(Un-)Covering Equivalent Mutants

David Schuler
Saarland University
Saarbriicken, Germany
schuler@ cs.uni-saarland.de

Abstract—Mutation testing measures the adequacy of a test
suite by seeding artificial defects (mutations) into a program.
If a test suite fails to detect a mutation, it may also fail to
detect real defects—and hence should be improved. However,
there also are mutations which keep the program semantics
unchanged and thus cannot be detected by any test suite. Such
equivalent mutants must be weeded out manually, which is
a tedious task. In this paper, we examine whether changes
in coverage can be used to detect non-equivalent mutants: If
a mutant changes the coverage of a run, it is more likely
to be non-equivalent. In a sample of 140 manually classified
mutations of seven Java programs with 5,000 to 100,000
lines of code, we found that: (a) the problem is serious and
widespread—about 45% of all undetected mutants turned out
to be equivalent; (b) manual classification takes time—about
15 minutes per mutation; (c) coverage is a simple, efficient,
and effective means to identify equivalent mutants—with a
classification precision of 75% and a recall of 56%; and (d)
coverage as an equivalence detector is superior to the state
of the art, in particular violations of dynamic invariants.
Qur detectors have been released as part of the open source
JAVALANCHE framework; the data set is publicly available
for replication and extension of experiments.

Keywords-mutation testing; code coverage; dynamic analysis;

I. INTRODUCTION

To assess the quality of a software, one uses festing:
executing the program with the purpose of detecting a defect.
Obviously, the better the test suite, the higher the chance of
finding errors. But how do we know how “good” a test suite
actually is? One of the best ways to assess the quality of
a test suite is mutation testing—that is, repeatedly seeding
artificial defects (“mutations”) into the software. If the test
suite fails to find these artificial defects, it is likely to miss
real defects, too—and hence should be improved. A typical
usage of mutation testing is to seed thousands of mutations
into the program—and then examine those which the test
suite did not catch.

Mutation testing has been shown to be an effective
assessment for test suite quality [1] and superior to com-
mon assessments such as coverage metrics [2], [3]. This
effectiveness comes at a cost. The first problem is that the
repeated execution of test suites requires significant com-
puting resources. With appropriate optimizations, though,
it is possible to mutation test even 100,000-line programs

Andreas Zeller
Saarland University
Saarbriicken, Germany
zeller@cs.uni-saarland.de

within a few CPU hours [4]. The second problem is more
significant: It is possible that a mutation leaves the program’s
semantics unchanged. Such an equivalent mutation cannot
be caught by any test. It needs to be weeded out manually;
and it just wastes time as the developer focuses on the
next uncaught mutation without improving the test suite.
Although there are techniques to detect some equivalent
mutations [5], [6], the general problem is undecidable [7].

How widespread is the problem of equivalent mutants? In
this paper, we have manually assessed a random sample of
140 uncaught mutations in seven Java programs. Our results
have serious consequences:

« It takes 15 minutes to assess one single mutation. It
is surprisingly difficult to assess the effect of a single
change to the code—in particular, if the change is
randomly generated.

e 45% of all uncaught mutations are equivalent. This
high number may come as a surprise, but keep in mind
that several non-equivalent mutants are already caught
by the test suite.

o The problem gets worse as the test suite improves.
Since the number of equivalent mutants stays fixed,
their percentage increases further as the test suite finds
more and more non-equivalent mutants.

We also evaluate solutions, though. In an earlier workshop
paper [8], we had examined the impact of mutations on cov-
erage—that is, whether lines are executed or not. In a proof
of concept, it turned out that equivalent mutants tended to
keep coverage unchanged, whereas non-equivalent mutants
actually changed the coverage. In this paper, we have refined
this technique and applied it to the 140 previously classified
mutations. The results are promising: 75% of the mutants
are correctly classified based on their impact on coverage.
This means that the effort for mutation testing is significantly
reduced; at the same time, the technique is easily deployed
as coverage measurement tools are commonplace.

Our paper is organized as follows. We dig into the
problem by showing some real-world equivalent and non-
equivalent mutants (Section II). After introducing our
JAVALANCHE mutation framework (Section III) and the
subject programs (Section V), our classification study gives
details on the ubiquity of equivalent mutants (Section V).

for (final Iterator iter =
iter.hasNext ();) {
final Method method = (Method)iter.next ();
method.setAccessible (true);
if (Factory.class.isAssignableFrom(
method.getDeclaringClass())
|| = &&

(method.getModifiers () &
Modifier.STATIC)) > 0) {
iter.remove () ;
continue;

methods.iterator();

(Modifier .FINAL

Figure 1. A non-equivalent mutation from the XSTREAM project.

We then describe how to assess the impact of mutants on
coverage (Section VI), followed by an evaluation of the ap-
proach (Section VII). After discussing the threats to validity
(Section VIII), we explore the related work (Section IX) and
close with conclusion and future work (Section X).

II. EQUIVALENT MUTANTS

One use of mutation testing is to improve a test suite
by providing tests for undetected mutants. To this end,
mutations are applied to a program, and one checks whether
the test suite detects them or not. This step is carried out
automatically and results in a set of undetected mutants. A
programmer then tries to add or modify existing tests such
that previously undetected mutants are detected.

