spin with
no options or with a small search depth (-m option) caused
Spin to neither find all the tests nor to complete the state
search and therefore it was unable to prove infeasible test
predicates (see exp. 4). On the other hand, very large val-
ues for m and w caused Spin to not complete the task in the
same cases (exp 5). The choice of the right options is not
easy and a heuristic would be very useful.

State compression techniques: Spin state compression
techniques like the lossless collapse compression (CC) and
the lossy hash compact (HC) were not as effective as ex-
pected (for example, compare exp. 7, 8, and 9). They gen-
erally reduced the memory consumption but increased the
time required and were unable to prove infeasible test pred-
icates: they never outperformed the standard DFS search
in terms of total time to get the complete test suite (even
excluding infeasible tests).

The Spin approximation technique bitstate hashing (BH)
generally performed better than the equivalent (in m and w)
non approximated techniques (see exp. 10 and exp. 35) re-
garding the time and memory required to complete the task.
However, as it is not able to prove that a test predicate is in-

feasible the user does not know if a possible error is due to
a too small search depth (in this case it can be increased) or
because the test predicate is infeasible (in this case the BH
approximation is hopeless). Moreover, sometimes precise
representations of the state space prove to be more effective
(see exp 46 and 47). A good policy could be to run an ap-
proximation algorithm first and then a complete search for
only those test predicates which are left uncovered.

BFS vs. DFS: Spin BFS performed slightly worse than the
standard DFS in terms of the final results: often BFS failed
to complete the task where the DFS succeeded (see exp 6,7
and 11). However, the tests generated by the BFS are much
shorter than the tests generated by the DFS. On the other
hand, this caused a greater number of runs of the model
checker and then a much longer time to obtain the complete
test suite. BFS can be useful when the user prefers short
tests, for example for system validation.

LTL vs. CTL: As expected the LTL symbolic model
checker was slightly slower than the CTL model checker,
since it must transform the LTL properties in equivalent
tableaus. However, there is no clear winner in terms of re-
quired memory and number of test predicates solved.

COI abstraction: The cone of influence abstraction (COI)
of NuSMYV always improved the test generation process by
lowering the memory and the time required to complete the
task. The use of this option is strongly recommended. For
the biggest specification we were unable to complete the
generation without COI abstraction.

AG only search: Although the AG option improved the
generation of some test cases, it is not usable for all the
test predicates, since SCR specifications contain two state
trap properties which refer to the current state and the next
one; for these properties the simplified algorithm of AG is
not suitable. For this reason, the number of errors increased
when the AG variant was applied (see exp 14 and 15).

Bounded model checking: The bounded model check-
ers never completed the test suite generation, even when
excluding infeasible test predicates. = Moreover, only
SAL/BMC is able to prove infeasible test predicates by in-
duction. In general, using the BMC results in short test
cases, which, on the other hand, usually increases the to-
tal number of test cases. With regard to the SAT solvers,
we found that ZChaff was always faster than MiniSAT, but
required much more memory (exp 16 and 17). With the de-
fault SAT solver (SIM) NuSMV was not able to complete
even simple tests with a small depth. Increasing the search
depth in BMC from 2 to 10 decreased the number of failed
test case generation runs, while increasing the depth to 50
did not improve the final result (see 21, 22, and 23). In
general, increasing the depth should increase the number of
test cases covered at the expense of a greater time and mem-
ory consumption. In our specifications, this did not happen:

they have the same number of test predicates which can be
covered by test sequences of length up to 10 and 50.

5.2. Comparison of model checking techniques

The second kind of comments regards the comparison of
the different model checkers to see whether there is a model
checker which works clearly better than the others when
generating test cases. We found some generic conclusions:

Random testing: Random generation worked better than
expected, especially on the biggest specification. It slightly
outperformed the best model checker for two specifications
(exp 39 and 45) with regard to the time required to cover all
test predicates. This means that when dealing with model
based test generation, a comparison with random generation
is mandatory and that the random generation must be treated
as complementary to other more complex techniques, also
since it has some disadvantages: in order to achieve high
coverage it usually produces very long test sequences, it is
unable to prove infeasible test predicates, and it may per-
form much worse than other guided technique (as in exp 1).

