
Transforming and Selecting Functional Test Cases for Security Policy Testing

Tejeddine Mouelhi, Yves Le Traon
Institut TELECOM ; TELECOM Bretagne ; RSM, 2 rue de
la Châtaigneraie CS 17607, 35576 Cesson Sévigné Cedex

Université européenne de Bretagne, France
{tejeddine.mouelhi,yves.letraon}@telecom-bretagne.eu

Benoit Baudry
IRISA/INRIA
35042 Rennes

France
bbaudry@irisa.fr

Abstract

In this paper, we consider typical applications in
which the business logic is separated from the access
control logic, implemented in an independent compo-
nent, called the Policy Decision Point (PDP). The
execution of functions in the business logic should thus
include calls to the PDP, which grants or denies the
access to the protected resources/functionalities of the
system, depending on the way the PDP has been confi-
gured.

The task of testing the correctness of the implemen-
tation of the security policy is tedious and costly. In
this paper, we propose a new approach to reuse and
automatically transform existing functional test cases
for specifically testing the security mechanisms. The
method includes a three-step technique based on muta-
tion applied to security policies (RBAC, XACML, Or-
BAC) and AOP for transforming automatically func-
tional test cases into security policy test cases. The
method is applied to Java programs and provides tools
for performing the steps from the dynamic analyses of
impacted test cases to their transformation. Three
empirical case studies provide fruitful results and a
first proof of concepts for this approach, e.g. by com-
paring its efficiency to an error-prone manual adapta-
tion task.

1. Introduction
Automatically transforming functional test cases in

order to test another concern seems an open issue,
while it would drastically reduce the testing effort: no
more effort would be spent other than the one already
paid when testing system functions. In this paper, we
explore this issue in the case of security policy testing
(the new concern/property to be tested). The intuition
which makes the proposed approach feasible is based
on two facts:

- All security mechanisms are necessarily exer-
cised at least once by functional test cases if
they cover 100% of the executable statements:
the functional test sequences can thus be
reused. Only the oracle function has to be
transformed to test that the tested security me-
chanism behaves as expected,

- The typical access control logic is separated
from the application code (business logic):
this access control logic can thus be manipu-
lated or modified.

Indeed, in a typical application which embeds
access control mechanisms, the business logic imple-
mentation is separated from the access control logic
[1]. In such systems, the recommended architecture
consists of designing a security component, called the
Policy Decision Point (PDP), which can be configured
independently from the rest of the application. The
PDP is configured with respect to a security policy,
modeled using an access control modeling language
such as OrBAC or RBAC [2, 3] A security policy is
composed of a set of access control rules, which speci-
fy the conditions for granting or denying access to
protected elements. The execution of functions in the
business logic should thus include calls to the PDP,
which grants or denies the access to the protected re-
sources/functionalities of the system.

From a security testing point of view, the issue is to
determine the correctness of the interactions between
the business logic and the PDP. The generation of test
cases targeting security thus consists in generating a
test sequence ending with a given access control call,
and also relies on the creation of the oracle function.
Observing that the execution of a given test sequence
effectively leads to an access granted does not mean
that a security mechanism has correctly checked the
access rights for this specific call. To be fully efficient,
the oracle should be built by observing the piece of
code which corresponds to the call to the PDP.

The problem we are tackling in this paper is related
to the definition of an efficient oracle function for

security test cases. In particular, we propose an ap-
proach to adapt existing functional test cases that al-
ready define relevant test scenarios, by updating their
oracle to take security concerns into account.

In [4], we studied the overlap between functional
test cases (generated for testing the functions of the
business logic) and the test cases needed to test all the
security mechanisms. To adapt functional test cases, in
order to take security into account, we need to identify
test cases that trigger security mechanisms. Then, their
oracle should be enhanced to also check that the trig-
gered security mechanisms work properly. This paper
provides an automated solution for selecting functional
test cases which are qualified to test security mechan-
isms. A dynamic analysis based on mutation of access
control rules helps pinpointing which access control
rules are already exercised by each test case. These
rules need to be tested specifically by the security tests
as outlined our previous work [4]

Detecting the test cases impacted by a security rule
(triggering at least one security mechanism) is also
useful to perform regression testing on the parts of the
policy that have not changed. It allows testing that the
evolution has not introduced unexpected changes.

In this paper, we propose a method and tools (1) to
detect the test cases which are impacted by a security
policy and (2) transform existing functional test cases
in security policy test cases.

To reach this objective, several problems are
treated incrementally:
1. Select tests that are impacted by the security poli-

cy: this selection step aims at reducing the step 2
execution times, we perform a conservative impact
analysis

2. for each selected test case, determine exactly
which rules impact the test case,

3. for each test case, modify and adapt the oracle to
observe the security mechanism.

At the end of this three-step process, the existing
functional test cases that trigger security mechanisms
are transformed into security policy test cases. The
presented approach has been applied to Java programs.