Unfortunately, there are several reasons why a test suite
might fail to detect a mutation, which determine its useful-
ness to the programmer:

1) The mutation may not change the programs semantics

and thus cannot be detected. These equivalent muta-
tions cannot help in improving the test suite and place
an additional burden on the programmer, because the
equivalence of a mutation has to be assessed manually.
The mutated statement may not be executed. In order
to find non-executed statements, standard coverage
criteria can be used.
The mutation may not be detected because of an
inadequate test suite. These are the most valuable
mutations, since they provide indicators to improve
the test suite that other coverage metrics might not
provide. If a mutation is covered but not detected, this
either means that the tests do not check the results well
enough, or that the input data is not chosen carefully
enough to trigger the erroneous behavior.

Let us characterize these different kinds of undetected
mutations, using the XSTREAM project as example.

2)

3)

A. A regular mutation

Figure 1 shows a mutation in the createCallbackIndexMap
method of class CGLIBEnhancedConverter, which changes
an || operator to an && operator. This causes the
expression to evaluate to true when it should evaluate

void addvalue (String value, Type type) {
if (newLineProposed && ((format.mode ()

& = |

Format .COMPACT_EMPTY_ELEMENT)
writeNewLine () ;

1= 0)) {

}

if (type == Type.STRING) {
writer.write(""’);

I

writeText (value) ;

if (type == Type.STRING) {
writer.write(""’);

}

Figure 2. An equivalent mutation from the XSTREAM project.

public boolean aliasIsAttribute (String name) {
return
nameToType.containsKey (name)

= null

’

}

Figure 3. A mutation of XSTREAM project that is not executed by tests.

to false, and then to remove the method from an
underlying map. In the end, this results in spurious entries
in the XML representation of an object. An existing test
case of the XSTREAM test suite triggers this behaviour
(testSupportProxiesUsingFactoryWithMultipleCallbacks in
class com.thoughtworks.acceptance.CglibCompatibilityTest).
However, this test fails to check the results thoroughly. By
modifying this test, the mutation can be detected.

B. An equivalent mutation

Another mutation of the XSTREAM project is shown
in Figure 2, applied to line 198 of class JsonWriter.
Here, the mutation changes an & operator to an |
operator, which might cause the expression to evaluate
to true when it should not. This expression is disjunct
with the variable newLineProposed, and gets only
executed when the variable evaluates to true. Further
investigation shows that newLineProposed 1is only
set to true in one place of the program, and only

if the same condition as in the mutated statement
format.mode () & Format.COMPACT_EMPTY_ELEMENT) != 0
is true. Thus, in the mutated statement, this

condition is always true when it is evaluated (when
newLineProposed is true). The mutation is equivalent.

C. A mutation that is not executed

The method aliaslsAttribute of ClassAliasingMapper
shown in Figure 3 returns true if the given name is an
alias for another type. What happens if we mutate this
method such that it always returns null? The existing test
suite does not detect this mutation, because the statement
is not executed. Thus a test should be added that checks
this functionality. However, to detect uncovered code, we
do not need to apply full-fledged mutation testing. Simple

Original Program Insert Mutations

Run and Determine Impact

Rank Surviving Mutations Report to Tester

@ = R = ‘

® ® Y ® % i

& & En & i o o2

S = &1 o &1 0 z =

> & ol ™ B ™ 22 ' (2=
S = 2 3
E @

Figure 4. The JAVALANCHE process. After generating mutations (Step 1), JAVALANCHE runs the test suite on each and ranks mutations by their impact
on data and coverage (Steps 2 and 3). Finally, the tester (Step 4) improves the test suite to detect the top-ranked mutations.

Table 1T
DESCRIPTION OF SUBJECT PROGRAMS.

Project Program Test code Number Test suite

Name Description Version size (LOC) size (LOC) of tests runtime
ASPECTIJ AOP extension to Java cvs: 2007-09-15 94,902 14,736 336 9s
BARBECUE Bar code creator svn: 2007-11-26 4,837 3,293 153 3s
COMMONS Helper utilities svn: 2009-08-24 19,583 34,125 1,608 22s
JAXEN XPath engine svn: 2008-12-03 12,438 8,399 689 10s
JODA-TIME Date and time library svn: 2009-08-17 25,909 48,178 3,497 48s
JTOPAS Parser tools 1.0(SIR) 2,031 3,185 128 2s
XSTREAM XML object serialization — svn: 2009-09-02 16,791 15,311 1122 20s

Lines of Code (LOC) are non-comment, non-blank lines as reported by sloccount.
For ASPECT]J, we only mutated the org.aspectj.ajdt.core package, which has 25,913 lines of source code and 6,828 lines of test code.

Table I
JAVALANCHE MUTATION OPERATORS

Replace numerical constant X by X + 1, X — 1, or 0.

Negate jump condition—which is equivalent to negating a conditional
statement in the source code. (Since composite conditions compile into
multiple jump instructions, this also negates individual subconditions.)
Replace arithmetic operator by another one, e.g. + by —.

Omit method call—if the method has a return value, a default value is
used instead, e.g. © = Math.random() is replaced by = = 0.0.

statement coverage does this much more efficiently. For the
remainder of the paper, we thus assume that mutations are
only applied to statements that are executed by the test suite.

III. THE JAVALANCHE FRAMEWORK

As we wanted to assess the equivalence of mutations on
projects of significant size, we developed the JAVALANCHE
mutation testing framework [4] with a special focus on
automation and efficiency. To this end, JAVALANCHE applies
several optimizations, such as focusing on a subset of
mutation operators (see Table I), using mutant schemata [9],
using coverage data to reduce the number of tests that need
to be executed, and allowing parallel execution of mutations.