Bounded model checking: Bounded model checking was
not as efficient as symbolic model checking in finding tests.
However, there may exist specifications with very short tests
and very complex test predicates for which BMC may per-
form better than the other model checkers. This was, for
example, reported for a case study in [20].

Symbolic model checking vs. explicit model checking:
Also between symbolic model checking and explicit model
checking there is no clear winner. However, the explicit
model checker seems to be able to deal with at least some
test cases in large specifications (see exp 47) since it does
not need to search the entire space state in case a violation
is found, while the symbolic model checker simply can-
not represent the entire state space and fails with fewer test
cases covered (see exp 48 and 49). This is an interesting
observation, as symbolic model checking was introduced
precisely to address the problems of explicit state model
checking with regard to large state spaces. The conclusion
is that exhaustive verification is not necessary to generate
test cases, only for certain difficult test predicates and to
prove infeasible test predicates.

NuSMYV vs. Cadence SMV: NuSMV and Cadence SMV
have comparable performance. However, in some cases
(exp 42), NuSMYV was not able to complete the task (mainly
due to the timeout), while Cadence SMV was.

Table 6 reports the best model checker and its configura-
tion for each of the specifications we have analyzed. With
‘best” model checker we mean the fastest to finish among
those which made fewest (possibly 0) errors. As proved by
Table 6, there is no single model checker that outperforms
the others in all the specifications.

Table 7 illustrates for each specification for how many

Table 6. Best model checker.

Spec. Errors Best model checker
autopilot 4 Spin DFS m1M w31
bombrel 0 NuSMV LTL COI
car3prop 258 Spin DFS m1M w31
cruise 0 Cadence SMV LTL
sis 0 SAL SMC

Table 7. Test predicates with fastest coun-
terexample generation.

BDD Based BMC
> Z >
. 5 . 2§ .
Spec. & Z 5 S zZ &
autopilot 0 O O 216 147 O
bombrel 0O o0 0 78 0 o0
car3prop 99 58 0 174 131 0
cruise 0O 0 0 72 0
sis 1 0 58 0 0 25

test predicates each model checker created a counterex-
ample the fastest. This is an approximation, as for each
test predicate we used the test case covering the predicate
that was created the fastest, and not necessarily the one for
which the model checker was called. If two different tech-
niques need the same amount of time to create a test case
then the test predicate is counted for both techniques. For
specifications that are not too large symbolic model check-
ing is the dominant technique. If the specification is more
complex, as for example seen in the car3prop example,
then explicit state model checking creates test cases faster.
Bounded model checking is very fast in creating test cases
up to a certain length, but the performance deteriorates with
increasing length, therefore the number of test predicates
where the bounded model checker is the fastest is smaller
than that of a BDD based model checker. Random genera-
tion can generate test cases quicker for the majority of test
predicates for all specifications but the cruise example, but
there are always certain hard to find test predicates.

Table 8 shows which model checkers performed best
with regard to creating shorter test cases. Here, Spin can
create very good results when using BFS, but much worse
results when using DFS. This table also illustrates that Spin
with BFS succeeds for more test predicates than bounded
model checking.

5.3. Potential improvements

Theoretically, if one could know in advance for a given
test predicate for a given model which model checker to ap-
ply, one could save time and get better results (more com-

Table 8. Test predicates with shortest coun-
terexample.

BDD Based BMC
> g >
- F oL 2 % L
Spec. & zZ & S R
autopilot 272 0 81 299 261 86
bombrel 54 27 5 60 51 21
car3prop 253 200 O 125 202 O
cruise 62 0 4 68 62 2
sis 45 130 10 71 24 12

Table 9. Potential time savings.

Spec. Min Max Worst Possible
autopilot 41.9s 512.6s 25773s 8.8s
bombrel 18.1s 80.6s 3431.9s 8.6s
car3prop - - 58102.9s 1264.7s
cruise 1.7s 29s 127.7s 1.3s

sis 106.2s 562.3s 1995.1s 14.5s

plete). To assess the potential of this we simulate the fol-
lowing experiments based on our data: Let O be the opti-
mized set of runs, initially empty. Order every run for the
time taken for it divided by number of test predicates not
yet covered, then add the first run to the set O and discard
all the test predicates covered by it; repeat this until all test
predicates are covered or there are no more test cases left.