To validate the approach, we apply it to the case
study presented in [4] and augmented with two other
case studies. We study the feasibility of the approach
and show the obtained results. In addition, we study the
efficiency of our approach compared to a manual one.
Also, we present to what extent the first selection step
improves the performances of the approach regarding
the execution times of the second step.

Section 2 introduces the context of this work and
defines important concepts that are used in this study.
Section presents the overall process for selecting func-
tional test cases that trigger security mechanisms and
adapt their oracle functions to take security concerns

into account. Section 4 and 5 detail the two steps ana-
lyses performed to identify the relationships between
functional test cases and security rules. Section 6 de-
tails how these test cases are adapted to consider secu-
rity and section 7 discusses the results obtained from
the three case studies.

2. Definitions and Context
Before detailing the proposed approach, we need to

provide a few fundamental concepts. In this section,
we present the context and definitions of the important
concepts.

2.1. Context
When building a software system that has specific

requirements, the business logic and the security policy
are usually modeled, analyzed and developed separate-
ly. The security policy is specified as a set of rules,
according to one of the various access control languag-
es that are available (RBAC and variants such as
XACML, OrBAC…). This abstract specification of the
security policy allows reasoning about the rules and
performing specific types of analyses on these rules.
Eventually, the global system has to take into account
both the business and the security concerns into a sin-
gle implementation. The security policy can be imple-
mented as a separate component called the Policy De-
cision Point (PDP) that interacts with the business
logic through Policy Enforcement Points (PEP). Al-
though the PDP can be automatically generated from
the security policy, the location of PEPs in the business
logic has to be decided in an ad-hoc way to take into
account specific design and implementation decisions.

Security Policy

Busines logic

Policy Decision Point

Test cases
Policy Enforcement Point(PEP)

Automatic generation
Policy Enforcement Point(PEP)

Automatic generation

Figure 1 – Context for testing a secured

system

Our goal is then to validate that PEPs are correct in
the sense that they implement the desired interactions
between the business logic and the PDP in order to
enforce the security policy. In this work, we validate
the integration of the security policy with the business
logic through testing. More precisely we want to adapt
existing functional test cases so that they can take secu-
rity into account when they check the correctness of
the system. Our concern in this paper is then to identi-
fy the test cases which cover PEPs, and thus trigger
security mechanisms

In [5], we propose a model-based approach for
specifying, deploying and testing an access control
policy. The specification of the policy is performed
according to a generic meta-model, which allows this
policy to be expressed in any access control language
(RBAC, OrBAC, DAC, MAC, XACML). The meta-
model includes generic mutations operators that define
the semantic of mutation operators at the generic mod-
el. This framework allows us to produce mutants for
any access control language that conforms to the ge-
neric model, for instance XACML. The generation of
the PDP and the deployment is performed using sever-
al model-based tools (AOP, model transformation).
The missing component for this fully automated
framework is the generation of test cases that exercise
the application code to guarantee that the access con-
trol policy is fully respected and implemented in the
application internal code (no backdoors or hidden
mechanisms [6]).

2.2. Definitions
We need to define or recall some definitions:

Business Logic – The business logic is the part of the
system which implements the system functionali-
ties.
A security policy defines a set of security rules that

specify rights and restrictions of actors on parts and
resources of the system. A rule can be a permission or
a prohibition. Each rule consists of five parameters
(called entities): a status flag S indicating permission
or prohibition, a role, an activity, a view, and a context.
Our domain consists of role names RN, activity names
PN, view names VN, and context names CN.

Security Policy (SP): A security policy SP is thus set of

rules defined by CNVNPNRNSSP ××××⊆ . The
signature of an access rule is thus:

Status(Role, Activity, View, Context)
Examples:
Permission(Borrower,Borrow,Book,WordingDay)
Prohibition(Borrower,Consult,PersonnelAccount,
Default)

Security mechanism – It denotes any piece of code or
constraint internal to the business logic which re-
stricts (or relaxes) the access to some protected re-
sources/functions of the system. A specific case of
security mechanism is called PEP, which explicitly
calls the external PDP component (see the follow-
ing definitions).

PEP - The Policy Enforcement Point is the point in the
business logic where the policy decisions are en-
forced. It is a security mechanism, which has been
intentionally inserted in the business logic code.
On call of a service that is regulated by the security

policy, the PEP sends a request to the PDP to get
the suitable response for the requested service by
the user and in the current context. Based on the re-
sponse of the PDP, if the access is granted the ser-
vice executes, and if the access is denied the PEP
forbids the execution of the service.

PDP - The Policy Decision Point is the point where
policy decisions are made. It encapsulates the
Access Control Policy and implements a mechan-
ism to process requests coming from the PEP and
return a response which can be deny or permit.