Furthermore, JAVALANCHE allows to observe and trace
the execution of mutations in order to determine their
impact. Similar to an avalanche, where one small event can
have a huge impact, JAVALANCHE aims at finding those
mutations that have a big impact on the program run. The
complete process for applying JAVALANCHE to a program
is summarized in Figure 4.

IV. SUBJECT PROGRAMS

For our experiments we took seven open-source projects,
from different application areas, listed in Table II. For each
project, we took the most recent version from the version
control system (column 3) — except for JTOPAS, which
was taken from the software-artifact infrastructure repository
(SIR) [10]. Each program comes with a JUnit test suite, from
which we removed tests that fail, and tests whose outcome
is dependent on the order or frequency of execution (which
would be considered a flaw of the test suite).

Table IIT
RESULTS OF JAVALANCHE FOR THE 7 SUBJECT PROGRAMS.

Project Number of Covered Covered &
Name Mutations Mutations Detected

ASPECTJ 15,573 7,164 63%
BARBECUE 36,563 1,568 66%
COMMONS 19,404 14,609 85%
JAXEN 9,940 6,545 91%
JODA-TIME 23,920 17,678 87%
JTOPAS 1,921 1,512 85%
XSTREAM 9,230 6,725 90%

Table IIT shows the results for applying mutation test-
ing without impact calculation to the subject programs.
First JAVALANCHE determines all possible mutations for a
program (column 2). From the total number of mutations,
JAVALANCHE only considers those that are covered by at

Table IV
CLASSIFYING MUTATIONS MANUALLY.

Non Average

Project Equivalent Equivalent classification

Name mutations mutations time
ASPECTJ 15 (75%) 5 (25%) 29m
BARBECUE 14 (70%) 6 (30%) 10m
COMMONS 6 (30%) 14 (70%) 8m
JAXEN 10 (50%) 10 (50%) 15m
JODA-TIME 14 (70%) 6 (30%) 20m
JTOPAS 10 (50%) 10 (50%) 7m
XSTREAM 8 (40%) 12 (60%) 11m
All 77 (55%) 63 (45%) 14m28s

least one test (column 3).' After executing all mutations,
we get the mutation score for a project (column 4)—the
number of mutations that are detected by the test suite (at
least one test fails) divided by the total number of covered
mutations.

V. MANUAL CLASSIFICATION

We saw that determining the equivalence of a mutation
requires manual investigation. But how widespread is this
problem in real programs? Offutt and Pan [11] reported
9.10% of equivalent mutants (relative to all mutants) for the
28-line triangle program. As we were interested in the
extent of the problem on modern and larger programs, we
applied mutation testing (Section III) to our seven subject
programs, and investigated the results. For each of the seven
projects, we randomly took 20 mutations from different
classes that were not detected by the test suite for manual
inspection. Then, we classified each mutation either

¢ as non-equivalent, as proven by writing a test case that
detected the mutation; or

e as equivalent when manual inspection showed that the
mutation does not affect the result of the computation.

A. Percentage of Equivalent Mutants

The results for classifying the 140 mutations for the
seven projects are summarized in Table IV. Out of all classi-
fied mutations, 77 (55%) were non-equivalent and 63 (45%)
were equivalent. The project with the highest ratio of non-
equivalent mutants is ASPECTJ with 75%, while COMMONS
had the lowest percentage with 30%. Such differences might
also indicate differences in the quality of the test suites, as
better test suites have a higher rate of equivalent mutations
among their undetected mutations.

On our sample of real-life programs, 45% of the
undetected mutations were equivalent.

!Javalanche does not consider mutations that are only executed during
class loading as covered. This explains the low coverage for BARBECUE.

B. Classification Time

The time required for classifying mutations as equivalent
or non-equivalent varied heavily. While some mutations
could be easily classified by just looking at the mutated
statement, others involved examining large parts of the
program for determining a potential effect of the mutated
statement. This led to a maximum classification time of
130 minutes.

On average, it took us 14 minutes 28 seconds to classify
one single mutation for equivalence.

C. Discussion

The number of 45% equivalent mutants is much higher
than the 9% reported by Offutt and Pan, as their number is
relative to all mutations, including the ones that are detected
by the test suite. These mutations, however, are not of
interest for improving the test suite, as they do not indicate
a weakness of the test suite. If we also take the detected
mutations into account, we found 7.39% of all mutations
to be equivalent, which is roughly in line with the numbers
reported by Offutt and Pan.

In practice, though, it is the percentage of equivalent
mutations across the undetected mutations that matters—
since these are the mutations that will be assessed by the de-
veloper. And here, 45% of equivalent mutants simply means
45% of wasted time. Even worse: While the percentage of
equivalent mutations across all mutations stays fixed, the
percentage of equivalent mutations across the undetected
mutations increases as the test suite improves. This is due
to the fact that an improved test suite detects more (non-
equivalent) mutants. A perfect test suite would detect all
non-equivalent mutants; hence, 100% of undetected mutants
would be equivalent. In other words, as one improves the test
suite, one has more and more trouble finding non-equivalent
mutants among the undetected ones—with the growing effort
as the test suite approaches perfection.

The percentage of equivalent mutants increases as the
test suite improves.

VI. ASSESSING MUTATION IMPACT

Equivalent mutants are defined as having no observable
impact on the programs output. This impact of a mutation
can be assessed by checking the program state at the
end of a computation, as tests do. However, we can also
assess the impact of a mutation while the computation is
being performed. In particular, we can measure changes
in program behavior between the mutant and the original
version. The idea is that if a mutant impacts internal program
behavior, it is also more likely to change external program
behavior—and thus impacts the semantics of the program.
If we focus on mutations with impact, we would thus expect
to find fewer equivalent mutants.