Table 9 lists for each specification the time of the fastest
model checker run that created a complete test suite (Min),
the time of the worst model checker run that satisfied all test
predicates (Max), the time of the worst run (Worst) includ-
ing runs with errors, and the possible result if one would
know ahead of time which model checker to use. The poten-
tial optimization is significant in most cases, which suggests
that a hybrid approach exploiting several techniques could
theoretically be used to improve the test case generation
process. In addition, no single technique was able to cover
all test predicates for the car3prop example, but combining
the techniques would allow the creation of a complete test
suite. This is an interesting observation, as it shows that a
mix of several techniques may increase the applicability of
model checking for test generation in practice.

5.4. Coverage efficiency

While performance is one of the main concerns when-
ever using model checkers, the question is not only how
fast we can generate test cases but also how good these test
cases are. This is a difficult question to answer, because
intuitively more and longer test cases will generally mean
better testing. However, resources for testing are usually

Table 10. Coverage efficiency.

Spec. Random Spin BDD Based BMC
NuSMV SAL Cad.SMV NuSMV SAL
autopilot 0.003 0.008 0.0 142 157 16.0 7.3
bombrel 0.001 0.000 1.9 1.5 1.8 4.0 1.0
car3prop 0.005 0.034 195 0.0 17.2 18.5 0.0
cruise 0.000 1.289 33 33 3.8 3.7 1.3
sis 0.000 0.004 0.2 0.17 0.2 6.8 34

limited, and so test cases should preferably maximize cov-
erage while being as short as possible. To this extent we
define coverage efficiency as the ratio between the length of
a test case to the number of test predicates covered; the ef-
ficiency of a test suite simply is the sum of the efficiency
values of each test case (which means the same test predi-
cate can contribute to the efficiency of several test cases).

Table 10 lists these values for the different specifications
and model checkers used in our evaluation. Note that the
efficiency value depends on the underlying specification,
therefore it is only possible to compare values related to one
specification. Of all techniques, random testing has the low-
est efficiency values. This means that while random test-
ing is a very cheap method with regard to test case genera-
tion, it results in expensive (long) test cases. Explicit state
model checking using DFS also results in very low values;
BFS (not distinguished in the table) results in better values.
Bounded model checking and BDD based model check-
ing both result in more efficient test cases, where bounded
model checking is slightly better.

6. Conclusions

In this paper we have presented the results of an empir-
ical evaluation of different model checkers for generating
test cases. The main concern when using model checkers
for this task is the performance, which can be problematic
due to the state space explosion. In general it is difficult
to predict how a particular model checking technique will
perform for any given specification. Consequently it is im-
possible to give detailed rules about which model checker
to use for a given specification.

Our results show that if a specification is too big for sym-
bolic model checkers to handle, then explicit state model
checking with DFS can still achieve good results, although
it is not guaranteed to result in a test suite that covers all test
predicates. Explicit model checking can also potentially be
improved by applying heuristic search [15], which was not
considered in our evaluation. Even though bounded model
checking is very efficient there are some concerns when
applying it to big models: The performance of a bounded
model checker depends on the length of the counterexam-
ples it should consider, and as large models tend to result in
long test cases a bounded model checker is likely to be un-

able to generate many test cases. This is especially the case
if the considered specification contains integer variables.
If, however, the state space can be handled by a symbolic
model checker, then this is often the preferred method as it
can prove infeasible test predicates unlike bounded model
checking in general, and returns short counterexamples un-
like explicit model checking DFS.

We were surprised to see how well random testing per-
formed in comparison to model checking: As our results
show, random testing can very quickly create test cases
that cover a large portion of the test predicates. However,
random testing has problems covering ‘difficult’ test predi-
cates, cannot be used to prove infeasible test predicates, and
probably most problematic, it creates very long test cases
which might not be usable in practice due to limited re-
sources and the difficulty of interpreting failed executions.