System/functional testing – the activity which consists
of generating and executing test cases which are
produced based on the uses cases and the business
models (e.g. analysis class diagram and dynamic
views) of the system. By opposition with security
tests, we call these tests functional.

Security policy testing (SP testing): it denotes the ac-
tivity of generating and executing test cases that
are derived specifically from a SP. The objective of
SP testing is to reveal as many security flaws as
possible.

Test case: In the paper, we define a test case as a trip-
let: intent, input test sequence, oracle function.

Intent of a test case: The intent of a test case is the
reason why an input test sequence and an oracle
function are associated to test a specific aspect of a
system. It includes at least the following informa-
tion: (functional, names of the tested functions) for
functional test cases or (SP, names of the tested se-
curity rules) for SP ones.
Test cases aim at detecting security flaws in the

systems under test. In this paper, the faults (or “flaws”)
can be classified into two main categories.

Security faults - interaction faults and hidden secu-
rity mechanisms. Security interaction faults occur
when the interactions between the business logic im-
plementation and the PDP is erroneous. Interaction
faults thus correspond to a fault in the security mechan-
ism itself (and maybe its absence at a given point in the
software). It may be caused by manual modifications in
the business logic code (e.g. adding manually an unex-
pected call to the PDP, erroneous parameters) or to
error in the use of AOP if this technique is used to
insert the PEP code. Such faults may generate unex-
pected interactions between the business logic and the
PDP. Hidden security mechanisms correspond to de-
sign constraints or pieces of code which may bypass
the PEP which is expected to control the access for a
specific execution.

SP oracle function: The oracle function for a SP test

case is a specific assertion which interrogates the

security mechanism. There are two different oracle
functions:

- For permission, the oracle function checks
that the service is activated (access
granted).

- For a prohibition, the oracle checks that
the service is not activated (access de-
nied).

The intent of the functional tests is not to observe
that a security mechanism is executed correctly. For
instance, for an actor of the system who is allowed to
access a given service, the functional test intent con-
sists of making this actor execute this service. Indirect-
ly, the permission check mechanism has been ex-
ecuted, but a specific oracle function must be added to
transform this functional test into a SP test.

Adaptation of a functional test case – The adapta-
tion of a functional test case consists of (1) modifying
its intent, (2) identifying the security rules the test
sequence triggers and (3) adding the SP oracle func-
tion.

Point 2 is obtained by determining which test cases
are impacted by the security policy, and more precisely
by a given security rule.

Impacted Test case – A test case is said to be im-
pacted by the security policy, if its execution triggers at
least one of the PEPs in the business code. A test case
is said to be impacted by a security rule R of the secu-
rity policy if it triggers at least one of the PEPs with
the parameters corresponding to the security rule R. A
test case which is impacted by a security rule is ob-
viously impacted by the security policy.

3. Overview of the approach
Figure 2 presents the methodology. First we identi-

fy the test cases which are not impacted by the security
policy and remove them from the initial set of test
cases. Second, we analyze the impacted test cases in
order to precisely associate the security rules impacting
each test case. Then we adapt each functional test case
by adding a new oracle function, specific to the securi-
ty mechanism under test. This new oracle function
checks that the correct PEP is executed and that the
access is granted/denied consistently with the security
policy.
In both steps, the analysis is performed dynamically.
First, a single execution of all the test cases allows
identifying which test case impacts at least an access
control mechanism. It thus selects the test cases which
are qualified for testing security, in order to reduce the
effort needed to perform the second step analysis. This
step optimizes the number of test cases to be run in the
second step (especially when the test set is large).

In the second step, we perform a mutation analysis
which requires executing the test cases for each mu-

tant. We systematically inject errors in every security
rule in order to create mutant PDPs. This analysis is a
kind of sensitivity analysis [7], and allows locating
precisely the relationships linking a test case to securi-
ty policy rules in the PDP. If the behavior is the same
when executing the test case on the initial and modified
PDP, then it means it is not impacted. We execute
every test case with every mutant. When a test case
kills a mutant m, it means that it is impacted by the rule
that has been modified to generate m. This mutation
analysis thus allows us to associate each impacted test
case with a set of security rules that are covered by this
test case.

Step 1
Conservative

impact analysis

Impacted
Test Suite

(TS2)

Test1

+

Mapping between tests and
impacting rules

Test1 R2, R4

Test6 R8

Test3 R3, R5, R6

Test2 R1, R2, R4

Test7 R7,R8

Step 2
Mapping rules to

test cases

security test suite (TS3)

Test1 + security oracle

Step 3
Adding the security oracle

Impacted test suite (TS2)

Test1

Test6
Test5

Test3

Test4

Test2

Test7

Impacted test suite (TS2)

Test1

Test6

Test3

Test2

Test7

Test2 + security oracle

Test6

Test3

Test2

Test7 Test7 + security oracle

Test6 + security oracle

Test3 + security oracle

Figure 2 - Overview of the three steps

We assume that the PDP is controllable. Controlla-

bility means that the rules in the PDP can be easily
modified. In this paper, we consider that the PDP is a
separate component. This property is needed to modify
the rules and check the sensitivity of the test cases
execution to changes in the PDP. The PDP security
rules can be implemented in several ways, e.g. in a
database or in XACML. In this paper we use the envi-
ronment proposed in [8] to modify the security rules in
PDP implemented in several languages (OrBAC,
RBAC).