How does one measure impact? Weak mutation [12]
assesses whether a mutation changes the local state of
a function or a component; if it does, it is considered
detectable (and therefore non-equivalent). In this work, we
are taking a more global stance and examine how the impact
of a mutation propagates all across the system. To assess this
impact degree, we consider two aspects:

e One aspect of impact is control flow: If a mutation alters
the control flow of the execution, different statements
will be executed in a different order—an impact that can
be detected by using standard coverage measurement
techniques.

« Another aspect of the behavior is the data that is passed
between methods during the computation: If a mutation
alters the data, different values would be passed to
methods—an impact that can be detected by tracing
the data that gets passed between methods.

In both cases, we measure the impact as the number
of changes detected all across the system; as the number
of impacted methods grows, so does the likelihood of the
mutation to be generally detectable—and non-equivalent.

A. Impact on Coverage

In order to measure the impact of mutations on the control
flow, we developed a tool that computes the code coverage
of a program, and integrated it into the JAVALANCHE
framework. The program records the statement coverage for
each test case and every mutation—that is, the number of
times a statement is executed. This gives us a set of lines
that were covered together with frequency counts for every
method of the program.

By comparing the coverage of the original execution with
the coverage of the mutated execution, we can determine the
coverage difference.

B. Impact on Return Values

Mutations with impact on the control flow manifest them-
selves in coverage differences, but it is also possible that a
mutation has only impact on the data, which is not used in
control flow affecting computations. In our manual investiga-
tion of 20 random undetected mutations without impact [8],
we found two categories of non-equivalent mutations that
had no impact on the code coverage:

o The first category are mutations that changed return

values that were subsequently just passed around.

e The second category are mutations causing state
changes that only manifest in a change of the string
representation of an object.

Therefore, we decided to additionally trace the return val-
ues of public methods. We choose the public methods as they
represent an object’s communication to the environment.

Storing all return values of a program run would need
a huge amount of disk space, which would be justifiable
for one run of a test suite. As we plan to use this data for

assessing each mutation, which involves several thousand
executions of the test suite, we decided to abstract each
return value into an integer value.

To obtain an integer value for returned objects, we com-
pute its string-representation (by invoking toString())
and build the hash code for this string. For each primitive
value, we store its natural integer representation; for 64-bit
values, we compute the xor of the upper and lower 32 bits.

For each method, we store these integers and count how
often they occurred. In this way, we end up with a set of
integers for each method together with frequency counts.

Similar to coverage data, we can compare the sets of
traced return values of the original execution with the
mutated execution and obtain the data difference.

C. Impact on Invariants

In our previous work [4], we estimated the impact
on the data using dynamic invariants. To this end, we
learned dynamic invariants from the original program using
DAIKON [13]. Then, we generated checkers that check those
invariants at runtime and run the mutations, and finally
obtained a set of violated invariants for each mutation.

The results showed that if a mutation violates dynamic
invariants, it is very likely to be non-equivalent. However,
mutations that violate dynamic invariants are rare. This
finding motivated us to choose the impact on the return
values as a more fine-grained view on impact.

D. Impact Metrics

The techniques defined above produce a set of differences
between a run of the original and mutated program. Using
these differences, we define impact metrics that quantify the
difference between the original and mutated run:

o Coverage impact—the number of methods that have
at least one statement that is executed at a different
frequency in the mutated run than in the normal run—
while leaving out the method that contains the mutation.

« Data impact—the number of methods that have at least
one different return value or frequency in the mutated
run than in the normal run—while leaving out the
method that contains the mutation.

« Combined coverage and data impact—the number of
methods that either have a coverage or data impact.

These metrics are motivated by the hypothesis that a
mutation that has non-local impact on the program is more
likely to change the observable behavior of the program.
Furthermore, we would assume mutations that are unde-
tected despite having impact across several methods to be
particularly valuable for improving the test suite, as they
indicate inadequate testing of multiple methods at once.

E. Distance Metrics

To further emphasize non-local impact, we use distance
metrics that are based on the distance between the method

Table V
EFFECTIVENESS OF CLASSIFYING MUTATIONS BY IMPACT: PRECISION (LEFT) AND RECALL (RIGHT).

Coverage Data Combined Coverage Data Combined Invariant

Impact Impact Impact Distance Distance Distance Impact
ASPECTJ 72 /87 72 /87 72/ 87 77167 67 /67 67 /67 100/ 7
BARBECUE 100 /43 100 /29 100/ 43 100 / 43 100/29 100/ 43 75143
COMMONS 0/ 0 0/ 0 0/ 0 0/ 0 0/0 0/ 0 50/ 17
JAXEN 67 / 60 78 /70 73/ 80 67 / 60 78 /70 73/ 80 50/ 10
JODA-TIME 90 / 64 89 /57 91 /171 90 / 64 89 /57 91 /71 100 / 21
JTOPAS 100 / 70 43/ 30 64 /70 100 / 60 50 /30 67 / 60 100 / 10
XSTREAM 50 /25 67 /25 60 / 38 50/ 13 67 /25 67 /25 40/ 25
Total 75/ 56 67 / 48 70 / 61 79 /49 68 / 44 71/55 68 /19

First value in a cell gives the precision, the second the recall.

that contains the mutation and the method that has a cover-
age or data difference.