A possible idea to benefit from the respective advan-
tages of the different techniques would be to apply a hy-
brid strategy: First use a cheaper method to cover the
‘easy’ test predicates, e.g., with random testing, an explicit
model checker using depth first search, or a bounded model
checker with a low bound. Then, in a second step, use a
complete method like symbolic model checking to cover the
more difficult test predicates and detect infeasible test pred-
icates. Such an approach can not only increase the speed
with which a test suite is generated, but can also make it
possible to apply testing with model checkers to larger spec-
ifications than by just using a single technique.

References

[1] P. E. Ammann, P. E. Black, and W. Majurski. Using Model
Checking to Generate Tests from Specifications. In Pro-
ceedings of the Second IEEE International Conference on
Formal Engineering Methods (ICFEM’98), pages 46-54.
IEEE Computer Society, 1998.

[2] J. M. Atlee and M. A. Buckley. A logic-model semantics for
SCR software requirements. In International Symposium on
Software Testing and Analysis. ACM, 1996.

[3] S. Berezin, S. V. A. Campos, and E. M. Clarke. Compo-
sitional reasoning in model checking. In COMPOS’97: Re-
vised Lectures from the International Symposium on Compo-
sitionality: The Significant Difference, pages 81-102, Lon-
don, UK, 1998. Springer-Verlag.

(4]

[5

—

[6

—_

(7]

(8]

[9

—

(10]

[11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

R. Bharadwaj and C. Heitmeyer. Applying the SCR require-
ments method to a simple autopilot. In In Proc. Fourth NASA
Langley Formal Methods Workshop (LFM97), NASA Lang-
ley Research, 1997.

R. Bharadwaj and C. L. Heitmeyer. Model checking com-
plete requirements specifications using abstraction. Autom.
Softw. Eng, 6(1):37-68, 1999.

A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic
Model Checking without BDDs. In TACAS ’99: Proceed-
ings of the 5th International Conference on Tools and Al-
gorithms for Construction and Analysis of Systems, pages
193-207, London, UK, 1999. Springer-Verlag.

R. E. Bryant. Graph-Based Algorithms for Boolean Func-
tion Manipulation. IEEE Trans. Comput., 35(8):677-691,
1986.

A. Calvagna and A. Gargantini. A Logic-Based Approach to
Combinatorial Testing with Constraints. In Tests and Proofs,
volume 4966 of Lecture Notes in Computer Science, pages
66-83. Springer-Verlag, 2008.

J. Chilenski and L. A. Richey. Definition for a masking form
of modified condition decision coverage (MCDC). Techni-
cal report, Boeing, 1997.

A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri.
NUSMV: A New Symbolic Model Verifier. In CAV ’99:
Proceedings of the 11th International Conference on Com-
puter Aided Verification, pages 495-499, London, UK,
1999. Springer-Verlag.

E. Clarke, O. Grumberg, and K. Hamaguchi. Another look
at Itl model checking. In Formal Methods in System Design,
10(1):57-71, February 1997.

E. M. Clarke and E. A. Emerson. Design and Synthesis of
Synchronization Skeletons Using Branching-Time Tempo-
ral Logic. In Logic of Programs, Workshop, pages 52-71,
London, UK, 1982. Springer-Verlag.

E. M. Clarke, O. Grumberg, and D. A. Peled. Model Check-
ing. MIT Press, Cambridge, MA., 1 edition, 2001. 3rd print-
ing.

L. de Moura, S. Owre, H. RueB, J. R. N. Shankar, M. Sorea,
and A. Tiwari. SAL 2. In R. Alur and D. Peled, editors,
Computer-Aided Verification, CAV 2004, volume 3114 of
Lecture Notes in Computer Science, pages 496-500, Boston,
MA, July 2004. Springer-Verlag.

S. Edelkamp, A. L. Lafuente, and S. Leue. Directed Explicit
Model Checking with HSF-SPIN. In SPIN ’01: Proceedings
of the 8th International SPIN Workshop on Model Check-
ing of Software, pages 57-79, New York, NY, USA, 2001.
Springer-Verlag New York, Inc.