Based on our previous work [5], we are able to
claim that this assumption is realistic. By using our
generic approach, we are now able to modify the rules
of policies expressed in different language (RBAC,
OrBAC or XACML).

4. Selecting test cases that trigger securi-
ty rules

In the first step of our process, we perform a dy-
namic analysis to select the subset of test cases that are
impacted by the SP. The objective of the first dynamic
analysis is to filter the test cases which are not im-
pacted by the security policy. One test case is consi-
dered to be impacted by the SP if it triggers a PEP
during its execution. It is an optimization step which is
used to make this second dynamic analysis less time
and resource consuming. Experiments of Section 7 will
show the benefits of using this first step (test cases
selection) compared to a direct use of the second step
(test cases impact analysis).

Figure 3 - First step: test cases selection

As shown in Figure 2, the first test selection in-

volves two steps.
We start by producing a special mutant policy

which replaces each rule from the initial policy with its
opposite rule. We replace permissions with prohibi-
tions and prohibitions with permissions, and we re-
place the default policy decision by its opposite as
well. We end up with a mutated access control policy
that contains only faulty rules. In the security mecha-
nism, we use this policy instead of the initial one. Then
tests are run on the system containing this new mutated
policy in its security mechanism. Tests that exercise
functionalities protected by the security mechanism are
expected to fail due to the several errors injected in the
policy. These tests are selected as impacted by the

security policy because they fail if the policy is errone-
ous. This is a conservative approach, since we are sure
that the test cases that kill mutants are impacted. We
cannot assess that test cases that pass are not impacted
by the security policy mechanism.

5. Relating test cases and security rules
To perform this analysis, we applied mutation

adapted to access control policies, we proposed in a
previous work [9]. The mutation approach is recalled,
then the second step dynamic analysis (test cases im-
pact on security policy rules) is detailed.

5.1. Mutation applied to security policies
Mutation analysis is a technique for evaluating the

quality of test cases [10]. We proposed several muta-
tion operators that are applied to the security policy
model and are thus independent from implementation-
specific details. This approach has the advantage of
defining faults that are actually related to the definition
of security rules (prohibition instead of permission,
wrong role, etc.). We assume that there is a direct link
between these SP rules (specification level) and the
corresponding PDP (implementation level). This is
why the PDP has to be controllable. In [8], a solution
to derive directly the PDP from the security policy
language has been presented based on a common me-
tamodel to the languages and the mutation operators.
Another

The mutation operators inject mutation faults to the
SP. The approach was firstly applied to OrBAC (Or-
ganization Based access control [2]), and extended to
RBAC and XACML like code [8]. Four types of muta-
tion operators were proposed:

• Type changing operators: Turn one permis-
sion rule to a prohibition (PPR) or one prohibition to a
permission (PRP).

• Parameter changing operators: Take one rule,
and replace one of its parameters with a different one.

• Hierarchy changing operators: Replace a rule
with one of its descendants.

• Adding rules operator: Add a new rule (ANR),
using a combination of parameters and status that is not
is the defined rules.

5.2. Detecting test cases impacted by a rule
In this second step, we map test cases to the securi-

ty rules they trigger. The second step dynamic analysis
is used to build these relationships. While it could be
done with other techniques (e.g. by comparing the
execution traces, regression testing techniques), we
choose to use the mutation approach we proposed
previously [9] to make this analysis possible. As shown
in Figure 4, it has the advantage to be non intrusive in
the business logic. No assumptions are needed con-

cerning the PEP ‘observability’ and the way the securi-
ty mechanisms are coded in the business logic. In fact,
the business logic is treated as a black box which inte-
racts with the PDP. The idea is to perform some “sensi-
tivity analysis” [7] by modifying the PDP security
rules and check whether the execution of a test case is
impacted by this change. Thus, the mutation analysis is
used to create a variant version of the PDP: it could be
done using Xie’s mutation technique on XACML code
[11] or even manually if the number of rules is not too
large.

The executions (on the initial reference version and
on the mutated ones) of a test case i are compared: a
difference means that the change in the PDP has im-
pacted the execution of test case i. In other words, it
means that the initial execution triggers the PEP related
to the security rule (recall that a PEP is a security me-
chanism which explicitly calls the PDP). At this stage,
we don’t need to know whether the initial execution
result is correct or not from the security point of view
(is the correct rule called? Is the result of the PDP
taken into account by the business logic code?). It is
just necessary to determine the test cases exercising a
PEP related to a given security rule.