The distance between two methods M and N is computed
as follows: First an undirected graph is built that contains a
node for each method in the program. Two nodes Vxy and
Vi are connected if there exists a call from method M to
N or vice versa. The distance between two methods is then
the length of the shortest path between them.

Using this distance, we can define three distance metrics
analogous to the impact metrics defined above:

o Coverage distance—For each method that has a cov-
erage difference, we compute the shortest path to the
method that contains the mutation. The coverage dis-
tance is then the length of the longest path.

o Data distance—For each method that has a data dif-
ference, we compute the shortest path to the method
that contains the mutation. The data distance is then
the length of the longest path.

o Combined coverage and data distance—the maxi-
mum of the data and coverage distance.

F. Equivalence Thresholds

Each of the metrics defined above (Sections VI-E and
VI-D) produces a natural number that describes the impact
of a mutation. As we want to automatically classify muta-
tions that are less likely to be equivalent, we introduce a
threshold ¢: A mutation is considered non-equivalent if and
only if its impact is greater or equal to ¢.

VII. EVALUATION

We evaluated our approach in three experiments. First we
applied our techniques to automatically classify mutations to
the 140 manually classified mutations (Section VI-C). For
our second experiment, we devised an evaluation scheme
based on mature test suites. This automated evaluation
scheme is presented in Section VII-B and compares the
detection rate of mutations with impact (MI) and the mu-
tation with no impact (MNI). Finally, we were interested
if the mutations with the highest impact are less likely to
be equivalent. We therefore ranked the mutations according

to their impact and looked at the highest ranked mutations
(Section VII-C), both for the manually classified mutations
and the ones detected by the test suites.

A. Impact of the Manually Classified Mutations

In the first experiment, we wanted to evaluate our hypoth-
esis that mutations with impact on coverage or return values
are less likely to be equivalent. We therefore determined
the coverage and data differences and computed the impact
(Section VI-D) and distance metrics (Section VI-E) for
the 140 manually classified mutations, and automatically
classified the mutations using the all metrics with a threshold
of 1. Then we compared these results to the actual results
of the manual classification.

To quantify the effectiveness of the classification, we
compute its precision and recall:

o The precision is the percentage of mutations that are
correctly classified as non-equivalent. A high preci-
sion implies that the results of a classification scheme
contain few false positives—that is, most mutations
classified as non-equivalent are indeed non-equivalent.

e The recall is the percentage of non-equivalent muta-
tions that are correctly classified as such. A high recall
means that there are few false negatives—that is, a high
ratio of the non-equivalent mutations was retrieved by
the classification scheme.

While it is easy to achieve a 100% recall (just classify all
mutations as non-equivalent), the challenge is to achieve
both a high precision and a high recall.

The results for evaluating the different metrics on the
classified mutants are summarized in Table V. Each entry
gives first the precision of the metric, and then its recall.
Besides the metrics defined above, the table also contains the
results for the impact on dynamic invariants (Section VI-C).

From the average results (last row), we can see that all
techniques have a high precision, ranging from 68% for the
data distance and invariant metric up to 79% for cover-
age distance. This means that 68%—79% of all mutations
classified as non-equivalent actually are non-equivalent. In
comparison a simple classifier that classifies all mutations

Table VI
ASSESSING WHETHER MUTANTS WITH IMPACT ON COVERAGE ARE DETECTED BY TESTS.

Project Number of Number of Mls MNIs Top 5% MIs Top 10% MIs Top 25% MIs

Name MIs MNIs detected detected detected detected detected
ASPECTJ 5,531 1,661 76% 20% 100% 100% 99%
BARBECUE 1,045 528 83% 32% 100% 97% 99%
COMMONS 10,061 4,559 97% 58% 98% 99% 99%
JAXEN 5,997 548 97% 26% 100% 100% 100%
JODA-TIME 15,883 2,037 95% 18% 100% 100% 99%
JTOPAS 1,362 150 93% 5% 100% 100% 100%
XSTREAM 5,940 788 97% 39% 100% 100% 100%
MI = Mutation with Impact, MNI = Mutation with No Impact.

Table VII

ASSESSING WHETHER MUTANTS WITH IMPACT ON DATA ARE DETECTED BY TESTS.

Project Number of Number of Mls MNIs Top 5% MIs Top 10% MlIs Top 25% MIs

Name MIs MNIs detected detected detected detected detected
ASPECTJ 5,186 2,006 80% 19% 100% 99% 99%
BARBECUE 956 617 92% 25% 100% 97% 99%
COMMONS 7,861 6,759 98% 70% 97% 98% 98%
JAXEN 6,005 540 95% 46% 100% 100% 100%
JODA-TIME 15,173 2,747 91% 55% 100% 100% 99%
JTOPAS 1,286 226 94% 31% 100% 100% 100%
XSTREAM 5,543 1,185 95% 64% 100% 100% 100%

as non-equivalent, would have a precision of 54%. Thus,
the metrics improve over the simple approach by 14-25
percentage points.

Mutations with impact on coverage and data have a
likelihood of 58-79% to be non-equivalent, compared to
54% across all mutations.

When we look at the results per project, COMMONS
is a clear outlier, with a precision and recall of zero for
almost all metrics. This is due to several mutations that alter
the caching behavior of some methods. Although they are
manually classified as equivalent, because the methods still
return a correct object, they have a huge impact because
new objects are created at every call instead of taking them
from the cache. When we look at the result of the manual
classification for COMMONS (Table IV), we also see that it is
the project with the highest number of equivalent mutants—
which might indicate that most mutations not detected by
the test suite are equivalent.