N. Eén and N. Sorensson. An Extensible SAT-solver. In
E. Giunchiglia and A. Tacchella, editors, SAT, volume 2919
of Lecture Notes in Computer Science, pages 502-518.
Springer, 2003.

P. Ernberg, L. Fredlund, and B. Jonsson. Specification and
validation of a simple overtaking protocol using LOTOS.
Technical report, Swedish Institute of Computer Science,
Kista, Sweden, 1990.

G. Fraser, F. Wotawa, and P. E. Ammann. Testing with
model checkers: a survey. Software Testing, Verification and
Reliability, 2009. To appear.

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

A. Gargantini and C. Heitmeyer. Using Model Checking
to Generate Tests From Requirements Specifications. In
ESEC/FSE’99: 7th European Software Engineering Confer-
ence, Held Jointly with the 7th ACM SIGSOFT Symposium
on the Foundations of Software Engineering, volume 1687,
pages 146-162. Springer, 1999.

M. P. Heimdahl, S. Rayadurgam, W. Visser, G. Devaraj,
and J. Gao. Auto-Generating Test Sequences using Model
Checkers: A Case Study. In Third International Interna-
tional Workshop on Formal Approaches to Software Testing,
volume 2931 of Lecture Notes in Computer Science, pages
42-59. Springer Verlag, October 2003.

C. L. Heitmeyer. Formal methods for specifying, validating,
and verifying requirements. J. UCS, 13(5):607-618, 2007.
G. J. Holzmann. On Limits and Possibilities of Automated
Protocol Analysis. In Proceedings of the IFIP WG6.1 Sev-
enth International Conference on Protocol Specification,
Testing and Verification VII, pages 339-344, Amsterdam,
The Netherlands, 1987. North-Holland Publishing Co.

G. J. Holzmann. State Compression in SPIN: Recursive In-
dexing and Compression Training Runs. In In Proceedings
of the Third International SPIN Workshop, 1997.

G. J. Holzmann. The Model Checker SPIN. [EEE Trans.
Softw. Eng., 23(5):279-295, 1997.

H. S. Hong, 1. Lee, O. Sokolsky, and H. Ural. A Temporal
Logic Based Theory of Test Coverage and Generation. In
TACAS ’02: Proceedings of the 8th Int. Conference on Tools
and Algorithms for the Construction and Analysis of Sys-
tems, pages 327-341, London, UK, 2002. Springer-Verlag.
K.L. McMillan. The SMV system. Technical Report CMU-
CS-92-131, Carnegie-Mellon University, 1992.

D. R. Kuhn and V. Okun. Pseudo-Exhaustive Testing for
Software. In 30th Annual IEEE / NASA Software Engineer-
ing Workshop (SEW-30 2006), 25-28 April 2006, Loyola
College Graduate Center, Columbia, MD, USA, pages 153—
158. IEEE Computer Society, 2006.

K. L. McMillan. Symbolic Model Checking. Kluwer Aca-
demic Publishers, Norwell, MA, USA, 1993.

M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and
S. Malik. Chaff: engineering an efficient sat solver. In DAC
'01: Proceedings of the 38th conference on Design automa-
tion, pages 530-535, New York, NY, USA, 2001. ACM.

A. Pnueli. The Temporal Logic of Programs. In /8th An-
nual Symposium on Foundations of Computer Science, 31
October-2 November, Providence, Rhode Island, USA, pages
46-57. IEEE, 1977.

S. Rayadurgam and M. P. E. Heimdahl. Coverage Based
Test-Case Generation Using Model Checkers. In Proceed-
ings of the 8th Annual IEEE International Conference and
Workshop on the Engineering of Computer Based Systems
(ECBS 2001), pages 83-91, Washington, DC, April 2001.
IEEE Computer Society.

F. Somenzi. CUDD: CU Decision Diagram Package Re-
lease, 1998.

P. Wolper and D. Leroy. Reliable Hashing without Collosion
Detection. In CAV ’93: Proceedings of the 5th International
Conference on Computer Aided Verification, pages 59-70,
London, UK, 1993. Springer-Verlag.