PDP

Mutant PDP
Rule j mutated

Business logic + PEPs

Test case i
m1();
m2();

…
mN();

Business logic + PEPs

Reference outputs

equals?

Mutant outputs

If different
=> Test Case i is impacted by Rule j

Figure 4 - Second step: dynamic analysis

of test cases impact on security mechanisms
using mutation

When a test case TC is executed, the PEP sends a
request to the PDP that evaluates a security rule Rj
which impacts the behavior of the test case: using
mutation, we can determine that rule Rj is evaluated by
the PDP when the test case is executed.

For detecting the impacted test cases by a security
rule, the first operators are sufficient. The two other
categories of operators could be used for a more pre-
cise analysis. The ANR operator is not used either
since existing functional test cases are unlikely testing
the robustness of the security policy in terms of de-

fault/unspecified behavior (which is the reason why the
ANR operator is used). Since this operator is costly, we
do not use it, even if it may be used to identify the test
case which may be transformed in advanced security
test cases (see [4]) for testing the robustness of the
security policy.
We generate a set of mutant policies in the PDP by:

- Applying PPR (prohibition to permission) and
PRP (permission to prohibition),

- Executing the test cases on each mutant.
If a test case fails with a particular mutant, this re-

veals that the test case is actually impacted by the rule
that has been mutated in this mutant.

6. Oracle modification in the functional
test case

We propose three different levels of quality to im-
plement the oracle function. As stated in Table 1, the
first level of oracle just checks that no obvious incon-
sistency exists between the current security policy and
the implementation of the system. Level 1 oracle func-
tion is “black-box” in the sense no information is
needed to build it except the status of the rule(s) im-
pacted by the test case. If the tested rule corresponds to
a prohibition, the oracle must check that an exception
or a specific message is raised. For a permission, the
oracle checks that no such exception is raised.

Table 1. The three quality level of oracle functions

Oracle
level

Assumptions Check that..

1

no

(black box)

the access is
granted/denied w.r.t. the
rules (1)

2

Observable

PDP
(“Business

logic + PEPs”
is a black box)

- (1)
- the PDP is correctly
called (2)

3

Observable

PDP and
Observable

PEP
(glass-box)

- (1)
- the PDP and the ex-
pected PEP are correctly
interacting (the right PEP
calls the PDP with the
expected parameters).

Level 2 oracle extends the basic level 1 oracle func-

tion by observing the PDP logs. The oracle then relates
the oracle 1 results with the execution of the expected
rule in the PDP. This allows detecting hidden mechan-
ism. For example if the PDP is bypassed due to a hid-
den mechanism, this is the only way to detect that a
permission has been effectively granted by the PDP.

Level 2 oracle is especially useful to detect hidden
security mechanisms.

Level 3 oracle extends level 1 and check that no
unexpected interactions occur between the PEP which
is expected to send a request to the PDP and the PDP.
Level 3 oracle is thus a good way to detect interaction
faults.

In this paper, we automated the weaving of level 2
oracle functions in the impacted test cases using As-
pectJ. To make this process possible, the security poli-
cy is taken as an input to determine whether the ex-
pected result is ‘permission’ or ‘prohibition’ (level 1
oracle). The automation is possible only because we
force the PEP, which has been woven using AOP, to
raise a specific exception when the access is prohi-
bited. With such a constraint, capturing the access
status is feasible as well as comparing it with the rule
status of the security policy (specification). Figure 2
presents a test case after the modification. The PDP is
observable and logs coming from the business logic are
observed. The security oracle retrieves the PEP log and
compares it with an expected log according to the rules
that are impacting the test (obtained by the second step
impact analysis).

/**
* Test for method borrow
*
*/
public void testBorrow() {

try {
// init test data
Book book = new Book("book title");
Teacher teacher = new Teacher("teacher1");
// teacher borrow book
bookService.borrowBook(teacher, book);

// functional oracle
// test if borrowed and no longer reserved
assertTrue(teacher.getBorrowed().contains(book));

// test if data was well stored in DB
bookReturned = bookDAO.loadBook("book title");
asserEqualsTrue(bookReturned.getCurrentStateString()
,Book.BORROWED));

} catch (BSException e) {
fail(e.getMessage());

} catch (SecuritPolicyViolationException e) {
fail(e.getMessage());

}
// Security oracle
// get the rules impacting this test
String rules = getRulesImpactedByTests("testBorrow");
// get both expected and return log
String peplogExpected = getExpectedPEPLog(rules);
String pepLogReturned = readPEPLog();
// security oracle
assertEquals(pepLogReturned,peplogExpected);

}

Test sequence

Existing
functional oracle

Woven level 2
security oracle

Figure 5 - Woven security oracle function

7. Experiments and results
The objectives of the experiments are to:

- Study the information provided by the two steps.
In particular, we will study the interest of the first
step of test selection in the methodology.