The recall values for the coverage and data metrics range
from 44% for data distance to 61% for the combined
impact metric. Both the combined impact and combined
distance metric have a higher recall than the two metrics
they are based on. This, however, comes at a cost of a
lower precision. Furthermore, all coverage and data metrics
also have a far better recall than the earlier invariant-based
techniques [4] (recall of 19%).

Only 19% of non-equivalent mutants are likely to impact
invariants.

There is always a trade off between precision and recall.
Increasing one of both values decreases the other. The simple

classifier, for example, has a recall of 100% by definition
while it only has a precision of 55 %. On the other hand,
we can also increase the precision of our metrics by rising
the threshold, e.g. when we use a threshold of two for the
coverage impact, we get a precision of 81% percent and a
recall of 44%.

All distance metrics have a lower recall than their cor-
responding impact metrics. This is because some mutations
impact methods that are not connected via method calls—
and thus, the impact propagates through state changes.

B. Impact and Tests

Besides our evaluation on the manually classified muta-
tions, we also wanted a broader objective evaluation scheme
that can be automated. However, in order to automatically
determine the equivalence of a mutation we either need a
test suite that detects all non-equivalent mutations, or an
oracle that tells the equivalence of a mutation. Unfortunately,
obtaining such a test suite or an oracle is infeasible. Thus,
we decided to base our automated evaluation scheme on the
existing mature test suites of the projects.

The rationale for our evaluation is as follows: A mutation
classification scheme helps the programmer when it detects
many non-equivalent and fewer equivalent mutants. For
every mutant that is detected by the test suite, we know
for sure that it is non-equivalent. If we can prove that
classification scheme has a high precision on the mutations
that are detected by the test suite, this might also hold for
the mutations that are not detected by the test suite.

Thus, we applied the impact metrics to all mutations in
each project and evaluated them on the mutations detected
by the test suite. The results are given in Tables VI to VIIL.

Table VIII
ASSESSING WHETHER MUTANTS WITH COMBINED COVERAGE AND DATA IMPACT ARE DETECTED BY TESTS.

Project Number of Number of Mls MNIs Top 5% MIs Top 10% MIs Top 25% MIs
Name MIs MNIs detected detected detected detected detected
ASPECTJ 5,200 1,992 81% 17% 100% 100% 99%
BARBECUE 1,142 431 81% 25% 100% 97% 99%
COMMONS 10,467 4,153 95% 59% 98% 98% 99%
JAXEN 6,063 482 95% 41% 100% 100% 100%
JODA-TIME 15,841 2,079 91% 43% 100% 100% 99%
JTOPAS 1,388 124 92% 6% 100% 100% 100%
XSTREAM 6,059 669 94% 52% 100% 100% 100%

For each project and impact metric, we determined the
number of mutations that had impact (MIs in column 2),
and the number that had no impact (MNIs in column 3).
For the MIs and MNIs, we then computed the ratio that was
detected by the test suite (column 4 and 5).

In Section VI-F we saw that we need a threshold t
when to consider a mutation to have an impact according to
the underlying metric. As our manual classification showed
45% of the undetected mutations to be equivalent, we
automatically set ¢ such that at most 45% of the not detected
mutations are classified as having no impact.

The ratio of mutations with impact ranges from 54%
for COMMONS and data impact (Table VII) up to 93% for
JAXEN and the combined impact metric (Table VIII). The
number of mutations with impact that are detected is around
90% on average (i.e., at most 10% are equivalent), while the
average ratio of mutations with no impact ranges from 28%
for coverage impact to 45% for data and combined impact.
These results indicate that the impact metrics classify the
mutations with a high precision, while the coverage impact
metric has the highest precision.

Of the mutations that have impact on coverage or data,
at most 10% are equivalent.

C. Mutations with High Impact

In the previous experiments, we saw that mutations with
impact are more likely to be non-equivalent. Besides that,
we were interested whether mutations with a high impact
are more likely to be non-equivalent.

To evaluate this hypothesis we did two experiments. First
we ranked the mutations that were detected (as described
in Section VII-B) by their impact, picked the top 5, 10,
and 25 percent, and checked how many of them were non-
equivalent. In a second experiment, we ranked the mutations
from the manual classification according to their impact for
the different impact metrics. Then, we picked the 15, 20, and
25% highest ranked mutations out of all mutations classified
as non-equivalent by the metric, and checked if they were
correctly classified.

The results for the first experiment (for mutations detected
by the test suite) can be found in the last 3 columns of Tables
VI - VIII. For many projects and impact metrics the 25%

of mutations with the highest impact are all detected. If not
all are detected, at least 98% of them are. For the impact
on invariants [4], we observed a similar trend, but not as
pronounced as for the data and coverage impact metrics.

Table IX
FOCUSING ON MUTATIONS WITH THE HIGHEST IMPACT: PRECISION OF
THE CLASSIFICATION

Impact Metric Top 15% Top 20% Top 25%
Coverage Impact 88% 91% 93%
Data Impact 88% 91% 86%
Combined Impact 90% 85% 76%
Coverage Distance 86% 80% 75%
Data Distance 88% 80% 85%
Combined Distance 89% 75% 80%

Table IX shows the results for the manual classification.
For all impact metrics 75% or more out of the top 25%
are non-equivalent. Compared to the precision results in
Table V, picking the 25% mutations with the highest impact
yields a higher ratio of non-equivalent mutations, than
choosing mutations with impact in no specific order. In
this setting again the coverage impact metric performs best.
When we choose the top 25% ranked mutations, 93% of
them are non-equivalent.

Of the mutations with the highest coverage impact, more
than 90% are non-equivalent.

The results for the detected mutants indicate that a high
impact strongly correlates with non-equivalence, and the
results for the manually classified mutations confirm this
finding for the undetected mutants.

In practice, this means that focusing on the mutations
with the highest impact will yield the fewest amount of
equivalent mutants. The question is whether mutations with
a high impact are also the most valuable mutations—that is,
whether they uncover the most errors, or the most important
errors. Our intuition tells us that if I can make a change
to a component that impacts several other components, yet
the test suite does not detect it, such a change has a higher
chance to be valuable than a change whose impact is hardly
measurable. The relationship between impact and value of
mutations remains to be assessed and quantified, though.

VIII. THREATS TO VALIDITY

Like any empirical study, this study has limitations that

must be considered when interpreting its results.

o Threats to external validity concern our ability to
generalize the results of our study. In our studies,
we have examined 20 sample mutations from seven
non-trivial Java programs with different application
domains and sizes; some of them were larger by several
orders of magnitude than programs previously used
for evaluation of mutation testing [14], [3], [15], [1].
Generally, our results were consistent across a wide
range of programs. Still, there is a wide range of factors
of both programs and test suites that may impact the
results, and we therefore cannot claim that the results
would be generalizable to other projects.

o Threats to internal validity concern our ability to

draw conclusions about the connections between our
independent and dependent variables. Regarding the
manual classification (Section V), our own assessment
may be subject to errors, incompetence, or bias. At
the time we conducted the assessment, we did not
know how the mutations would score in terms of
impact; additionally, to counter these threats, all our
assessments are publicly available (Section X).
For assessing mutations based on coverage (Sections
VI-C and VII-B), our implementation could contain er-
rors that affect the outcome. To control for these threats,
we ensured that earlier stages had no access to data
used in later stages. We advise and support independent
confirmation of our results and make the framework and
necessary data publicly available (Section X).

o Threats to construct validity concern the appropriate-
ness of our measures for capturing our dependent vari-
ables. Regarding the manual classification of mutations
(Section V), being able to write a test is the ultimate
measure whether a mutant is non-equivalent. When
classifying mutations based on impact (Section VI-C),
we directly provide the information as required by the
programmer. Finally, in Section VII-B, our assump-
tion that the test suite measures real defects is an
instance of the “competent programmer hypothesis”
also underlying mutation testing [16]. This hypothesis
may be wrong; however, the maturity and widespread
usage of the subject programs should suggest sufficient
competence. Further studies will help completing our
knowledge on what makes a test suite adequate.

IX. RELATED WORK

The idea of using impact on executions to assess mu-
tations was first presented in a short workshop paper [8],
where we framed the problem and showed preliminary
results for the JAXEN project. This paper adds impact on
return values and method distance as an additional factor,
and brings a full-fledged evaluation.

In [4], we experimented with an alternate approach, based
on dynamic invariants as learned from the test suite. We
found that mutations that violate dynamic invariants also
have a higher likelihood to be non-equivalent. Our current
approach, though, is more efficient to use, detects even mi-
nuscule alterations in behavior, and produces better results.

The problem of equivalent mutants was also diagnosed
and tackled by other researchers. Baldwin and Seyward
[5] proposed the usage of compiler optimization techniques
to detect equivalent mutants. The idea of this approach
is that some equivalent mutants are optimizations or de-
optimizations themselves, or can be optimized away by a
compiler. These techniques were later implemented by Offutt
and Craft [6]. The results indicate that the techniques can
detect about 10% of equivalent mutants.

Offutt and Pan [11] realized that detecting equivalent
mutants is an instance of the feasible path problem and
presented an algorithm based on mathematical constraints.
To be non-equivalent, a mutation (1) must be reachable,
(2) cause an incorrect state after it is executed, (3) and must
have an effect on the final state. If a mutation cannot fulfill
any of these conditions, then it must be equivalent.

These techniques are orthogonal to ours; if it can be
statically proven that a mutation is equivalent, we do not
need to compute its impact, and can focus on those mutations
that cannot be handled with the static approaches. Another
question is how well the static approaches scale. While we
evaluated our impact metrics on programs of significant size,
Offutt and Pan’s [11], for example, evaluated their technique
on 11 programs with 11-30 executable statements.

Other approaches to the problem of equivalent mutants in-
clude aiding the programmer in detecting equivalent mutants
using program slicing [15], or generating less equivalent
mutants by using genetic algorithms [17] or higher order
mutants [18], [19].

Weak mutation as proposed by Howden [12] considers
a mutation to be detected when its containing component
computes a different result for at least one test case. Our
data impact metric also is also based on these differences.
However, instead of defining a mutation’s result by these
differences, we are trying to predict its equivalence. As we
can see from the results in Section VII-A, there are cases
where a mutation causes a component to produce different
results, while the whole program produces a correct result.