- compare various solutions to obtain security policy
test cases:
o Manual creation of SP test cases
o Manual adaptation of functional test cases
o Automated detection of impacted test cases

and manual modification of the oracle
o Fully automated approach.

7.1. Presentation of case studies
We applied our approach on three Java case studies

applications previously developed by students during
group projects and used in a computer science course
in the university of Rennes 1:

LMS: The library management system (LMS) of-
fers services to manage books in a public library (see
[4] for details).

VMS: The virtual meeting system offers simplified
web conference services. The virtual meeting server
allows the organization of work meetings on a distri-
buted platform.

ASMS (Auction Sale Management System): The
ASMS allows users to buy or sell items online. A seller
can start an auction by submitting a description of the
item he wants to sell and a minimum price (with a start
date and an ending date for the auction). Then usual
bidding process can apply and people can bid on this
auction. One of the specificities of this system is that a
buyer must have enough money in his account before
bidding.

The two last studies have been presented in [6] for
studying the issue of hidden security mechanisms.
Table 2 gives some information about the size of the
three applications (the number of classes, methods and
lines of code).

Table 2. The size of the three applications

 # classes # methods LOC
(exec. statements)

LMS 62 335 3204
VMS 134 581 6077
ASMS 122 797 10703

7.2. Examples
Figure 6 presents an example of the approach. An

access control rule Ri mutated to R’i by switching the
rule status into “permission”. The mutated policy
makes the test case ‘testBorrowBookInMaintenanceDay’ fail
because the applied rule is ‘permission’ while the rule
expected to be applied is “prohibition”. In other words,
the case expected an exception or an error message for
borrowing a book during a maintenance day. It does
not get this behaviour due to the mutated rule that was
applied instead of the correct one.

(1) Existing policy
R1
R2
;
Ri = prohibition(borrower,borrow,book,maintenance_day)
;

(2) Mutated policy

R1
R2
;
R’i = permission(borrower,borrow,book,maintenance_day)
;

(3) Impacted test found

Test case: testBorrowBookInMaintenanceDay()

Figure 6 – Example of rule and impacted
test case

7.3. Results
In this section, we show the various steps of the

process. The functional test cases have been produced
either manually or using the use case system testing
approach of [12]. The generation process stopped when
100% of code coverage was reached.

a First step impact analysis results
Table 3 shows the number/percentage of test cases

which can be filtered thanks to the first step of test
filtering. The execution times are less than one second
for the three applications (between 0.5s and 1s) and
thus can be considered as negligible in our studies.
Around 20 to 30 % of the test cases can be identified
not impacted by the access control policy.

Table 3. First step analysis results

System Impacted
Tests

Other Tests All

VMS 41 11 (21%) 52
ASMS 85 38 (31%) 123
LMS 19 7 (27%) 26
The first step allows saving some execution time

when using the second step dynamic analysis. We
measured the execution time with and without the first
step of test selection. Without the first step, the impact
analysis is performed on all tests cases, and then only
on test cases selected by the first step. As shown in
Table 4, the relative saved time is significant (and
reflects the percentage of filtered test cases). This first
step reduces the execution time of the second one. The
execution time of the first step (test selection) is neg-
lected. For instance, on a real enterprise information
system, the execution time of a test case may be impor-

tant, and a relative 20-35 % of saved execution time
becomes interesting.

Table 4. Execution time with/without the first analysis

Application Without 1st
step

With 1st
step

% Saved
time

VMS 30.5 s 24,3 s 20.4 %
SMS 114.1 s 74.6 s 34.6 %
LMS 19.3 16.4 15 %

b Second step: test impact analysis results
Table 5 shows examples of the results that we get

by this analysis. For each test case, the analysis pin-
points the exact rules that are impacting it.

Table 5. Examples of detailed results

Tests #
rules Rules

Test for the LMS:
testBorrow2Borrower() 4

1. Permission(Teacher, GiveBack,
Book, WorkingDays)
2. Permission (Teacher, Borrow,
Book, WorkingDays)
3. Permission (Student, GiveBack,
Book, WorkingDays)
4. Permission (Student, Borrow,
Book, WorkingDays)

Test for VMS:
testUpdateUserAccount() 3

1. Permission (Webmaster, Update,
Account, MaintenanceDay)
2. Permission (Admin, Update,
Account, MaintenanceDay)
3. Permission (Personnel, Update,
Account, MaintenanceDay)

Test for ASMS:
testOpenSale_0() 2

1. Permission (Seller, CreateSale,
Bid, default)
Permission (Seller, Update, Bid,
default)

In addition to the previous table, it is possible to
find out for each rule the corresponding impacted tests.