X. CONTRIBUTIONS AND CONCLUSION

Our study shows that equivalent mutants are a serious
problem that effectively inhibits widespread usage of muta-
tion testing, as demonstrated on a sample of 140 mutations
on seven Java programs. However, checking whether a
mutation impacts coverage is an effective means to separate
equivalent from non-equivalent mutations. In addition, the
technique is easy to implement and to deploy. All in all,
this paper makes the following contributions:

A case study on the abundance of equivalent mu-
tants. To our knowledge, the present study is the
first assessing the percentage of equivalent mutants on
a set of seven real-life programs. The percentage of
equivalent mutants ranges from 25% to 70%.
Evidence into the effectiveness of checking coverage.
If a mutation changes coverage, it has a 75% chance to
be non-equivalent. This paper substantiates this claim
on all seven programs as shown above.

A benchmark data set for further studies. We
have made our framework and all experiment data
publicly available (see below). Further researchers can
thus use our classified mutations to evaluate their own
techniques—and to improve upon our results.

Our own work does not stop at this point either. Our future
work will concentrate on the following topics:

How effective is mutation testing in improving test
suites? By effectively weeding out equivalent mutants,
we can run large case studies comparing mutation
testing to classical coverage criteria—and assess how
the value of mutations is related to their impact.

How can we find mutants with the highest impact? If
a mutation has a high impact on the program execution,
but is undetected by the test suite, it may be particularly
valuable. We are investigating genetic algorithms to
systematically generate such mutants.

Are components with high impact mutations defect-
prone? If mutations in a component have a particularly
high impact, this may indicate that changes to the
component are particularly risky. We want to study how
the impact of mutations propagates across components,
and whether the impact can be used to predict defects.

The JAVALANCHE framework as well as data sets from the
experiments in this paper are available at

http://www. javalanche.org/

ACKNOWLEDGMENTS

Gordon Fraser, Yana Mileva, Jeremias RoBler, Andrzej
Wasylkowski as well as the anonymous reviewers provided
helpful feedback on earlier revisions of this paper. Spe-

cial

thanks go to Bernhard Griin for contributing to the

JAVALANCHE coverage checker.

(1]

(2]

(3]

REFERENCES

J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation
an appropriate tool for testing experiments?” in ICSE ’05:
Proceedings of the 27th International Conference on Software
Engineering, 2005, pp. 402-411.

P. J. Walsh, “A measure of test case completeness,” Ph.D.
dissertation, Binghamton University, 1985.

P. G. Frankl, S. N. Weiss, and C. Hu, “All-uses versus mu-
tation testing: An experimental comparison of effectiveness,”
Systems and Software, vol. 38, pp. 235-253, 1997.

(4]

(51

(6]

(71

(8]

9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

D. Schuler, V. Dallmeier, and A. Zeller, “Efficient mutation
testing by checking invariant violations,” in ISSTA 2009:
Proceedings of the International Symposium on Software
Testing and Analysis, 2009.

D. Baldwin and F. Sayward, “Heuristics for determining
equivalence of program mutations,” Yale University, Depart-
ment of Computer Science, Tech. Rep. 276, 1979.

A. J. Offutt and W. M. Craft, “Using compiler optimization
techniques to detect equivalent mutants,” Software Testing,
Verification, and Reliability, vol. 4, pp. 131-154, 1994.

T. A. Budd and D. Angluin, “Two notions of correctness and
their relation to testing,” Acta Informatica, vol. 18, 1982.

B. J. M. Griin, D. Schuler, and A. Zeller, “The impact
of equivalent mutants,” in Mutation '09: 4th International
Workshop on Mutation Analysis, 2009.

R. H. Untch, A. J. Offutt, and M. J. Harrold, “Mutation
analysis using mutant schemata,” in ISSTA '93: Proceedings
of the 1993 International Symposium on Software Testing and
Analysis, 1993, pp. 139-148.

H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled
experimentation with testing techniques: An infrastructure
and its potential impact,” Empirical Software Engineering,
vol. 10, no. 4, pp. 405-435, 2005.

A. J. Offutt and J. Pan, “Automatically detecting equivalent
mutants and infeasible paths,” Software Testing, Verification,
and Reliability, vol. 7, no. 3, pp. 165-192, 1997.

W. E. Howden, “Weak mutation testing and completeness of
test sets,” IEEE Trans. on Software Engineering, vol. 8, no. 4,
pp. 371-379, 1982.

M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, “Dy-
namically discovering likely program invariants to support
program evolution,” IEEE Trans. on Software Engineering,
vol. 27, no. 2, pp. 99-123, 2001.

A. J. Offutt and J. Pan, “Detecting equivalent mutants and the
feasible path problem,” in COMPASS ’96: Proceedings 11th
Conference on Computer Assurance, 1996, pp. 224-236.

R. Hierons and M. Harman, “Using program slicing to assist
in the detection of equivalent mutants,” Software Testing,
Verification and Reliability, vol. 9, no. 4, pp. 233-262, 1999.

R. A. DeMillo, R. J. Lipton, and F. Sayward, “Hints on
test data selection: Help for the practicing programmer,”
Computer, vol. 11, no. 4, pp. 3441, 1978.

K. Adamopoulos, M. Harman, and R. M. Hierons, “How
to overcome the equivalent mutant problem and achieve
tailored selective mutation using co-evolution,” in Genetic and
Evolutionary Computation, vol. 3103, 2004, pp. 1338-1349.

A. J. Offutt, “Investigations of the software testing coupling
effect,” ACM Trans. on Software Engineering and Methodol-
ogy, vol. 1, no. 1, pp. 5-20, 1992.

Y. Jia and M. Harman, “Constructing subtle faults using
higher order mutation testing,” in SCAM 08: Proceedings of
the 8th International Working Conference on Source Code
Analysis and Manipulation, 2008, pp. 249-258.