Furthermore, we can analyze more the results and
observe the number of tests that are impacted by one
rule or two or three etc. In Table 6, we show the result
for the VMS application. For instance, there are 9 tests
that are impacted by only one rule (each test is im-
pacted by only one rule).

Table 6. Tests and impacting rule for VMS application

Tests # Impacting Rules
9 1

12 2
2 3
9 4
1 5
5 6
1 7
1 8

7.4. Comparing several degrees of automa-
tion

We conducted an experiment to compare between
manual and automated approaches and to estimate the

efforts in terms of time spent in obtaining the final test
suite. We considered 4 scenarios:
(1) Manually creating, from scratch, all the sec. tests,
(2) Adapting manually existing tests (without step 1),
(3) Adapting manually only selected tests (using the
first step of the approach),
(4) fully automated approach (steps 1, 2 and 3).

Two graduate students were in charge of perform-
ing these scenarios. Not all the test cases have been
created manually since more than 50% of functional
test cases were generated using the use case driven
approach of [12]. However, the students reported the
time spent in the remaining manual tasks. We count in
hours of intensive work, which is a lower bound of the
real effort that would be needed. Table 7 displays the
results showing the interest of the automation. In the
three cases studies,, the creation of test cases dedicated
to security is very important since it includes the iden-
tification of what should be tested and the elaboration
of the test sequence. The cost of adapting the test cases
selected using the steps 1 and 2 dynamic analyses is
still important. Even if allows to significantly reduce
the work of analysis which is needed to determine
manually which functional test is impacted by a securi-
ty rule, the remaining task consists in modifying sys-
tematically the oracle in the test cases. The fully auto-
mated approach is very efficient but can only be ap-
plied in a process where the PEP sends specific mes-
sages when an access is denied. The install time of the
various tools and environments for performing the
automated treatments has not been measured but is
done once. Even taking into account the bias due to the
expertise degree of the students (and all other subjec-
tive factors), the benefit of automation seems high.

Table 7. Automated and manual approaches

 LMS VMS ASMS
(1)Creating
all tests

32 hours 48 hours 64 hours

(2)Adapting
manually all
existing tests

8 hours 16 hours 24 hours

(3)Adapting
selected tests

1 hour 3 hours 4.5 hours

(4)Fully
automated

5 min + install
time

10 min +
install time

13 min +
install time

8. Related works
As far as we know, no previous work studies how

to automatically adapt and reuse functional tests for SP
testing. However, several works proposed techniques
and tools for automatically testing the PDP implemen-
tation for security policies written in XACML [13, 14]
or RBAC [15]. Fisler et al. proposed Magrave a tool
for analyzing XACML policies and performing
change-impact analysis [16]. The tool can be used for
regression testing to identify the differences between

two versions of the policies and test the PDP. In [17],
Xie et al. proposed a new tool Cirg that automatically
generates test for XACML policies using Change-
Impact Analysis.

The main difference between their work and ours is
that they focus on the PDP alone and testing consists of
sending request and getting responses that are com-
pared to the expected ones. We consider the whole
system (PDP+PEP) and adapt functional tests to vali-
date the implementation of the security policy. Both
works are thus complementary. In fact, it is necessary
to begin with making sure that the implementation of
the PDP is correct and that the PDP responds as ex-
pected according to the specification, before consider-
ing the whole system. However, it is obvious that test-
ing the PDP in a separate way does not guarantee that
the application behind it actually implements correctly
the access control policy. We cannot assume that the
application behaves as expected by the access control
policy by only checking the front door (the PDP+PEP).
For instance, the internal application code (the business
code) may contain backdoors that bypass the PDP.
Testing the PDP independently does not allow these
backdoors to be detected and removed. In addition, as
we have previously pointed out [5], applications may
contain hidden doors (that we called hidden mechan-
isms) which implement access control rule in a non-
documented ways. These hidden doors can be detected
only by testing the whole system w.r.t. the access con-
trol policy. For all these reasons, it is absolutely impor-
tant to test the whole system.

Even if the idea of estimating the impact of test
cases is not new (see [18] for design choices), no pre-
vious work specifically studies how to automatically
adapt and reuse functional tests for SP testing.

9. Conclusion and Future Work
In this paper, we presented a new automated ap-

proach for selecting and adapting the functional tests in
the context of SP testing. The approach includes a
three steps process. The first step uses a special mutant
of the policy having all its rules mutated. This step
helps selecting the subset of tests impacted by the
access control policy. The second step uses single
mutations to provide a mapping between tests and the
triggered SP rules. According to the mapping, AOP is
used to transform them into security test cases by
weaving the security policy oracle function. The ap-
proach was successfully implemented and applied to
three case studies. The experimental results show the
effectiveness of the approach when compared to a
manual one.

In further work, we will study regression testing in
the case of a security policy evolution: the second step
(impact analysis) can be used for selecting and adapt-

ing security tests with respect to the security policy
modification. In addition, one of the main issues is
access control tests automation. This issue can be ad-
dressed using combinatorial [19] or computational
intelligence algorithms [20, 21] and will be studies in
future work.

Acknowledgments: This work is supported by
“Région Bretagne” (Britanny Council) through a con-
tribution to a student grant.

10. References
1. Fabio Martinelli, Paolo Mori, Thomas Quilli-

nan, and Christian Schaefer, A Runtime Moni-
toring Environment for Mobile Java, in (secT-
est2008) 1st International ICST workshop on
Security Testing 2008.

2. A. Abou El Kalam, et al., Organization Based
Access Control, in IEEE 4th International
Workshop on Policies for Distributed Systems
and Networks. 2003.

3. D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R.
Kuhn, and R. Chandramouli, Proposed NIST
standard for role-based access control. ACM
Transactions on Information and System Se-
curity, 2001. 4(3): p. 224–274.

4. Y. Le Traon, T. Mouelhi, and B. Baudry,
Testing security policies : going beyond func-
tional testing, in ISSRE'07 : The 18th IEEE
International Symposium on Software Relia-
bility Engineering. 2007.

5. T. Mouelhi, F. Fleurey, B. Baudry, and Y. Le
Traon, A model-based framework for security
policy specification, deployment and testing,
in MODELS 2008. 2008.

6. Y. Le Traon, T. Mouelhi, A. Pretschner, and
B. Baudry, Test-Driven Assessment of Access
Control in Legacy Applications, in ICST
2008: First IEEE International Conference on
Software, Testing, Verification and Valida-
tion. 2008.

7. J. M. Voas, PIE : A Dynamic Failure-Based
Technique. IEEE Transactions on Software
Engineering, 1992. 18(8): p. 717 - 727.

8. T. Mouelhi, B.Baudry, and F. Fleurey, A Ge-
neric Metamodel For Security Policies Muta-
tion, in SecTest 08: 1st International ICST
workshop on Security Testing. 2008.

9. T. Mouelhi, Y. Le Traon, and B. Baudry,
Mutation analysis for security tests qualifica-
tion, in Mutation'07 : third workshop on mu-
tation analysis in conjuction with TAIC-Part.
2007.

10. R. DeMillo, R. Lipton, and F. Sayward, Hints
on Test Data Selection : Help For The Prac-

ticing Programmer. IEEE Computer, 1978.
11(4): p. 34 - 41.

11. E. Martin and T. Xie. A Fault Model and
Mutation Testing of Access Control Policies.
in Proceedings of the 16th International Con-
ference on World Wide Web. 2007.

12. Clémentine Nebut, Franck Fleurey, Yves Le
Traon, and Jean-Marc Jézéquel, Automatic
Test Generation: A Use Case Driven Ap-
proach. IEEE Transactions on Software Engi-
neering, 2006.

13. E. Martin and T. Xie., Automated Test Gener-
ation for Access Control Policies via Change-
Impact Analysis, in Proceedings of the 3rd In-
ternational Workshop on Software Engineer-
ing for Secure Systems. 2007.

14. Vincent C. Hu, E. Martin, J. Hwang, and T.
Xie. Conformance Checking of Access Con-
trol Policies Specified in XACML. in Proceed-
ings of the 1st IEEE International Workshop
on Security in Software Engineering. 2007.

15. A. Masood, A. Ghafoor, and A. Mathur,
Technical report: Scalable and Effective Test
Generation for Access Control Systems that
Employ RBAC Policies. 2005.

16. K. Fisler, S. Krishnamurthi, L. A. Meyero-
vich, and M. C. Tschantz. Verification and
change-impact analysis of access-control pol-
icies. in ICSE. 2005.

17. E. Martin and T. Xie. Automated Test Gen-
eration for Access Control Policies via
Change-Impact Analysis. in Proceedings of
the 3rd International Workshop on Software
Engineering for Secure Systems. 2007.

18. G. Al-Hayek, Y. Le Traon, and C. Robach,
Impact of system partitioning on test cost.
IEEE Design & Test of Computers, 1997.
14(1): p. 64-74.

19. A. Pretschner, T. Mouelhi, and Y. Le Traon,
Model-Based Tests for Access Control Poli-
cies, in ICST 2008. 2008.

20. B. Baudry, Franck Fleurey, Jean-Marc Jézé-
quel, and Yves Le Traon. Automatic Test
Cases Optimization using a Bacteriological
Adaptation Model: Application to .NET Com-
ponents. in ASE'02, 2002 Edimburgh, Scot-
land, UK: IEEE Computer Society Press, Los
Alamitos, CA, USA.

21. B. Baudry, Franck Fleurey, Jean-Marc
Jézéquel, and Yves Le Traon, From Genetic
to Bacteriological Algorithms for Mutation-
Based Testing. Software Testing, Verification
and Reliability, 2005. 15(1): p. 73-96.

